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Corticotropin-releasing factor (CRF) is a 41-amino acid neuropeptide that is
involved in stress-related physiology and behavior, including control of the
hypothalamic-pituitary-adrenal (HPA) axis. Members of the CRF family of neuropeptides,
including urocortin 1 (UCN 1), UCN 2, and UCN 3, bind to the G protein-coupled
receptors, CRF type 1 (CRF1) and CRF2 receptors. In addition, CRF binding protein
(CRFBP) binds both CRF and UCN 1 and can modulate their activities. There are multiple
mechanisms through which CRF-related peptides may influence emotional behavior,
one of which is through altering the activity of brainstem neuromodulatory systems,
including serotonergic systems. CRF and CRF-related peptides act within the dorsal raphe
nucleus (DR), the major source for serotonin (5-HT) in the brain, to alter the neuronal
activity of specific subsets of serotonergic neurons and to influence stress-related
behavior. CRF-containing axonal fibers innervate the DR in a topographically organized
manner, which may contribute to the ability of CRF to alter the activity of specific
subsets of serotonergic neurons. CRF and CRF-related peptides can either increase or
decrease serotonergic neuronal firing rates and serotonin release, depending on their
concentrations and on the specific CRF receptor subtype(s) involved. This review aims to
describe the interactions between CRF-related peptides and serotonergic systems, the
consequences for stress-related behavior, and implications for vulnerability to anxiety and
affective disorders.
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INTRODUCTION
Corticotropin-releasing factor (CRF) is a 41-amino acid neu-
ropeptide that is involved in stress-related physiology and behav-
ior, including control of the hypothalamic-pituitary-adrenal
(HPA) axis (Vale et al., 1981, 1983). CRF has been implicated
in the etiology and pathophysiology of stress-related disorders
such as anxiety and affective disorders (Dunn and Berridge, 1990;
Binder and Nemeroff, 2010). One of the ways in which CRF
may play a role in the etiology and pathophysiology of anxiety
and affective disorders is through modulation of brainstem neu-
romodulatory systems such as serotonergic systems. Serotonin
(5-hydroxytryptamine; 5-HT) has long been implicated in con-
trol of emotional behavior as well as anxiety and affective disor-
ders (Ressler and Nemeroff, 2000). Consequently, understanding
the interactions between CRF, CRF-related neuropeptides, and
serotonergic systems is likely to lead to advances in understand-
ing the biological basis of anxiety and affective disorders. This
review aims to describe the interactions among CRF, CRF-related
neuropeptides, and serotonergic systems and the importance of
these interactions in modulating emotional behaviors involved in
anxiety and affective disorders.

CRF FAMILY OF PEPTIDES
The CRF family of neuropeptides includes CRF as well as the uro-
cortins (UCN), UCN 1, UCN 2, and UCN 3, structurally related
peptides that have been discovered more recently (Vaughan et al.,
1995; Donaldson et al., 1996; Zhao et al., 1998; Lewis et al., 2001;

Reyes et al., 2001; Lovejoy and Jahan, 2006; Fekete and Zorrilla,
2007). UCN 1 is a 40-amino acid peptide while both UCN 2
and 3 are 38-amino acid peptides. The UCN’s, like CRF, have
been implicated in stress-related physiology and behavior, includ-
ing modulation of the HPA axis (Vaughan et al., 1995; Reul and
Holsboer, 2002). There are two receptors that CRF and the UCN’s
bind to with high affinity, which are designated as CRF1 (Perrin
et al., 1993) and CRF2 receptors (Lovenberg et al., 1995). They
are both G protein-coupled receptors belonging to the B1 sub-
family of G-coupled receptors and couple to both Gs and Gq

(Perrin et al., 2006) with varying affinities for the neuropeptides
in the CRF family. CRF itself has a greater affinity for CRF1 recep-
tors while UCN 1 binds with high affinity to both receptors and
UCN 2 and UCN 3 both preferentially bind to CRF2 receptors
(Vaughan et al., 1995; Lewis et al., 2001; Reyes et al., 2001). Several
splice variants for both receptor subtypes have also been reported
and the structural and functional properties of these splice vari-
ants have been reviewed previously (Dautzenberg et al., 2001).
Finally, the CRF binding protein (CRFBP) shows high affinity for
both CRF and UCN 1 but has little affinity for UCN 2 or 3 (Lewis
et al., 2001).

DISTRIBUTION OF CRF CONTAINING NEURONS IN NEURAL CIRCUITS
CONTROLLING EMOTIONAL BEHAVIOR
Corticotropin-releasing factor-containing neurons are widely dis-
tributed throughout both the rat and mouse brains, with sev-
eral areas differing in expression levels, based on patterns of
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immunohistochemical staining in the two species (Wang et al.,
2011). Given the wide distribution of CRF-containing neurons
within the central nervous system, the idea that CRF works
as a neuromodulator has received considerable attention in the
past few decades. The main focus of this review is the role
of CRF and CRF-related neuropeptides in stress-related emo-
tional behavior, and therefore we focus on the distribution
of these neuropeptides in neural circuits implicated in con-
trol of stress-related emotional behavior. A full consideration
of the distribution of CRF and CRF-related neuropeptides can
be found in previous reviews focusing on the chemical neu-
roanatomy (Swanson et al., 1983; Sakanaka et al., 1987; Kozicz,
2007).

A major source for CRF in the brain is the paraventricular
nucleus of the hypothalamus (PVN) (Sakanaka et al., 1987). CRF
synthesized in the PVN, via projections to the median eminence,
plays a primary role in control of the HPA axis. However, several
extrahypothalamic brain regions involved in control of emotional
behavior have CRF-containing neurons. In particular, both the
central nucleus of the amygdala (CE) and the bed nucleus of the
stria terminalis (BNST) contain CRF-immunoreactive neurons
with extensive projections to brainstem structures controlling
emotional behavior (Gray, 1993; Wang et al., 2011). Other regions
with CRF expressing neurons that are involved in control of emo-
tional behavior include the hippocampus, subiculum, lateral sep-
tum, and periaqueductal gray (Sakanaka et al., 1987; Calandreau
et al., 2007). The localization of CRF in brain regions involved in
control of emotional behavior implicated CRF as an important
neuromodulator, in addition to an important neurohormonal
function (Gray, 1993).

DISTRIBUTION OF UCN 1, 2, AND 3 CONTAINING NEURONS
The UCN’s are expressed in discrete regions within the brain. The
non-preganglionic Edinger-Westphal nucleus has a large number
of UCN 1 neurons (Kozicz et al., 1998). Additionally, the lateral
superior olivary and supraoptic nuclei also have been shown to
have mRNA and immunoreactivity for UCN 1 (Bittencourt et al.,
1999; Lewis et al., 2001). UCN 2 is mainly localized in subcorti-
cal structures including the locus coeruleus (Reyes et al., 2001).
UCN 3 is also localized to discrete areas of the brain including an
area encircling the columns of the fornix in the rostral hypothala-
mus, the posterior portion of the BNST and an area dorsolateral
to the caudal portion of the dorsomedial hypothalamic nucleus
(Kuperman et al., 2010). Another grouping of UCN 3 neurons is
located in the anterodorsal part of the medial amygdaloid nucleus
(Lewis et al., 2001; Li et al., 2002).

