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Neuroimaging studies provide evidence of cortical involvement immediately before and
during gait and during gait-related behaviors such as stepping in place or motor imagery
of gait. Here we attempt to perform single-trial classification of gait intent from another
movement plan (point intent) or from standing in place. Subjects walked naturally from
a starting position to a designated ending position, pointed at a designated position
from the starting position, or remained standing at the starting position. The 700 ms of
recorded electroencephalography (EEG) before movement onset was used for single-trial
classification of trials based on action type and direction (left walk, forward walk, right
walk, left point, right point, and stand) as well as action type regardless of direction
(stand, walk, point). Classification using regularized LDA was performed on a principal
components analysis (PCA) reduced feature space composed of coefficients from levels
1 to 9 of a discrete wavelet decomposition using the Daubechies 4 wavelet. We achieved
significant classification for all conditions, with errors as low as 17% when averaged across
nine subjects. LDA and PCA highly weighted frequency ranges that included movement
related potentials (MRPs), with smaller contributions from frequency ranges that included
mu and beta idle motor rhythms. Additionally, error patterns suggested a spatial structure
to the EEG signal. Future applications of the cortical gait intent signal may include an
additional dimension of control for prosthetics, preemptive corrective feedback for gait
disturbances, or human computer interfaces (HCI).
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INTRODUCTION
The detection of locomotive intent has potential as a control sig-
nal in brain-computer interfaces, for mitigating complications in
movement disorders, or for use in environments with human
computer interfaces (HCI). Detection of this signal is valuable
for spinal cord injury patients and other users of lower limb
prosthetics or artificial exoskeletons. It may also prove useful for
alleviating abnormal states that prevent proper gait coordination
such as during freezing of gait in Parkinson’s disease by provid-
ing preemptive visual cues that help prevent freezing episodes
(Hanakawa et al., 1999; Jiang and Norman, 2006; Nieuwboer,
2008). Other uses could be in HCI systems that anticipate user
movement. Truly useful and versatile applications will require dif-
ferentiation between many possible types of movements as well as
the directionality of the movements. Here we explore the possibil-
ity of electroencephalography (EEG) to differentiate the intent to
produce a locomotive movement from another movement as well
as the spatial direction of the movement.

EEG is an ideal modality to capture locomotive intent. Its
non-invasive nature is attractive to users, and the high tempo-
ral resolution, which is lacking in other non-invasive methods
such as functional magnetic resonance imaging (fMRI), is suit-
able for capturing the cortical dynamics of gait planning and
production. EEG systems are also inexpensive compared to other
imaging technologies and can be worn comfortably by the subject

even during large-scale movements such as locomotion. There
are many groups competing to produce commercial dry electrode
EEG systems, including ones that wirelessly connect to cell phones
(Matthews et al., 2008; Yasui, 2009; Wang et al., 2011).

Locomotive movement through an environment is a crucial
survival trait of many organisms. Vertebrates perform locomo-
tive movements through a multi-level control system involving
the cortex, brainstem, cerebellum, and spinal cord. This system
integrates visual, vestibular, and proprioceptive information from
the environment to perform coordinated movement of joints
and muscles. Direct pathways from the cortex to the spinal cord
have been shown to be vital for skilled movement, and pathways
from the cortex to the basal ganglia may be important for online
change of gait in response to obstacles or new goals (Graybiel,
2005; Grillner et al., 2008). Recently, intracortical recordings from
hundreds of neurons in monkey motor cortex were successfully
decoded to 3D coordinates of leg joints during treadmill walking
of varied speed and direction (Fitzsimmons et al., 2009). A sim-
ilar experiment conducted with humans and using EEG decoded
the linear and angular kinematics of the ankle, knee and hip joints
during treadmill walking (Presacco et al., 2011).

Neuroimaging studies in humans provide further evidence
that the cortex is active during gait preparation and gait produc-
tion. These studies attempted to isolate the neural correlates of
bipedal gait production in humans by measuring brain activity
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during visual observation and mental motor imagery of gait and
related motor activities with fMRI and positron emission tomog-
raphy scanning (PET) (Malouin et al., 2003; Jahn et al., 2004;
Bakker et al., 2008; Iseki et al., 2008; Wang et al., 2008, 2009).
Groups have also recorded brain activity during gait movement
with near infrared spectroscopy (NIRS) or EEG to determine
brain regions involved in gait, to demonstrate effective movement
artifact elimination from EEG, and to characterize the EEG signal
during gait production (Yazawa et al., 1997; Miyai et al., 2001;
Gwin et al., 2010, 2011; Wagner et al., 2012).