DISTRIBUTION OF CRF RECEPTORS IN EMOTION-RELATED BRAIN
REGIONS
The distribution of CRF1 and CRF2 receptors within rodent brain
has been well-described with CRF1 receptors being more widely
distributed while CRF2 receptors are more restricted to subcor-
tical areas (Potter et al., 1994; Chalmers et al., 1995; Van Pett
et al., 2000). The hippocampus contains both CRF receptors as
does the periaqueductal gray (Van Pett et al., 2000). The amyg-
dala expresses both receptor subtypes with low levels of only CRF
1 receptors in the CE (Van Pett et al., 2000). All portions of the

BNST have been shown to have CRF1 receptors while the poste-
rior portion of the BNST also has CRF2 receptors (Van Pett et al.,
2000). Importantly for this review, the raphe nuclei including the
DR and median raphe nucleus (MnR) both have CRF1 and CRF2

receptors with the DR having higher levels of CRF2 and the MnR
having about equal amounts of both receptors (Van Pett et al.,
2000; Day et al., 2004).

THE FUNCTIONAL SUBSETS OF 5-HT NEURONS BASED ON
FUNCTIONAL NEUROANATOMY AND AFFERENT AND
EFFERENT CONNECTIONS
In order to discuss the possibility that CRF and CRF-related pep-
tides control functional subsets of serotonergic neurons involved
in control of emotional behavior, it is first useful to consider the
evidence for a topographical and functional organization of the
midbrain raphe complex. The midbrain raphe complex includes
serotonergic systems located within the DR, the median raphe
nucleus, caudal linear nucleus, pontomesencephalic reticular for-
mation, supralemniscal cell group, and interpeduncular nucleus
(Hale et al., 2012) Here we will focus on the organization of the
DR. The DR is topographically organized and can be divided into
subregions making up the rostral, dorsal, ventral, ventrolateral,
interfascicular, and caudal portions. It is beyond the scope of this
review to describe in detail the topography but we will, in brief,
describe the major subdivisions here and refer the reader to previ-
ous reviews for a thorough review of the DR serotonergic system
and its topography (Lowry, 2002; Lowry et al., 2005, 2008; Hale
and Lowry, 2011; Hale et al., 2012).

THE ROSTRAL DR
The rostral portion of the DR, which is located from approxi-
mately −7.04 to −7.30 mm from bregma in the rat brain (Paxinos
and Watson, 1998), receives projections from cingulate, orbital
and infralimbic cortices, as well as a small number of projections
from the CE, BNST, and substantia inominata and larger numbers
from the paraventricular and other hypothalamic nuclei (Peyron
et al., 1997). In turn, the rostral DR projects to the caudate puta-
men with collaterals to the substantia nigra, and also projects to
the subthalamic nucleus and substantia inominata (Steinbusch,
1981; Imai et al., 1986; Canteras et al., 1990; Grove, 1998).
Data show that 6 weeks of voluntary wheel running increases 5-
HT1A receptor mRNA in the rostral and mid-rostrocaudal DR as
well as decreases 5-HT1B receptor and 5-HT transporter mRNA
(Greenwood et al., 2003, 2005). Voluntary wheel running is also
associated with a protective effect against the behavioral deficits
associated with uncontrollable tail shock such as exaggerated
freezing in a shuttle box (Greenwood et al., 2003, 2005). These
data show that the rostral DR is connected with emotion-related
brain regions and that altered emotional behavior is associated
with serotonergic changes in this brain region.

THE DORSAL PART OF THE DR
The DRD is located from approximately −7.30 to −8.30 mm
from bregma in the rat brain (Paxinos and Watson, 1998). The
DRD receives projections from areas associated with the con-
trol of emotional behaviors including the lateral and ventral
orbitofrontal and infralimbic cortices, CE, BNST, and the dorsal,
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dorsomedial, lateral, and posterior hypothalamic nuclei (Peyron
et al., 1997). Further, the DRD projects to areas associated with
control of emotional behaviors including the CE, BLA, BNST,
nucleus accumbens (Acb), medial prefrontal cortex (mPFC), and
dorsal hypothalamus (Van Bockstaele et al., 1993; Commons
et al., 2003; Hale et al., 2008). In addition, the DRD sends a
number of collateral projections to functionally related forebrain
targets involved in emotional behavior. Anxiety related stimuli
such as multiple classes of anxiogenic drugs including UCN 2,
or anxiety producing situations including exposure to an open-
field test arena, or social defeat, lead to increased activation of
DRD serotonergic neurons as measured by c-Fos immunoreactiv-
ity (Abrams et al., 2005; Gardner et al., 2005; Bouwknecht et al.,
2007; Hale et al., 2008, 2010; Paul et al., 2011). Lastly, chronic
corticosterone in the drinking water, which increases anxiety-
like behavior in a social interaction task, open field task, and
elevated plus maze, increases tryptophan hydroxylase 2 (TPH)
mRNA in the DRD (Donner et al., 2012b). The DRD is connected
with emotion-related brain regions including the BNST (see
Figure 1) and activation by anxiogenic stimuli show that it may
be an important region involved in the control of emotion-related
behavioral output.

FIGURE 1 | Diagram of proposed bed nucleus of the stria terminalis

(BNST) corticotropin-releasing factor (CRF) projections to the caudal

portion of the dorsal part of the dorsal raphe nucleus (DRD) to activate

CRF2 receptors to modulate serotonin (5-hydroxytryptamine; 5-HT)

output in control of anxiety-like behaviors. Abbreviations: Aq, aqueduct;
CRF, corticotropin-releasing factor; DRD, dorsal part of the dorsal raphe
nucleus; DRI, interfascicular part of the dorsal raphe nucleus; DRV, ventral
part of the dorsal raphe nucleus; LV, lateral ventricle; MnR, median raphe
nucleus; (+), excitation. Coronal section templates reproduced from
Paxinos and Watson (1998), The Rat Brain in Stereotaxic Coordinates, 4th
Edition. San Diego: Academic Press: 1998 with permission from Elsevier.

THE VENTRAL PART OF THE DR
The DRV is located from approximately −7.30 to −8.30 mm
from bregma in the rat brain (Paxinos and Watson, 1998).
The DRV receives projections from the cingulate and lateral
orbital cortices, CE, and dorsomedial hypothalamic nucleus, with
less dense projections from other amygdaloid nuclei and cortex
(Peyron et al., 1997). The DRV in turn projects to sensorimo-
tor, ventrolateral orbital, frontal, motor, and visual cortices and
the caudate putamen (Steinbusch et al., 1980; Steinbusch, 1981;
Waterhouse et al., 1986; Kazakov et al., 1993). Because of the pro-
jections to frontal, visual, and motor cortex, it is likely that this
region of the DR is involved in directed behaviors that may or
may not have an emotional content. Further research of DRV
serotonergic neurons is needed for a better understanding of their
functional properties.