This study aims to detect EEG based cortical activity that is
related to gait preparation before the voluntary motor production
of gait. To our knowledge, we are the first to attempt to classify
the intent to walk from single trial EEG data recorded before the
onset of a natural gait movement in which the subject walks in
real space from a starting position to a target position. We also
classify the intent to walk from another motor plan, the intent to
point. The classification of reach preparation before movement
onset from EEG has been well established (Hammon et al., 2008;
Wang and Makeig, 2009; Lew et al., 2012).

The classification process here uses information from all avail-
able frequency ranges and channels to allow for individual varia-
tions in cortical topography and dynamics. By examining which
channels and which frequency ranges are most weighted by the
top principal components and the LDA classifier, we character-
ize the nature of the signal used in classification. Finally, we
attempt classification of pre-movement EEG between different
target positions located in spatially distinct areas either to the left,
right or in front of the subject.

We used a feature space that could capture mu (8–13 Hz) and
beta (14–25 Hz) frequency band desynchronization over central
motor and premotor areas (PMAs) as well as slow movement
related potentials (MRPs) within single trials. Wavelets, especially
the Debauchies (db) family, have been extensively used for EEG
classification. The intended motor plan was predicted by classifi-
cation of a principal components analysis (PCA) reduced feature
space using regularized linear discriminant analysis (rLDA).

MATERIALS AND METHODS
DATA COLLECTION
Nine healthy, right-handed subjects (18–27 years old, 2 females)
participated in the experiment. All subjects read and signed
informed consent forms that were approved by the UCSD Human
Research Protections Office. Subjects were naive and untrained
in the task and no feedback was given that could cue subjects
to modulate their cortical signals to produce better features over
time.

Continuous EEG was recorded from 64 Ag/AgCl electrodes
positioned on a BioSemi nylon head cap according to the 10–20
International System. The signal was amplified with fixed gain
BioSemi ActiveTwo amplifiers, band-passed from 0.2 to 100 Hz,
and digitized at 512 Hz with 24-bit resolution. The independent
software package DataRiver was used to read and record EEG
signals as well as to integrate EEG signals with events from the
Stim2007 stimulus presentation software (Delorme et al., 2011,
2012; Vankov et al., 2010). Two EOG electrodes were placed
to record eye movements (one on the right outer canthus and

one below the right eye). Right and left mastoid electrodes were
averaged off-line to serve as reference. To minimize movement
artifacts, subjects were encouraged to remain as still as possi-
ble and to look at a fixation cross on the wall until they heard
the go cue. Two electrodes were placed on the anterior tib-
ialis muscle (the first muscle to activate in gait) on each leg to
detect premature muscle contraction during trials (Mann et al.,
1979). As only eight EMG electrodes were available, the muscle
activity of the arm could not be monitored through electrophys-
iological methods; the experimenter noted and discarded any
trials with premature pointing or arm movements unrelated to
the task.

Cues were given in the form of auditory stimuli played through
two speakers located behind the subject. A trial consisted of a
command cue spoken by a computer-generated voice (walk front,
walk right, walk left, point right, point left, stand still) followed
by a delayed go cue (indicated by an auditory tone of 1 s in
duration). The command cues were 1 s in length, and an inter-
val of 1 s occurred after the end of the command cue and before
the sound of the go cue. For point and stand trials the end of
the trial was indicated by an auditory tone 2 s after the go cue
while for walk trials the same tone was sounded 4 s after the go
cue (Figure 1B). The experiment consisted of 60 trials for each
condition, or a total of 360 trials, presented in pseudorandom
order in six blocks of 60 trials with 2 min of rest between blocks,
with the exception of Subject 1, who had 80 trials per condition.
We reduced the number to 60 trials per condition for subjects
2–9 as the time to complete the experiment was prohibitively
long. After the go cue sounded, the subject either walked for-
ward five feet to designated spots on the floor to the right, left,
or in front of standing position; pointed at designated objects
on the right and left ends of a table placed five feet in front of
the subject, or remained standing still with eyes focused on the
fixation cross at eye level on the wall directly in front of the
subject (Figure 1A). The subject carried the EEG amplifier and
battery in a specially designed backpack for the duration of the
experiment.

DATA ANALYSIS
All data were analyzed offline. For artifact removal, data were
high pass filtered above 1 Hz to remove slow cortical poten-
tials and galvanic skin potentials. The experimenter first visu-
ally inspected the data for removal of noisy channels, epochs
with artifacts, and epochs with incorrect responses or prema-
ture leg movement (Figure 1C). These data was then further
cleaned using EEGLAB automatic artifact rejection functions
that removed channels and epochs that had kurtosis measures
5 standard deviations from the mean kurtosis value (Delorme
and Makeig, 2004; Delorme et al., 2011). Kurtosis is the fourth
moment measure of a probability distribution, and large posi-
tive kurtosis values indicate increased peaky shape whereas large
negative kurtosis values indicate abnormally flat shape in the dis-
tribution. In EEG, these may represent undesirable artifacts in
the data.