THE VENTROLATERAL PART OF THE DR AND VENTROLATERAL
PERIAQUEDUCTAL GRAY
The DRVL/VLPAG is located lateral to the DRD and occurs
approximately from −7.64 to −8.54 mm from bregma in the rat
brain (Paxinos and Watson, 1998). The DRVL/VLPAG receives
projections from a number of brain regions involved in auto-
nomic and emotional control. These include projections from
the amygdala, with heavy innervation by the CE and moderate
innervation by the dorsolateral medial amygdala with additional
projections from the ventromedial prefrontal cortex, hypotha-
lamus, and the retina (Hurley et al., 1991; Shen and Semba,
1994; Lee et al., 2003, 2007). The DRVL/VLPAG gives rise to
projections involved in visual function including the superior
colliculus and lateral geniculate nucleus (O’Hearn and Molliver,
1984; Waterhouse et al., 1993). Further, the DRVL/VLPAG also
projects to the hypothalamus, medulla, PAG, and subcortical
somatosensory regions, and data also suggest that DRVL/VLPAG
serotonergic neurons control, via multisynaptic connections,
presympathomotor neurons in the spinal cord (Beitz, 1982;
Stezhka and Lovick, 1997; Ljubic-Thibal et al., 1999; Underwood
et al., 1999; Kirifides et al., 2001; Bago et al., 2002; Kerman
et al., 2006). The DRVL/VLPAG connections suggest that this
region is important in control over panic-like and fight-or-flight
behaviors. Consistent with this hypothesis, data show that panic-
inducing stimuli such as hypercapnia or sodium lactate activate
DRVL/VLPAG serotonergic neurons, but not in rats that are made
panic prone, suggesting that the DRVL/VLPAG may inhibit panic
in normal rats (Johnson et al., 2005, 2008).

Recent data suggest that the DRVL/VLPAG may be an impor-
tant component in the interdependence of fear- and panic-like
responses. Data show that when a rat is fear conditioned and
experiencing CE-mediated fear it is less likely to exhibit panic-like
behaviors when given dorsal PAG electrical stimulation (Magierek
et al., 2003). Clinical evidence supporting the hypothesis that fear
may inhibit panic-like responses comes from a recent study in
which 3 people with selective lesions of the amygdala were unable
to experience normal fear but experienced panic when given CO2

inhalation (Feinstein et al., 2013). We propose that the CE, when
activated, may serve to selectively inhibit panic through con-
nections with DRVL/VLPAG serotonergic neurons (see Figure 2
for the proposed circuit). People with bilateral amygdala lesions
are unable to inhibit CO2-induced panic responses while healthy
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FIGURE 2 | Diagram of proposed central nucleus of the amygdala (CE)

corticotropin-releasing factor (CRF) projections to the ventrolateral

part of the dorsal raphe nucleus (DRVL) and DRVL serotonergic

projections to the dorsal periaqueductal gray (DPAG) involved in panic

inhibition during fear expression, such as freezing behavior. Excitatory
projections from the CE excite serotonergic neurons in the DRVL that in
turn release serotonin (5-hydroxytryptamine; 5-HT) in the DPAG to act on
inhibitory 5-HT1A receptors to inhibit panic. Abbreviations: Aq, aqueduct;
CE, central nucleus of the amygdala; CRF, corticotropin- releasing factor;
DPAG, dorsal periaqueductal gray; DRD, dorsal part of the dorsal raphe
nucleus; DRV, ventral part of the dorsal raphe nucleus; DRVL, ventrolateral
part of the dorsal raphe nucleus; LV, lateral ventricle; VLPAG, ventrolateral
periaqueductal gray; (+), excitation; (−), inhibition. Coronal section
templates reproduced from Paxinos and Watson (1998), The Rat Brain in
Stereotaxic Coordinates, 4th Edition. San Diego: Academic Press: 1998
with permission from Elsevier.

controls generally do not experience panic when given CO2

(Goetz et al., 2001). The data thus suggest an important role
of serotonergic neurons in the DRVL/VLPAG for control of
emotional behaviors including fear and panic.

THE CAUDAL PORTION OF THE DR
That most caudal subdivision of the DR (DRC) is located from
approximately −8.30 to −9.30 mm bregma in the rat brain
(Paxinos and Watson, 1998). The DRC receives a number of pro-
jections including from the mPFC, the preoptic area, arcuate
nucleus, and perifornical and lateral hypothalamic areas, lateral
habenula, and substantia nigra with more sparse afferents from
both the CE and BNST (Lee et al., 2003). In turn, the DRC
projects to brain regions involved in control of emotional behav-
ior including the LC, amygdala, paraventricular nucleus of the
thalamus and ventral hippocampus (Imai et al., 1986; Krout et al.,
2002). Furthermore, the DRC has been shown to be involved in
the behavioral deficits seen with inescapable stress and is activated
following social defeat, administration of anxiogenic drugs, and

administration of ligands including CRF and UCN 2 suggesting it,
along with other regions of the DR, plays in an important role in
the control of emotional behavior (Hammack et al., 2002, 2003a;
Abrams et al., 2005; Gardner et al., 2005).

THE INTERFASCICULAR PART OF THE DR
The interfascicular part of the DR (DRI) is located approxi-
mately between −8.18 and −8.80 mm from bregma in the rat
brain (Paxinos and Watson, 1998). Although not well-researched,
studies have shown projections from the LC, median preoptic
area, and the lateral parabrachial nucleus to the DRI (Saper and
Loewy, 1980; Holstege, 1995; Lee et al., 2003; Kim et al., 2004).
The DRI has, however, been shown to project to a number of
regions. The DRI has projections to both dorsal and ventral hip-
pocampus, medial septum, entorhinal, dorsolateral prefrontal,
medial orbital, and anterior cingulate cortex and mediodorsal
thalamus (Azmitia and Segal, 1978; Kohler and Steinbusch, 1982;
Kohler et al., 1982; Porrino and Goldman-Rakic, 1982; Krout
et al., 2002). The DRI, along with the DRVL/VLPAG, has been
shown to be activated by a number of peripheral sensory stim-
uli, including peripheral injection of heat-killed Mycobacterium
vaccae or lipopolysaccharide (LPS), and exposure to warm and
cold temperature (Hollis et al., 2006; Hale et al., 2011; Kelly
et al., 2011). Activation of DRI serotonergic neurons is associ-
ated with antidepressant-like behavioral responses (Lowry et al.,
2007). This then suggests, consistent with its pattern of efferents
that this area of the DR may also be important in controlling
certain emotional behaviors.

DISTRIBUTION OF 5-HT RECEPTORS IN EMOTION RELATED BRAIN
REGIONS
There are at least 14 different 5-HT receptors that have been
identified, all of which have been thoroughly reviewed previ-
ously (Hoyer et al., 1994, 2002; Barnes and Sharp, 1999; Smythies,
2005; Hannon and Hoyer, 2008). The receptors are divided into 7
families (1–7), and all, except the 5-HT3 receptors, are G protein-
coupled metabotrobic receptors whereas the 5-HT3 receptor is a
ligand-gated ion channel (Barnes and Sharp, 1999). Specifically,
the 5-HT1 and 5-HT5 receptors are Gi/o coupled, 5-HT2 receptors
are Gq/11 coupled, and lastly, 5-HT4, 5-HT6, and 5-HT7 receptors
are Gs coupled (Hannon and Hoyer, 2008). As well, 5-HT recep-
tors are located both pre and post-synaptically, can be inhibitory
or excitatory, and can be located on both γ-aminobutyric acid
(GABA)ergic and glutamatergic neurons leading to a highly intri-
cate and complex system within the brain (Rainnie, 1999; Guo
and Rainnie, 2010).