The above channels and time points were noted and then
excluded from original raw, unfiltered data for subsequent clas-
sification analyses. The number of trials remaining for each class
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FIGURE 1 | (A) Experiment set-up. Subject stands with arms at side and
fixates on cross bar until the go cue sounds to perform one of six actions:
walk left, front or right to target marked on floor, point left or right at an object
on the table, or stand still. (B) Trial structure with the red bar indicating time

range of data used in classification. (C) EMG from right anterior tibialis
muscle of one subject. Trials in which EMG indicated movement onset prior
to 200 ms were omitted. The red bar indicates the time range of data used in
classification.

Table 1 | The number of channels and the number of trials for each class remaining after artifact elimination are shown for each subject.

Subject Channels L walk R walk F walk L point R point Stand Cut-off (%)

S1 63 66 66 66 66 66 72 41

S2 59 44 44 46 44 44 46 40

S3 59 49 49 49 49 49 50 40

S4 51 45 45 52 45 45 49 40

S5 62 48 48 48 48 48 58 40

S6 58 36 36 36 36 36 51 39

S7 50 27 27 27 27 27 29 37

S8 50 44 44 44 44 44 48 40

S9 59 47 47 47 47 47 47 40

The final column lists the adjusted cut-off for binary classification significance based on Wald intervals modified for small sample sizes determined by the class with

the lowest number of trials.

and the number of channels remaining for each subject after
artifact rejection are shown in Table 1.

Filtering of data provided to the classifier was explicitly
avoided so as to avoid any misrepresentation or distortion of the
signal. High pass and acausal filters are commonly used in EEG
research to remove noise, but these are poor choices for predic-
tive classification as they produce temporal smearing of the signal
such that values at future time points in which actual move-
ment occurs may be used in the calculation of values at time
points of interest for movement prediction. Causal filters avoid
this problem, but still cause distortions in the original signal.

For classification, EEG data were separated into epochs start-
ing 500 ms before and ending 200 ms after the onset of the go
cue (but before the onset of gait) of each trial. We used this time
range in order to capture the MRP signal from the motor cortex as
well as any pre-movement related mu or beta desynchronization.
Epochs were then processed to extract wavelet coefficients as the
features for the classifier.

RATIONALE BEHIND FEATURE SELECTION
Wavelets provide high-resolution frequency information at low
frequencies and high-resolution time information at higher
frequencies. Many biological signals consist of slow oscillating
background activity with rapid onset of change in activity. The
temporal dynamics of such frequency perturbations may be better
captured by wavelets than other methods.

Wavelet decomposition was performed on all available chan-
nels within a subject. This yielded a high dimensional feature
space with d = n channels × 358 coefficients per trial. To facil-
itate classification by LDA, this high dimensionality was reduced
by PCA to ten dimensions per trial (Lan et al., 2010). We used
all 10 principal components for classification since only compo-
nents with the highest variance were not ensured to be infor-
mative for classification (Lugger et al., 1998). Thus, we let the
classifier decide which components were most informative by
assigning those components higher weights during the training
process.
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FIGURE 2 | L walk/ L point feature visualization for S4 and S8. The
smaller scalp maps show topographies of final weights of channels within
different frequency bands. The larger scalp map shows the weighted average

of the final weights from all frequencies, and represents what is used by the
classifier. Each line represents the absolute value of the final weights for all
coefficients for an individual channel.

FEATURE PARAMETERS
We calculated the coefficients from level 9 discrete wavelet decom-
positions of the data using Daubechies wavelet 4 (db4) as the
mother wavelet with periodization padding. The db family of
wavelets has been shown to be better than biorthogonal wavelets,
autoregressive filtering, and mu-matched filtering for extracting
movement-related information from EEG signals (Renfrew et al.,
2008). The db4 wavelet has been used extensively to analyze EEG
signals (Subasi, 2006) and has performed as well as wavelets cus-
tomized to individual subjects’ EEG training data (do Nascimento
and Farina, 2006; Farina et al., 2007) in a task predicting torque
direction in foot movement.