Serotonin receptors are located in the amygdala and the BNST,
which are thought to be important regions for fear and anxiety-
behaviors. In addition, serotonin receptors have been implicated
in playing a role in emotion-related behaviors in the hippocam-
pus and the mPFC. Although all 5-HT receptors have been
identified within the amygdala, particular attention has been paid
to the 5-HT1A and 5-HT2C receptors (Park and Williams, 2012;
Asan et al., 2013). Specifically, the 5-HT1A receptors in the CE
have been shown to be involved in the reduction of anxiety-like
behaviors while 5-HT2C receptors are associated with an increase
in anxiety-like behaviors (Li et al., 2012). The hippocampus plays
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an important role in conditioned fear and 5-HT receptors appear
to play an integral role (Eriksson et al., 2012). In the hippocam-
pus, 5-HT1A receptor activation appears to inhibit emotion-
related behavior associated with fear conditioning (Stiedl et al.,
2000). However, 5-HT7 receptor activation appears to enhance
emotion-related behavior, especially when the 5-HT1A receptors
are blocked (Eriksson et al., 2012), while a lack of 5-HT7 receptors
impairs fear learning (Roberts et al., 2004). Further, evidence sug-
gests a role for activating 5-HT2A/C receptors in the hippocampus
in increasing GABA release (Shen and Andrade, 1998) while hip-
pocampal 5-HT2C activation has been associated with an increase
in anxiety-like behaviors (Alves et al., 2004). Additionally, 5-
HT1A, 5-HT1B, 5-HT2A, 5-HT2C, and 5-HT7 receptors have been
implicated in playing a role in emotional behaviors in the BNST,
with the 5-HT1 receptor activation linked to reduced anxiety and
the others linked to increased anxiety (Levita et al., 2004; Guo
et al., 2009; Hammack et al., 2009; Guo and Rainnie, 2010). Lastly,
the mPFC has been shown to be an important area involved
in emotion-related behaviors and partially controlled by 5-HT
(Amat et al., 2005). While 5-HT2C receptors are located in this
region, they have yet to be implicated in emotion-related behav-
iors outside of drug seeking (Pentkowski et al., 2010). However,
5-HT1A receptors in the mPFC appear to play an important role
in regulating 5-HT release from the DR such that stressful envi-
ronments produce an increase in 5-HT release, which in turn
appears to enact a negative feedback loop that turns off 5-HT
release in the mPFC through glutamatergic and GABAergic neu-
rons (Altieri et al., 2012). While both inhibitory and excitatory
receptors are located in these brain regions, it is likely they work in
concert depending on the context of the environment. For exam-
ple, anxiety and fear are restrained unless the situation dictates the
appropriateness of these emotions or in terms of psychopathol-
ogy, these systems are no longer in concert to restrain anxiety and
fear in inappropriate situations (Hammack et al., 2009).

DISTRIBUTION OF CRF AND CRF RECEPTORS WITHIN THE DORSAL
RAPHE NUCLEUS
As discussed briefly above, one mechanism through which CRF
and the UCN’s can influence emotional behavior is through
actions on brainstem neuromodulatory systems such as sero-
tonergic systems. The DR, along with the MnR, is the major
source for 5-HT in the brain (Steinbusch, 1981). Although
the DR is a main source for 5-HT, it also contains neurons
that express other neurotransmitters and neuropeptides, includ-
ing CRF. Corticotropin-releasing factor-immunoreactive neu-
rons have been observed in the DR in colchicine-treated rats
(Commons et al., 2003). Corticotropin-releasing factor-positive
neurons were predominately found in the dorsomedial subregion
of the mid-rostrocaudal DRD with smaller numbers of positive
cells in the ventrolateral part of the DRVL/VLPAG. Importantly,
these CRF-immunoreative cells were mostly dual labeled for TPH
indicating that these were also serotonergic neurons. In addi-
tion, CRF-positive cells were largely absent from the ventromedial
and most caudal portions of the DRD and DRVL/VLPAG while
CRF-positive fibers were seen to traverse the lateral edge of
the rostral DRV. It was also demonstrated through anterograde
tracing that the dorsomedial neurons had dense projections to

the CE, a region involved in the control of emotion such as fear
and anxiety (Gray, 1993; Davis, 1997; Commons et al., 2003;
Phelps and LeDoux, 2005). Moreover, CRF application in the
mid-rostrocaudal DRD increases 5-HT in the CE and freezing
behaviors (Forster et al., 2006). Because the CE is involved in
emotion and has direct CRF connections with specific regions
of the DR, it is situated to control serotonergic systems and
modulate emotion-related behavioral output.

The dorsomedial neurons of the mid-rostrocaudal DR have
dense CRF projections to the BNST while the BNST also has
reciprocal connections with the DRD and DRC (Van Bockstaele
et al., 1993; Petit et al., 1995; Peyron et al., 1997; Dong et al., 2001;
Commons et al., 2003; Dong and Swanson, 2004). The BNST
has been shown to be an important region controlling emotional
behaviors such as alterations in acoustic startle behavior (Davis
et al., 2010). CRF innervation of the DRD/DRC by BNST CRF
positive neurons has not been directly shown, however, control
of emotional-like behavior by CRF projections from the BNST to
the caudal DRD has been suggested as BNST lesions block escape
deficiencies produced after inescapable shock while administra-
tion of CRF into the DRC mimics the effects of inescapable shock
on inhibiting escape behaviors (Hammack et al., 2002, 2004).
Moreover, overexpression (OE) of CRF in the BNST induces a
decrease in CRF2 receptor mRNA specifically within the DRD
suggesting that the BNST has direct CRF projections to this brain
region (Sink et al., 2013). Given the role of the BNST in control
of emotional behaviors and its potential connections with sub-
regions of the DR, it is an important structure that most likely
contributes to control of emotional behavioral output through
CRF-5-HT interactions.

The distribution of CRF receptors within the DR is also topo-
graphically organized and both CRF1 and CRF2 receptors are
colocalized with serotonergic neurons as well as non-serotonergic
neurons (Day et al., 2004; Waselus et al., 2009). CRF1 recep-
tor mRNA density is considerably lower than CRF2 receptor
mRNA in the DR (Van Pett et al., 2000). CRF1 receptors, using
immunohistochemistry and electron microscopy, are present on
the plasma membrane of dendrites in the DR as well as within
the cytoplasm in roughly equal distribution (Waselus et al.,
2009). CRF1 receptors are located in the dorsal portion of the
DRVL/VLPAG and have been shown to be colocalized there with
GABA in 36% of neurons triple labeled for c-Fos, GABA, and
CRF1 receptors after forced swim stress (Roche et al., 2003; Day
et al., 2004). These data suggest that CRF receptor activation
can serve to modulate serotonergic activity both directly and
indirectly.

CRF2 receptors are topographically organized in the DR and
are expressed in both serotonergic and non-serotonergic neurons.
CRF2 receptors have been demonstrated using immunohisto-
chemistry and electron microscopy in the DR on both axon
terminals and in dendrites with a predominant level within the
cytoplasm (Waselus et al., 2009). The CRF2 receptor is apparent
in low numbers in the rostral portion of the DR but increases in
greater number in more caudal sections of the DR as shown with
in situ hybridization histochemistry and immunoreactivity (Day
et al., 2004; Lukkes et al., 2011). In addition, the effects of CRF
administration in the caudal portions of the DR is only blocked by
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CRF2 but not CRF1 receptor antagonists (Hammack et al., 2002,
2003a; Staub et al., 2005, 2006). Further, CRF2 receptors also show
a topographically organized colocalization with 5-HT neurons
and GABA neurons in the DR (Day et al., 2004). Specifically, CRF2

receptor mRNA in the rostral and mid-rostrocaudal levels of the
DR is almost exclusively colocalized with 5-HT neurons while in
more caudal regions, about half of the CRF2 receptor mRNA is
colocalized in GABAergic neurons (Day et al., 2004).