Since the EEG signal was sampled at 512 Hz, the Nyquist fre-
quency was 256 Hz. The level 1 decomposition thus included
frequency information from 128 to 256 Hz, the level 2
decomposition from 64 to 128 Hz, and so on (Table 2). Detail
coefficients from levels 1 to 9 encompassed available frequency

signals from 0.5 to 56 Hz, and the approximate coefficients for
level 9 had signals from 0 to 0.5 Hz. This range included both
the mu and beta frequency sub-bands associated with idle motor
rhythms and slow cortical potentials such as the MRP.

LDA CLASSIFICATION
Features were extracted for six classes of trials: walk left, walk
right, walk front, point left, point right, and stand. The classes
were paired into 15 different binary classification problems, which
can be separated into four different categories: same action with
different directions, different actions with same direction, differ-
ent actions with different directions, and actions vs. standing.
Classes were also collapsed over directions to test the ability to
classify walk/stand, point/stand, and walk/point.

A regularized LDA classifier (with optimized regularization
parameter k) was trained on 10 features per trial using a
10-fold cross validation scheme (Friedman, 1989). Each class was
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Table 2 | Wavelet levels and coefficients with corresponding

frequency ranges.

Level Frequency (Hz) Coefficients

9 0–0.5 1 (approximate)

9 0.5–1 2 (detail)

8 1–2 3, 4

7 2–4 5–7

6 4–8 8–13

5 8–16 14–25

4 16–32 26–48

3 32–64 49–93

2 64–128 94–183

1 128–256 184–362

assigned an equal number of trials and these trials were then ran-
domly shuffled and partitioned into 10 sets, with nine used for
training and one used for testing. Training and testing was done
10 times with a different set used each time as the test set. Thus,
test data were completely separate from the training data. This
complete process was repeated 9 additional times, and the predic-
tion errors from the resulting 100 test cross validation folds were
averaged and reported as the final results.

In situations with few trials compared to features, we do not
have enough data to accurately estimate the covariance matrices
used by LDA. In the absence of adequate information, a spheri-
cal covariance matrix is often assumed. Regularization provides
a way to smoothly interpolate (using regularization constant k)
between the sample covariance matrix and spherical covariance
matrix. Within each fold, the optimal value for the regularization
constant k was chosen from 10 values covering the interval [0.09
0.5] based on the value with the highest performance in an inner
4-fold cross validation scheme that used training data only.

Classifier performance was evaluated based on the number of
trials used in classification. Chance level in a binary classification
problem is not exactly 50%, but 50% with a confidence interval
for a given p-value depending on the number of trials. The Wald
interval is a normal approximation of the binomial confidence
interval. As we had a small number of trials, we calculated Wald
intervals with adjustments for a small sample size by adding four
dummy observations, or two for each type (Agresti and Caffo,
2000; Müller-Putz et al., 2008). These intervals were then used to
determine if the classifier performed significantly above chance
or not.

LOCATION AND FREQUENCY SOURCE ANALYSIS USING PCA RESULTS
To better understand the nature of the signal used in classification
and to ensure that classification was not based on eye or mus-
cle movements, the final weights (all 10 PC weights multiplied
by their respective LDA weights) were visualized with respect to
space (channel scalp topography) and frequency band (wavelet
coefficients.) The topographies of the final weights were plotted
at each frequency band as well as averaged over all frequency
bands to pinpoint the channels that contributed most to classi-
fication. The absolute values of the final weights were plotted for
each wavelet coefficient of each channel to visualize which region

of the frequency spectrum was most informative for successful
classification. Scalp topographies from each of the 10 PC com-
ponents averaged over all 100-folds and all frequencies from the
subject with the best performance were plotted in order of the PC
with the highest contribution to LDA to the PC with the lowest
to determine if PCs with higher eigenvalues contained the most
pertinent information for classification.

CONTRIBUTION FROM EOG AND PERIPHERAL SCALP CHANNELS
As an additional measure to assess the contribution of eye and
muscle movements to the classification, LDA classification was
performed using only EOG channels and those channels that
would most be influenced by eye movements or muscle move-
ments: Fp1, AF7, F7, FT7, T7, TP7, P9, P7, PO7, O1, Iz, Oz,
O2, PO8, P8, P10, TP8, T8, FT8, F8, AF8, Fp2, and Fpz. These
channels were located on the periphery of the EEG cap and were
close to the origin of eye movements and muscles, and thus prob-
ably most strongly reflected the activity from these artifacts when
compared to the other scalp channels.

Subjects with greater than chance performance based on the
average of 10 runs of 10-fold CV from a specified LDA classi-
fication using this subset of channels were eliminated from the
reported grand averages over subjects for that classification.