CRF and UCN 1 fibers are topographically organized in the
DR but much less is known about UCN 2 and UCN 3 fibers.
Corticotropin-releasing factor-containing axons are more dense
in the medial ventral portion of the rostral DR and then more
dense in the dorsolateral DR in more caudal regions with less den-
sity in the medial ventral portion (Valentino et al., 2001). This
topographical organization suggests that CRF is able to modulate
5-HT in a complex and dynamic manner to influence emotional
behavior given that 5-HT neurons are also topographically orga-
nized (Hale and Lowry, 2011; Hale et al., 2012). UCN 1 fibers have
also been described in the DR including within DRD, DRV, and
DRVL subregions suggesting the possibility that UCN 1 also influ-
ences serotonergic systems and emotional behavior through CRF2

(Vaughan et al., 1995). The physiological involvement of UCN 2
and 3 in the modulation of the DR and 5-HT is little known as
the DR shows very sparse or no innervation by either UCN 2 or
3 (Reyes et al., 2001; Li et al., 2002). Nevertheless, selective acti-
vation of CRF2 receptors in the DR does modulate and mediate
emotional behaviors (described below), suggesting that further
work looking into the role of the UCN’s in the DR is necessary
to elucidate their physiological role.

MECHANISMS OF CRF/5-HT INTERACTIONS
CRF AND UCNs EFFECTS ON DR NEURONAL FIRING
CRF has been shown to alter DR neuronal firing rates in vivo and
in vitro. Studies looking at the response of DR neurons in vivo
have shown a bimodal response to CRF within the medial rostral
portion of the DR in that low doses given either intracerebroven-
tricularly (i.c.v) or directly into the DR inhibit neuronal firing
while higher doses increase firing (Kirby et al., 2000; Price et al.,
2002) consistent with other data that show a similar pattern of
effects on 5-HT release in the lateral striatum and the lateral sep-
tum (Price et al., 1998; Price and Lucki, 2001). The response of
5-HT neurons in the DR to CRF has been shown to be topo-
graphically organized in vitro with more serotonergic neurons
responding in the ventral portion of the DR compared to the
dorsomedial aspect of the DR (Lowry et al., 2000). Although
the majority of neurons in this region respond with an increase
in firing rates, many were non-responsive and several showed a
decreased firing rate. Stress has been shown to alter the response
of serotonergic neuron firing rates after CRF application in that
more neurons respond with increased firing rates and have a
greater rate of firing compared to control animals, suggesting that
CRF plays an important role after stress to modulate the sero-
tonergic system (Lowry et al., 2000). Further studies have shown
that CRF2 receptors move from being predominately within the
cytoplasm and then move to the plasma membrane after stress
(Waselus et al., 2009) although the mechanism for increased
responsiveness and increased firing rates in serotonergic cells to

CRF after stress is not known. These data thus show that the inter-
action between CRF and 5-HT on neuronal activity is modulated
by the region of the DR, the amount of CRF released, and prior
experience.

Further substantiating the evidence that the members of the
CRF family of peptides can have multiple influences on 5-HT,
CRF2 receptors seem to play a dual role in the DR on neuronal fir-
ing while CRF1 receptor activation seems to be inhibitory (Kirby
et al., 2000). Small amounts (0.1 − 10 ng) of UCN 2 injected
into the mid-rostrocaudal DR inhibit neuronal firing in 5-HT
neurons whereas higher amounts (30 ng) of UCN 2 increase
firing in 5-HT neurons and this effect is blocked by selective
CRF2 receptor antagonists (Pernar et al., 2004). Furthermore,
this high dose of UCN 2 also inhibited more non-5-HT neu-
rons than the low dose which could indicate inhibition of GABA
neurons through CRF2 receptors, which would disinhibit 5-HT
neurons and result in increased serotonergic firing. CRF1 recep-
tors also appear to be involved in the inhibition of neuronal
firing after CRF administration in the DR as this effect can be
blocked with a specific CRF1 receptor antagonist (Kirby et al.,
2000).

CRF AND UCNs EFFECTS ON SEROTONERGIC NEURONS AS MEASURED
BY c-FOS
The members of the CRF family of neuropeptides induce topo-
graphically organized neuronal activation as measured by c-Fos.
CRF, when infused i.c.v., produces a topographically organized
neuronal activation within the DR in medial prefrontal cortex-
projecting neurons with a higher percent of activation in caudal
portions of the DR as measured by c-Fos (Meloni et al., 2008).
Specifically, i.c.v. infusion of CRF (1 μg), induces c-Fos positive
neurons in the entire DR, with higher numbers of positive cells
seen in more caudal regions compared to more rostral regions
(Meloni et al., 2008). UCN 1 (1–10 μg) given i.c.v. has also been
shown to increase c-Fos in the DR although topographical activa-
tion has not been described (Bittencourt and Sawchenko, 2000).
Additional studies show topographically organized activation of
serotonergic and non-serotonergic DR neurons by i.c.v. infusion
of 2 μg of UCN 2 (Staub et al., 2005, 2006; Hale et al., 2010).
Specifically, c-Fos was seen in the mid-rostrocaudal DRD and the
DRC and this activation was blocked by a specific CRF2 receptor
antagonist. Consistent with these data, direct infusion of UCN 2
(100 ng) into the DR also produces increased c-Fos within the
DR but the effect is more widespread throughout the DR and
again this is blocked using a specific CRF2 receptor antagonist
(Amat et al., 2004). Moreover, UCN 2 activation of DR neu-
rons includes activation of ventricle/periventricular-projecting
serotonergic neurons as well as non-ventricle/periventricular-
projecting serotonergic neurons, suggesting that CRF2 ligands
could play an important physiological role in behavioral con-
sequences of CRF2 receptor activation although further exam-
ination is needed (Amat et al., 2004; Hale et al., 2010). Taken
together, these data show that both CRF1 and CRF2 receptor ago-
nists activate DR neurons in a topographically organized fashion
such that the mid-rostrocaudal and caudal portions of the DR
appear to be preferentially activated, suggesting that these regions
are important in CRF-5HT interactions.

Frontiers in Neuroscience | Neuroendocrine Science September 2013 | Volume 7 | Article 169 | 6

http://www.frontiersin.org/Neuroendocrine_Science
http://www.frontiersin.org/Neuroendocrine_Science
http://www.frontiersin.org/Neuroendocrine_Science/archive


Fox and Lowry CRF peptides, 5-HT, emotional behavior

CRF RECEPTOR ACTIVATION ALTERS SEROTONERGIC
NEUROTRANSMISSION AS MEASURED BY MICRODIALYSIS
CRF receptor activation following i.c.v. administration of CRF
or CRF-related neuropeptides induces changes in extracellular
5-HT concentrations in specific brain regions involved in control
of emotional behavior, including the hippocampus, as measured
by microdialysis (Linthorst et al., 2002; Kagamiishi et al., 2003;
De Groote et al., 2005). However, chronic i.c.v. CRF infusion
(1 μg/1 μL/h for 7 days) produces no basal difference in 5-HT
levels in the hippocampus but does blunt the elevation in 5-HT
after LPS injection, suggesting chronic elevation of CRF blunts
stress-induced release of 5-HT in projection regions of the DR
(Linthorst et al., 1997). While CRF receptor activation follow-
ing i.c.v. administration of CRF or CRF-related neuropeptides
can increase 5-HT release, it can also decrease release. I.c.v. CRF
produces a decrease in 5-HT release in both the lateral septum
and lateral striatum at a low dose (0.3 μg) while this manipu-
lation either does not change 5-HT concentrations or increases
concentrations at a higher dose (3.0 μg) (Price et al., 1998, 2002;
Price and Lucki, 2001). Both 5-HT1A and 2A receptor activation
in the lateral septum has been associated with increased anxiety-
like behavior, which would correspond with increased release of
5-HT in this region (Cheeta et al., 2000; de Paula et al., 2012). The
decrease in 5-HT release in the lateral septum may allow for more
proactive behaviors such as exploration to occur when placed in a
mildly stressful situation (low dose of CRF) while a very stressful
(high CRF dose) situation could induce more reactive behaviors
like freezing. Because CRF receptors are located in other regions
besides the DR, these effects of i.c.v CRF receptor agonists likely
result from activating circuits that are connected with the DR as
well as directly activating receptors within the DR.

Intra-DR CRF receptor activation induces changes in 5-HT
concentrations in specific emotion-related brain regions, similar
to effects seen with i.c.v. administration of CRF receptor ago-
nists. CRF (0.5 μg) injected into the medial portion of the DR,
including both the dorsal and ventral aspects, increases 5-HT
release in the prefrontal cortex after a 60 min delay (Forster
et al., 2006). Activation of the DR by 0.5 μg CRF injection also
produces an immediate increase in 5-HT in the CE (Forster
et al., 2006; Lukkes et al., 2008; Scholl et al., 2010). Further,
CRF2 receptor activation in the caudal DR produces an increase
in 5-HT in the BLA and increases c-Fos in serotonergic neu-
rons within the rostral, mid-rostrocaudal, and caudal DR (Amat
et al., 2004). Serotonin concentrations in the Acb are also mod-
ified by CRF receptor activation in the DR. Low doses of CRF
(0.1 ug) injected into the DR, including both the DRD and
DRV aspects of the mid-rostrocaudal DR, reduces 5-HT con-
centrations whereas higher doses (0.5 μg) increases 5-HT in the
Acb (Lukkes et al., 2008). Importantly, a CRF1 receptor antag-
onist blocked the effect at the low dose while a CRF2 recep-
tor antagonist blocked the effect of the high dose, showing
that CRF is activating CRF1, perhaps on GABA interneurons,
to inhibit 5-HT release while at higher concentrations is also
activating CRF2 receptors, resulting in increased release of 5-
HT in the Acb. These data show that direct activation of CRF
receptors in the DR modulate 5-HT release in emotion-related
brain regions.

The changes in 5-HT release in the BLA, CE, and Acb are
associated with varying behavioral outputs related to emotion.
Activation of 5-HT2C receptors in the BLA increases fear-like
behaviors (Campbell and Merchant, 2003; Greenwood et al.,
2012) which corresponds with the increased release of 5-HT seen
in this brain region after CRF2 activation in the DR (Amat et al.,
2004). Additionally, 5-HT receptor activation in the CE has also
been implicated in increased anxiety and fear-like behaviors as
increased 5-HT in the CE leads to increased freezing behavior
(Forster et al., 2006), presumably through activation of the exci-
tatory 5-HT2A/C receptors located in the CE (Asan et al., 2013).
Further, foot shock has been shown to also increase 5-HT release
in the Acb in association with freezing behavior, indicating a role
for fear-like behavioral responses in relation to increased 5-HT
release in the Acb (Fulford and Marsden, 1997, 2007). It is not
clear which 5-HT receptors in the Acb would be playing a role
in fear-like behaviors. However, both 5-HT2A and5-HT2C recep-
tors in this region have been shown to be involved in drug reward
behavior, which can be modulated by stress (Erb and Stewart,
1999; Zayara et al., 2011). It is likely that increasing and decreas-
ing 5-HT levels in various emotion-related brain regions involves
a complex interplay of 5-HT receptors given that their binding
can both inhibit and excite neuronal activation and 5-HT recep-
tors have been shown on GABA neurons and glutamate neurons
(Rainnie, 1999; Guo and Rainnie, 2010; Asan et al., 2013).

CRF, UCNs, AND 5-HT INTERACTIONS CONTROLLING
EMOTIONAL BEHAVIOR
Numerous studies have demonstrated the involvement of mem-
bers of the CRF family of peptides and their respective receptors
and 5-HT in emotional behaviors in rodents. These include stud-
ies involving administration of specific CRF receptor agonists
and antagonists with both i.c.v. and intra-DR applications as dis-
cussed above. Additionally, development of numerous mutant
mice with genetic knock out (KO) or OE of one or more of these
peptides or receptors have helped further our knowledge about
the important role CRF plays in emotional behaviors (described
below). Here, we will focus on behaviors that have been shown to
involve the interactions between CRF, the UCNs, and 5-HT.

A number of studies have implicated CRF/5-HT interac-
tions in control of emotional behavior. Administration of CRF
through i.c.v increases the acoustic startle response and the CRF-
induced startle is correlated with activation of c-Fos within the
DR (Meloni et al., 2008). Partially, the c-Fos positive neurons
were also positive for 5-HT and projected to the mPFC, a region
that is important in the effects of controllability on behavioral
consequences of stress (Rozeske et al., 2011; Patel et al., 2012).
Behavioral consequences of uncontrollable stress are mediated
by CRF receptors in the DR (Hammack et al., 2002, 2003a,b).
In particular, it has been shown that CRF2 receptors in the
DRC are responsible for the behavioral consequences, observed
24 h later, of inescapable shock and that activation of CRF2

receptors in the DRC can mimic the effects of uncontrollable
shock on behavior (Hammack et al., 2002). Further, activation
of CRF1 receptors by low doses of CRF acts to inhibit the DR
and can block the behavioral consequences of uncontrollable
stress (Hammack et al., 2003a). Stressors such as foot shock and
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restraint induce neuronal activation, as measured by c-Fos, in
anxiety-related regions including the DR, amygdala, and BNST
while at the same time also increasing mRNA for CRF in the
BNST and CE, suggesting that anxiety- or fear-inducing stim-
uli alter CRF function while activating neurons in the DR (Funk
et al., 2006). Importantly, this implicates a complex system that
is responsive to the effects of an acute stressor, which can lead
to alterations in emotional behaviors such as increased freez-
ing behaviors (Hammack et al., 2004). These data thus suggest
a crucial role of CRF receptors within the DR in control of
stress-related behaviors and suggest that CRF/5-HT interactions
are important in the behavioral consequences of uncontrollable
stress.