ERROR PATTERNS
To determine if there was underlying spatial structure in the EEG
signal, multiple discriminant analysis (MDA) using the one class
vs. rest scheme was applied to the following classification prob-
lems: (1) left walk, front walk, right walk (three classes); (2) left
point, front walk, right point (three classes); and (3) left walk,
left point, right walk, right point (four classes). To visualize clas-
sification performance, trials from all cross validation folds were
grouped based on true class and predicted class. For example, in
a three-class problem, the groups were arranged into a 3 × 3 con-
fusion matrix with row labels corresponding to true classes and
column labels corresponding to predicted classes. Cells were nor-
malized by dividing by the total number of trials in the row class,
so that the value of one cell was the fraction of trials that the clas-
sifier predicted to be in the class as defined by the column location
of the cell.

RESULTS
LDA CLASSIFICATION
Individual subject errors and errors averaged over all nine subjects
are shown in Tables 3A–3D for the 15 classification problems that
consider direction as well as action. Mean and individual subject
errors are shown in Table 4 for the three classification problems
that collapse trials across directions and only consider differences
in actions. Classification was successful if it yielded an error lower
than the calculated threshold that was based on the number of
trials used (Table 1).

Only 9/162 classifications had significant performance using
EOG and peripheral channels: L walk/F walk and R point/stand in
subject 6; L point/R point in subject 9; walk/stand in subjects 1, 2,
4, 7; and point/stand in subjects 1 and 4. Within these nine clas-
sifications, the performance of EOG and peripheral channels was
either poorer (8/9) or similar (1/9) to that of all scalp channels.

www.frontiersin.org June 2013 | Volume 7 | Article 84 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Neuroprosthetics/archive


Velu and de Sa EEG detection of gait preparation

Table 3A | Classification errors for different direction, same action.

Subject L walk/ L walk/ F walk/ L point/

R walk F walk R walk R point

S1 0.07 0.09 0.14 0.15

S2 0.37 0.42 0.41 0.36

S3 0.12 0.08 0.23 0.20

S4 0.15 0.01 0.23 0.27

S5 0.06 0.03 0.20 0.12

S6 0.32 0.37 (0.36) 0.46 0.41

S7 0.31 0.47 0.48 0.51

S8 0.07 0.08 0.14 0.11

S9 0.31 0.31 0.39 0.32 (0.35)

Mean 0.20 0.19 0.30 0.27

p-value 0.0005 0.0010 0.0011 0.0014

Above chance performances in classification using only EOG +peripheral scalp

channels are shown in parenthesis next to the reported performances using only

scalp channels. These values are not included in the calculation of the mean, and

are crossed out.

Table 3B | Classification errors for same direction, different action.

Subject L walk/L point R walk/R point

S1 0.30 0.31

S2 0.41 0.43

S3 0.38 0.42

S4 0.24 0.26

S5 0.44 0.53

S6 0.41 0.39

S7 0.44 0.40

S8 0.39 0.36

S9 0.30 0.30

Mean 0.37 0.38

p-value 0.0003 0.0010

There were no above chance performances in classifications using only EOG +
peripheral scalp channels.

Left tailed one-sample t-tests using subject errors as sam-
ples, α = 0.05 and a mean set of 50% resulted in p-values below
0.05 for all 18 binary classifications. One-Way ANOVA test-
ing suggested significant differences in means between the 15
classification problems that accounted for both direction and
action (p = 0.035) and between the three classification problems
that accounted for action only (p = 0.019). Post-hoc multiple
comparisons test using Tukey’s honestly different significance
criterion both with and without assuming that the data followed
a normal distribution revealed that only the mean error for walk
vs. stand was significantly lower than the mean error for walk
vs. point.

CONTRIBUTIONS FROM CHANNELS AND FREQUENCY RANGES
To pinpoint the origin and nature of the signal that the classi-
fier was using, the contributions of different frequency ranges
and channels were visualized by plotting the weightings by dif-
ferent PCs and the LDA classifier. The results for subject 4 (S4)

Table 3C | Classification errors for different direction, different action.

Subject L walk/ R walk/ F walk/ F walk/

R point L point R point L point

S1 0.05 0.12 0.10 0.09

S2 0.39 0.35 0.39 0.33

S3 0.10 0.05 0.10 0.13

S4 0.03 0.05 0.07 0.06

S5 0.13 0.04 0.09 0.06

S6 0.25 0.30 0.36 0.43

S7 0.45 0.34 0.41 0.47

S8 0.11 0.07 0.07 0.12

S9 0.24 0.32 0.29 0.34

Mean 0.20 0.17 0.20 0.23

p-value 0.0001 0.0001 0.0002 0.0016

There were no above chance performances in classifications using only EOG +

peripheral scalp channels.

Table 3D | Classification errors for action vs. standing.