Chronic activation of the CRF system is associated with
changes in emotional behavior. Specifically, OE of CRF within
the BNST does not produce basal changes in anxiety yet when
induced prior to fear conditioning, it interferes with learning,
while induction after fear conditioning but before fear test-
ing produces an exaggerated fear response (Sink et al., 2013).
Importantly, OE of CRF in the BNST results in changes in bind-
ing density for CRF1 in the BNST and CRF2 in the dorsal and
caudal portions of the DR. This suggests that alterations of CRF
expression in specific areas connected to the DR can lead to both
physiological and emotional changes, depending on time points,
and can disrupt fear learning or enhance fear expression, possi-
bly through alterations in 5-HT function through decreased CRF2

receptors in the dorsal and caudal DR as these receptors have
been shown to be involved in fear related behaviors (Hammack
et al., 2003a). Repeated administration of UCN 1 into the BLA
has also been shown to induce serotonergic changes in the DR,
including an increase in tph2 mRNA in specifically the DRVL that
was correlated with increases in anxiety-like behavior (Donner
et al., 2012a). Further, maternal separation and later social defeat
also serve to increase tph2 mRNA in the DRVL/VLPAG and pro-
duce a more passive-like coping behavior, and this increase in
tph2 mRNA could serve as a common factor related to altered
emotionality brought on by multiple environmental stressors
(Gardner et al., 2005, 2009). These studies suggest that the inter-
action between CRF receptor activation and 5-HT can modify
emotional behavior while environmental experience can serve
to alter 5-HT systems in a manner that is dependent on CRF
receptor activation.

Interactions between CRF and serotonergic systems have also
been implicated in control of active vs. passive behavioral cop-
ing responses during forced swim stress. The swim stress-induced
reduction in 5-HT concentration in the lateral septum has been
shown to be dependent on CRF receptor activation as an i.c.v.
CRF1,2 receptor antagonist blocks this effect on 5-HT (Price et al.,
2002). This effect may be specific to swim stress, however, as 5-
HT concentrations increase in the lateral septum in mice in the
presence of predator odor (Beekman et al., 2005). Further, the
increase in 5-HT seen in the hippocampus during forced swim
can also be blocked using a non-specific CRF antagonist given
i.c.v. (Linthorst et al., 2002; Kagamiishi et al., 2003; De Groote
et al., 2005). These studies suggest a role for CRF receptor acti-
vation in control of serotonergic systems by diverse stress-related
stimuli.

CRF, UCN 1, 2, AND 3, AND CRF RECEPTOR TRANSGENIC
ANIMALS, SEROTONERGIC SYSTEMS, AND EMOTIONAL
BEHAVIOR
One line of research taken to investigate the roles of CRF,
UCNs, and CRF receptors in control of serotonergic systems and
emotional behavior is to use transgenic animals. Genes can be
removed or added in to influence development from fertilization
or can be conditionally changed after birth to avoid develop-
mental alterations associated with transgenic manipulations that
may lead to unintended consequences (Smith et al., 1998; Timpl
et al., 1998). It is important to keep in mind as well-that many
of these studies will produce essentially the overall sum effect of
adding or removing peptides or receptors from the entire brain
and peripheral systems on behavior and that further work with
more selective changes will be informative as to their roles within
specific brain regions.

Both CRF1 and CRF2 receptor KO mice have been devel-
oped and used to investigate the role of the receptors in control
of emotional behaviors. The CRF1 receptor KO mice display a
decrease in anxiety-like behaviors while CRF2 receptor KO mice
tend to display an increase in anxiety and depression-like behav-
iors, although not in all cases or in all measures (Smith et al., 1998;
Timpl et al., 1998; Bale et al., 2000; Coste et al., 2000, 2006). In
CRF1,2 receptor double KO mice, only males show an increase
in anxiety-like behavior while the females tend to show normal
or decreased anxiety, which suggests that there is an interaction
between sex and genotype on anxiety-like behavioral output in
these animals (Bale et al., 2002). The rearing behavior of heterozy-
gous and homozygous CRF2 receptor KO dams seems supports an
increase in anxiety-like behavior in their male offspring regard-
less of the males’ genotype, implying that both environmental and
genetic factors play a role in anxiety-like behaviors and that sex is
an important factor (Bale et al., 2002). Further evidence suggests
that CRF1 receptors in the limbic system specifically are impor-
tant in controlling anxiety-like behaviors (Muller et al., 2003).
Conditional KO of CRF1 receptors in the limbic system has no
effect on the HPA axis, but results in reduced anxiety-like behav-
ior and increased active coping in depression models (Muller
et al., 2003). CRF1 receptors in the limbic system therefore seem
to play a critical role in initiating an anxiety response.

Mouse models have also been developed to investigate the
effects of OE or deletion of CRF. Chronic OE of CRF results
in a downregulation of UCN 1 in the Edinger-Westphal nucleus
(Kozicz et al., 2004) while CRF KO results in an upregulation
of UCN 1 in the Edinger-Westphal nucleus, suggesting that CRF
may control the level of UCN 1 expression or that changes in
CRF can be compensated for by UCN 1 (Weninger et al., 2000).
Moreover, CRF OE mice also show a change in CRF1 and CRF2

receptor mRNA expression throughout the brain (Korosi et al.,
2006). In particular, OE of CRF induces a down-regulation of
CRF1 receptors while at the same time it induces an upregulation
of CRF2 receptors in the brain while the overall distribution of
receptors remains the same showing that receptor mRNA expres-
sion is dependent on the level of CRF expression in these animals.
CRF OE mice also show an increase in anxiety-like behavior, per-
haps mediated in part by overactivation of CRF1 receptors or by
the increase in CRF2 receptors in the DR (Korosi et al., 2006) and
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changes in responsiveness to alterations in 5-HT release in regions
connected with the DR (Stenzel-Poore et al., 1994; Heinrichs
et al., 1997; van Gaalen et al., 2002). These mouse models demon-
strate that CRF KO or OE alters the expression of other members
of the CRF family of neuropeptides and their receptors, imply-
ing that an overall increase or decrease of CRF or the UCNs can
contribute to changes in receptor expression and alter behavioral
output.

Chronic OE of UCN 3 is associated with changes in the sero-
tonergic system and altered emotion-like behaviors. Chronic OE
of UCN 3 produces a change in post-stress 5-HT and 5-HIAA
concentrations in the caudal and dorsal DR and lateral septum as
well as a basal change in 5-HT1A receptor mRNA in both the DR
and amygdala (Neufeld-Cohen et al., 2012). UCN 3 OE also alters
basal anxiety-related behavior compared to wild type animals
(Neufeld-Cohen et al., 2012), which may implicate desensitized
CRF2 receptors resulting in the increased anxiety, similar to the
CRF2 receptor KO mice. In particular, UCN 3 OE mice have
increased anxiety-like behavior in both the elevated plus-maze
and the light-dark box and an increase in immobility in the tail
suspension test suggesting that chronic CRF2 receptor activation
results in a basal increase in emotionality. Consistent with these
data, conditional OE of UCN 3 in the rostral portion of the per-
ifornical area, where UCN 3 is normally expressed, also increases
anxiety-like behavior (Kuperman et al., 2010). Interestingly, post-
stress anxiety-like behavior in UCN 3 OE mice is either not
increased or is in fact reduced suggesting that chronic activa-
tion of CRF2 receptors creates a chronic anxiety-like state but
resistance to further stress-induced anxiety (Neufeld-Cohen et al.,
2012).

A number of studies have also investigated the role of UCN
1, 2, and 3 in emotional behaviors using transgenic mice. UCN
1 KO mice have been shown to have normal anxiety-like behav-
ior although a decrease in the acoustic startle response is seen in
males (Wang et al., 2002) and a lower startle response has been
associated with decreased anxiety in other measures of anxiety
(Salam et al., 2009). These animals are described as having nor-
mal hearing although another line of UCN 1 KO mice appeared to
have disruption of hearing and an increase in anxiety-like behav-
ior (Vetter et al., 2002) so a reduced startle response maybe due
do a disruption in the startle neuronal pathway. Both UCN 2 and
3 KO animals do not show any disruption in anxiety-like behav-
iors, although reduced aggressiveness is seen in male UCN 2 KO’s
and reduced depression-like behaviors were noted in female UCN
2 KO mice (Chen et al., 2006; Deussing et al., 2010; Breu et al.,
2012). However, given that both CRF and UCN’s can activate
CRF2 receptors, it is not surprising that there is not a noticeable
change in anxiety or consistent decrease in depression-like behav-
iors in the UCN 2 or 3 KO mice. A double KO of UCN 1 and 2,
however, results in a anxiolytic-like phenotype (Neufeld-Cohen
et al., 2010a) while UCN triple KO mice show normal basal anxi-
ety levels but increased anxiety-like behavior 24 h after a stressor
(Neufeld-Cohen et al., 2010b). Notably, the UCN triple KO mice
show some basal and 24 h post-stress differences in serotonergic
activities in the amygdala, subiculum and medial and later sep-
tum, which is consistent with the hypothesis that the increase in
anxiety-like behavior is mediated in part by changes in serotonin

and implicates a role for CRF2 receptor activation in controlling
5-HT and its potential role during the stress recovery period.

NON-HUMAN PRIMATE DATA ON CRF/5-HT INTERACTIONS
AND EMOTIONAL BEHAVIOR
Non-human primate data gives further insight into the interac-
tion between CRF, serotonergic systems, and emotional behavior.
Recent data suggest that, in a particular subset of cynomolgus
macaques deemed to be more stress-sensitive than their cohorts
because of interrupted menstrual cycles, chronic treatment with
a serotonin selective reuptake inhibitor (SSRI) produces signifi-
cant changes in CRF receptors after 15-weeks of administration
but not in less-stress sensitive animals (Senashova et al., 2012).
Specifically, after chronic treatment with an SSRI, the stress sensi-
tive monkeys had an increased number of CRF2 receptor mRNA
positive cells as found through digoxigenin-in situ hybridiza-
tion staining, compared to less stress-sensitive monkeys. Similar
studies have shown that the stress-sensitive monkeys have an
increased cortisol response to serotonin release induced by fen-
fluramine while showing a blunted prolactin release (Bethea et al.,
2005a) and basal increased cortisol release during the day (Herod
et al., 2011a,b), suggesting further disruption in normal sero-
tonin systems. Interestingly, these monkeys, along with the altered
CRF receptors in response to an SSRI, also have lowered CRF
fiber density in the DR with an increased number of UCN 1
cell bodies after SSRI treatment (Weissheimer et al., 2010). This
suggests that altered levels of CRF and UCN 1 contribute to
the stress sensitivity witnessed in the animals and that altered
5-HT systems contribute to these differences, perhaps through
increased CRF or decreased UCN signaling to the DR. In fact,
stress-sensitive cynomolgus macaques, compared to less stress
sensitive cynomolgus macaques, have decreased serotonin trans-
porter and tryptophan hydroxylase 2 (TPH) mRNA and, in one
study, had lower 5-HT1A receptor mRNA in the DR, all suggest-
ing that alterations in these 5-HT systems contribute along with
the altered CRF/UCN system to the stress-sensitive phenotype of
these monkeys (Bethea et al., 2005b; Lima et al., 2009).

CLINICAL DATA ON CRF/5-HT INTERACTIONS AND
EMOTIONAL BEHAVIOR
There is a wealth of knowledge gained from studies showing
that SSRI’s can be a useful way to treat anxiety and depres-
sion (Goldstein and Goodnick, 1998) although a meta-analysis
of clinical data also show that this may be dependent on the
severity of the disorder and less useful in mild to moderate
depression (Fournier et al., 2010) although see (Gibbons et al.,
2012). There has also been interest in modulating CRF in patients
with affective disorders to help alleviate their symptoms (Künzel
et al., 2003). Corticotropin-releasing factor-positive terminals are
apposed to serotonergic neurons in the human brain suggesting
that they play a role in modulating 5-HT as seen in animal models
(Ruggiero et al., 1999). Importantly, elevated CRF concentrations
have been described in the cerebral spinal fluid in suicide victims,
suggesting a dysregulation of the central CRF system (Arató et al.,
1989). Although the data have not been completely consistent
in findings of elevated CRF concentrations, with reports of no
difference or even decreased CRF in CSF, it does appear that there
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can be abnormal levels of CRF in CSF in people with depression
and the discrepancies may represent subgroups of depression or
perhaps how long they have been in the episode of depression
(Mitchell, 1998). One study of interest concerning the interplay
between CRF and 5-HT showed elevated levels of CRF in CSF
which subsequently normalized after treatment with the SSRI
fluoxetine, suggesting that the abnormality in 5-HT function in
depression could be related to the elevation of CRF (De Bellis
et al., 1993).

Depression has also been associated with alterations in 5-HT
function in specific regions of the DR in humans. Data col-
lected from postmortem human brain tissue show an increase
in TPH immunoreactivity (Underwood et al., 1999; Boldrini
et al., 2005) and mRNA (Bach-Mizrachi et al., 2006, 2008) in
the DR of depressed suicides, with a more pronounced increase
in the DRC. Data also show an increase of TPH immunore-
activity specifically in the DRD of depressed alcoholic suicides
(Bonkale et al., 2006) with a trend for an increase in tph2 mRNA
expression in the same region in non-alcoholic depressed sui-
cides (Bach-Mizrachi et al., 2006). These data are in contrast to
those described in the stress-sensitive monkeys in which it had
been found that there is decreased tph2 mRNA compared to less
stress sensitive monkeys, which may indicate that there are multi-
ple pathways leading to emotion-related disorders (Bethea et al.,
2011). In male, but not female, suicide victims, UCN mRNA is
significantly elevated in the Edinger-Westphal nucleus (Kozicz
et al., 2008) further implicating a disruption in central CRF-
related peptides related to depression. Other data show that CRF
is upregulated as well in the DR and MnR in depressed suicides
providing direct evidence for changes in CRF in brain regions
that are the major sources for 5-HT in humans, which could be

one reason for the altered TPH seen in other studies, perhaps
through increased activation of serotonergic neurons by CRF
(Austin et al., 2003).

CONCLUSIONS
Corticotropin releasing factor and the UCNs interact with sero-
tonergic systems in a topographically organized manner and,
depending on the receptor and the connectivity with limbic
brain regions and concentrations of peptide, can lead to alter-
ations in gene expression, changes in serotonergic output, and
increased or decreased emotional behaviors. Focus on the rela-
tionship between the members of the CRF family of peptides and
serotonergic systems should take into consideration the complex
topographical organization of serotonergic systems. Increased
understanding of these relationships in specific brain regions
could lead to novel therapeutic strategies to more directly modu-
late emotional outcomes with fewer side effects relative to current
treatments for anxiety and affective disorders.
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