Subject L walk/ R walk/ F walk/ L point/ R point/

stand stand stand stand stand

S1 0.12 0.16 0.20 0.16 0.25

S2 0.38 0.33 0.42 0.46 0.48

S3 0.25 0.24 0.20 0.13 0.15

S4 0.19 0.36 0.33 0.10 0.07

S5 0.16 0.27 0.05 0.08 0.05

S6 0.27 0.49 0.37 0.36 0.35 (0.32)

S7 0.47 0.47 0.41 0.39 0.55

S8 0.10 0.32 0.17 0.10 0.16

S9 0.24 0.35 0.27 0.24 0.28

Mean 0.24 0.35 0.27 0.25 0.28

p-value 0.0001 0.0007 0.0003 0.0002 0.0030

Above chance performances in classification using only EOG+peripheral scalp

channels are shown in parenthesis next to the reported performances using only

scalp channels. These values are not included in the calculation of the mean, and

are crossed out.

and subject 8 (S8) in the two most difficult classifications, L
walk/L point and R walk/R point, and in the three classifications
collapsed across directions best provided insight into the classi-
fication process. Both subjects had significantly low errors for all
classifications, but S4 probably had contributions from EOG or
peripheral channels in the walk/stand and point/stand classifica-
tions while S8 had no such contributions. S8 had much higher
error in the L walk/L point and R walk/R point classifications
compared to S4.

The frequency bands with the highest weighting were visual-
ized by plotting the final weight for each of the 358 coefficients
(Figures 2, 3). The final weight was computed by multiply-
ing the PC weights from all 10 PCs by their respective LDA
weights. This was done using training data from all 10-folds
and 10 runs. Additionally, scalp topographies of channel weights
were plotted using only coefficients within a given frequency
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band (smaller scalp plots) and using all coefficients (large scalp
plot). The former indicated which brain regions had infor-
mative activity within a given frequency band while the lat-
ter gave a sense of which channels were most crucial for the
LDA classification. The plots show that coefficients correspond-
ing to lower frequency bands were more highly weighted. The
scalp map averaged over all coefficients indicated that channels
Cpz, C4, and FC5 were most highly weighted in S4 whereas
S8 only had one channel, C3, highly weighted. The scalp

Table 4 | Classification errors for combined directions.

Subject Walk/ Point/ Walk/

stand stand point

S1 0.10 (0.38) 0.30 (0.39) 0.24

S2 0.34 (0.38) 0.41 0.40

S3 0.21 0.25 0.39

S4 0.19 (0.33) 0.22 (0.36) 0.24

S5 0.21 0.26 0.40

S6 0.35 0.41 0.40

S7 0.22 (0.34) 0.28 0.42

S8 0.18 0.17 0.28

S9 0.24 0.32 0.28

Mean 0.24 0.30 0.34

p-value 0.0005 0.0005 0.0002

Above chance performance in classifications using only EOG +peripheral scalp

channelsareshowninparenthesisnexttotheperformanceusingall scalpchannels.

These values are crossed out, and not included in the calculation of the mean.

maps within different frequency bands showed very variable
topographies.

Using EOG and peripheral channels alone resulted in signifi-
cantly low errors in the walk/stand and point/stand classifications
in S4. Scalp topographies suggested weighting of the frontal
electrodes in a pattern that suggested vertical eye movements,
though this reliance on frontal electrodes was diminished in the
walk/point classification. An example of possible neck muscle
artifact can be seen in the scalp map for the 16–32 Hz frequency
band of the R walk/R point classification. There were no scalp
topographies with exclusively frontal or peripheral electrode
weighting, which would suggest that eye or muscle movements
were driving the classification.

The most weighted PCs did not necessarily have the high-
est eigenvalues (Figure 4). There were three distinct topographies
with slight variations represented by the 10 PCs, and the first five
PCs summed to 75% of the total contribution to classification.

ERROR PATTERNS FROM MDA CLASSIFICATION
In the confusion matrix for the three-class problem of left
walk/front walk/right walk (Figure 5A), most left and right tri-
als were correctly classified, less likely to be classified one location
away, and least likely to be classified two locations away. Most
front trials were correctly classified, with similar misclassification
rates as left or right. This same structure more or less exists in the
confusion matrix for the three-class problem of left point/front
walk/right point (Figure 5B). In the four-class problem of left
walk/right walk/left point/right point (Figure 5C), once again tri-
als were most likely to be correctly classified. Direction was a

FIGURE 3 | Similar to Figure 2, but with walk/stand, point/stand, and walk/point feature visualization for S4 and S8.
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FIGURE 4 | Scalp topographies of the weighted average of the

contributions from all frequencies for all 10 PCs used in the L walk/L

point classification in S4 are ordered from the PC with the highest LDA

weight to that with the lowest LDA weight. Percentage contribution to
LDA was calculated by normalizing LDA weights to one. PC1 has the highest
eigenvalue and PC10 the lowest.

FIGURE 5 | (A) Confusion matrix for three-class MDA of left walk/front
walk/right walk. Row labels indicate true classes and column labels indicate
classifier labels. Color of cells reflect fraction of trials classified as trial type
indicated by the column label, i.e., the second cell in the top row indicates

the fraction of left trials classified as front trials. Larger fractions (lighter
colors) represent higher number of correct classifications. (B) Confusion
matrix for three-class MDA of left point/front walk/right point. (C) Confusion
matrix for four-class MDA of left walk/right walk/left point/right point.

stronger factor than type of action for correct classification. For
example, left walk trials were more likely to be misclassified as left
point trials but less likely and at similar rates to be misclassified as
right walk or right point trials.

DISCUSSION
This study demonstrated that single trial EEG data is (1) classi-
fiable for walk intent before the onset of natural movement, (2)
classifiable between two motor plans (walking and pointing) that
activate overlapping muscles, and (3) classifiable for an action
at different target spatial locations. The largest contributors to

successful classification were low frequencies (0–4 Hz) and chan-
nels located over areas involved in motor planning or motor
production.

It is important to note that “movement intent” as used in this
paper refers to the preparation of a movement by the subject in
response to an external experimental cue. Further, movement was
elicited by a warning stimulus (S1) that was followed by an imper-
ative stimulus (S2). The resultant MRP from this paradigm is the
CNV, which contains contributions from both motor preparation
and attention for the upcoming stimulus (Luck and Kappenman,
2011). The motor aspect of the CNV is often equated to the late
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phase of the BP (Bereitschaftpotential), which is another slow
cortical DC potential that is an indicator of human voluntary
activity from as early as 2 s (the “early BP”) to 400 ms (the “late
BP”) before the onset of movement (Shibasaki and Hallet, 2006).
While the CNV results from external regularly timed cued move-
ment, the BP results from internally self-paced movement. The
beginning of the early BP starts in the pre-supplementary motor
area (pre-SMA) and lacks somatotopic organization, but the rest
of the early BP and the entire late BP have generators with dis-
crete spatial locations corresponding to body parts. Application
of this classifier paradigm to subject driven gait intent may show
better classification as a result of the greater specificity of the BP
compared to the CNV (Jankelowtiz and Colebatch, 2002; Lew
et al., 2012).

A large challenge of using MRPs is finding informative activ-
ity within single trials since the low signal to noise ratio of a
single trial presents a considerable obstacle in feature detection.
Though the majority of MRPs in EEG literature are presented
as ERPs averaged over hundreds of trials in the time-voltage
domain, efforts are being made to capture the MRP within a sin-
gle trial. One group succeeded in single trial detection of the MRP
using features from wavelet analysis for predicting foot torque
movement while subjects were seated (Farina et al., 2007).

Another feature commonly used in BCIs is the event related
desynchronization (ERD)/event related synchronization (ERS),
or the decrease/increase in power of mu (8–13 Hz) or beta
(14–25 Hz) rhythms at somatotopically distinct regions before
and during motor planning, action or imagery (McFarland
et al., 2000; Pineda et al., 2000). In select subjects, it is visually
observable during single trials and has been used to detect hand,
foot, or tongue motor imagery (Pfurtscheller et al., 2006; Bai
et al., 2008) or predict wrist extension (Bai et al., 2010). One
study concluded that ERD and ERS was a more specific signal
compared to the MRP for detection of pre-movement or motor
imagery in a left hand/right hand/foot/tongue task (Morash et al.,
2008). It is important to note that this feature varies spectrally and
topographically in individual subjects (McFarland et al., 2000).

In this study we used all frequency information available in the
signal by including coefficients from the entire wavelet decompo-
sition. Previously mentioned fMRI, PET, and NIRS studies on gait
found task-relevant activity in the supplementary motor cortex
(SMA), medial primary motor cortex, and medial sensorimotor
cortices. Cortical folding is different between individuals, which
results in highly variable topographic distributions of useful EEG
signal within a group of subjects. We created unsupervised cus-
tom spatial filters for each subject by including all noise-free
channels available from the 64-channel montage covering the
scalp and then applying PCA to transform and reduce this large
feature space to the 10 dimensions with the most variance in the
signal.

The variable ranking of PCs by LDA weights was in line with a
study of single trial EEG classification using PCA-reduced feature
space and LDA for an imagined left-and-right hand movement
task (Lugger et al., 1998). Though the first few PCA compo-
nents had the greatest variance, they were poor in discriminating
between left vs. right hand motor imagery. These components
were thought to represent background cortical EEG activity that
was unrelated to the task.

Visualizations of the features used by the classifier revealed
that frequency components within the range of the MRP were
most heavily weighted. The channels most weighted in S4 may
have reflected activity from the PMd (FC5), leg motor area (CPz),
and arm motor area (C4), which could explain the lower errors
for the L walk/L point and R walk/ R point classifications com-
pared with S8, who only had high weighting of channel C3.
Notably, the classification error for walk/point was similar for
both S4 and S8, possibly because more trials were available for
training as the classification used trials from both left and right
conditions.

The dorsal premotor cortex (PMd) is postulated to be acti-
vated in externally cued movement preparation vs. movement
that is internally driven by the subject, and vice versa in the SMA.
Evidence for this has been circumstantial in humans, though
one group demonstrated double-dissociation of PMd and SMA
activity on MRPs by repetitive transcranial magnetic stimulation
(rTMS) in humans during a right digit task in externally cued vs.
internally driven conditions (Lu et al., 2011). Most relevant to this
EEG study is an experiment that demonstrated that EEG surface
potential configurations had the same order and same strength
but longer duration over the PMA compared to the SMA in exter-
nally cued vs. internally driven right digit movement (Thut et al.,
2000).

BCIs also must minimize or eliminate contributions from
non-cortical electrical activity, such as from EOG and EMG.
These signals not only obscure the cortical signal but can
misdirect classification as in a situation when a subject is look-
ing at a target that is not located in the intended direction of
gait. Topographies suggestive of eye and muscle movements did
appear in some scalp maps but were not the only feature present
in the maps or had smaller weights. Classification using EOG and
peripheral scalp channels resulted in significantly low errors in
only 6% of all classifications, and these error values were poorer
or comparable to those from classifications using only scalp chan-
nels. The classifiers appear to have minimized the contribution of
eye or muscle movement on the scalp channel cortical signals for
correct classification of movement intent.

Another challenge was in differentiating between two different
motor plans to ensure that discrimination was based on a sig-
nal unique to gait movement intent and not generalized to any
movement intent. Further, this was not a straightforward classifi-
cation of an upper limb activity from a lower limb activity. Gait
requires not only the participation of lower limb muscles, but
trunk and upper limb muscles as well. In EMG studies, the poste-
rior deltoid muscle was consistently activated in all 35 subjects in
a walking task (Barthelemy and Nielsen, 2010), and contributed
to horizontal abduction, external rotation, and depression at the
shoulder as well as flexion and supination at the elbow dur-
ing arm reaching (Vandenberghe et al., 2012). Though regions
of the cortex involved in planning movements of these mus-
cles have specific somatopic distribution, they are contiguously
located on the sensorimotor cortex (Bakker et al., 2007) and may
not be easily separable by the poor spatial resolution of EEG.
This was probably the biggest factor in the higher errors for the
walk vs. point classification problems compared to point vs. stand
and walk vs. stand classification problems, though it is notable
that the errors were still significantly below chance. With more
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training trials and the use of a non-linear classifier such as kernel
support vector machines, these errors may be further lowered.

Finally, we tested the ability to predict the direction of move-
ment toward a target either to the left, in front, or right of the
subject. For all three targets, subjects initiated walking with the
same leg and same arm, so classification was not based on con-
tralateral cortical activation of the limb used. Previously, reaching
to three different (left, right, center) locations using the same arm
revealed an underlying structure in the pre-movement EEG signal
that corresponded with target space (Hammon et al., 2008). Trials
were most likely to be correctly classified, less likely to be classified
one target away, and least likely to be classified two targets away.
We found a similar underlying structure that corresponded to the
target space in our data.

We should note that in an online real-time BCI, the classifier
would be trained on initial data and then be tested on future data.
This means it must be robust to non-stationarity in the signals
that can cause drifts in the features over time. In this experiment
there were not enough trials to create a large enough training

set for adequate training and a separate (later) test set with an
adequate number of trials to reliably assess the classifier accuracy,
so we were not able to test this aspect.

In conclusion, this study has shown that the EEG signal
can be used for predictive classification between walk, point
and stand actions as well between different target directions
for these actions. Spatial and spectral contributions were from
areas involved in motor planning or production and mostly
from low frequency cortical activity, with smaller contributions
from mu and beta frequency bands. It remains to be tested
whether this signal can be detected in real-time non-stationary
data.
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