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In this study, first the cortical activities over 2240 vertexes on the brain were estimated
from 64 channels electroencephalography (EEG) signals using the Hierarchical Bayesian
estimation while 5 subjects did continuous arm reaching movements. From the estimated
cortical activities, a sparse linear regression method selected only useful features in
reconstructing the electromyography (EMG) signals and estimated the EMG signals of
9 arm muscles. Then, a modular artificial neural network was used to estimate four joint
angles from the estimated EMG signals of 9 muscles: one for movement control and the
other for posture control. The estimated joint angles using this method have the correlation
coefficient (CC) of 0.807 (±0.10) and the normalized root-mean-square error (nRMSE) of
0.176 (±0.29) with the actual joint angles.
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INTRODUCTION
The field of Brain Machine Interface (BMI) has engaged in active
research to help paralyzed patients regain some independence and
to better integrate within societal activities. Brain-machine inter-
face can be broadly divided into invasive and non-invasive modal-
ities depending on how brain signals are harnessed. Invasive
BMI, mainly targets motor related cortical areas. Non-human
primates are often used to for example, harness the spikes and
local field potentials from the primary motor cortex, known to
interface with the spinal cord and containing signals useful to
control arm movement. Such neural signal has been used to con-
trol external devices such as a robotic arm or a mouse cursor
by reconstructing hand trajectories from the measured neural
activities (Chapin et al., 1999; Wessberg et al., 2000; Serruya
et al., 2002; Talylor et al., 2002; Carmena et al., 2003). More
recently invasive BMI has been approved to be used in humans
(Hochberg et al., 2006; Chadwick et al., 2011), including as well
electrocorticography (ECoG) (Schalk et al., 2007; Sanchez et al.,
2008).

In the case of non-invasive BMI, the state-of-the-art research
uses motor imagery, a paradigm that classifies whether the subject
performs left or right hand motor imagery using electroen-
cephalography (EEG) signals (Ramoser et al., 2000; Wolpaw and
McFarland, 2004). It was believed that the noisy EEG signal
in non-invasive BMI would be insufficient to estimate three-
dimensional hand movement (Lebedev and Nicolelis, 2006).
However, recently Bradberry et al. (2010) succeeded in recon-
structing the three-dimensional hand movements from the EEG
signals while the subjects perform natural and self-initiated reach-
ing actions.

In the present study, a new method using electromyography
(EMG) signals is proposed that first reconstructs the EMG signals
of the arm muscles from the source currents estimated from EEG
signals, and then estimates joint angles on the shoulder and the
elbow from the reconstructed EEG signals. By reconstructing the
EMG signals of the arm muscles from EEG signals, it is possi-
ble to reconstruct not only kinematics-, but also dynamics-based
information involving force generation. For example, impedance
and joint torque can be obtained to build more realistic brain-
machine interfaces, compatible with human motion execution.
Furthermore, when reconstructing EMG signals from the EEG
signals, by electrically stimulating the arm muscles of a para-
lyzed person, it is possible using a functional electrical stimulation
(FES) system to engage the person in self-adaptive control of
his/her arm.

In this study, source currents over 2240 vertexes were esti-
mated from EEG signals of 64 channels through a hierarchical
Bayesian method introducing a hierarchical prior (Sato et al.,
2004). This method can effectively incorporate both structural
and functional MRI data. In this hierarchical Bayesian method,
the variance of the source current at each source location is con-
sidered an unknown parameter and estimated from the observed
EEG data and prior information by using the Variational Bayesian
(VB) method. The fMRI information was imposed as prior infor-
mation on the variance distribution rather than the variance itself
so that it gives a soft constraint on the variance. From the esti-
mated source currents over 2240 vertexes, only 33 vertexes are
selected, which is located in the left primary motor cortex con-
tralateral to moving arm, to estimate the filtered EMG signals of
9 muscles by using a sparse linear regression method which can
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automatically select only useful features in estimating the filtered
EMG signals. A modular artificial neural network was then used
to reconstruct 4 joint angles on the shoulder and elbow from the
estimated filtered EMG signals, which trains movement data and
posture data in two different networks. This modular structure
improves the accuracy of the estimation.

MATERIALS AND METHODS
EXPERIMENTAL TASK
Five healthy right-handed subjects (five men, Mage = 22.51,
age range: 20–29 years) participated in the experiment. All five
subjects do not have any experience of participating in the exper-
iments of brain-machine interface study before. All participated
subjects submitted a written form of consent before starting the
experiment. The subjects performed a continuous arm-reaching
task as shown in Figure 1A. The task consisted of pushing buttons
in the following sequences: Hold-C-A-B, Hold-C-D-B, Hold-D-
B-A, and Hold-D-C-A. Theses sequences are explained in greater
detail below.

Here only the Hold-C-A-B sequence is explained (Figure 1B),
since the others have similar patterns. First, a subject pushes the
hold button for 1 s when the hold signals turns on. If the subject
succeeds in pushing the hold button for 1 s, the C button turns on,
and the hand of the subject has to move to the C button within 1 s.
If the subject is successful in keeping the C button pressed for 1 s,
the A button turns on. The hand of the subject is then supposed
to push the A button within 1 s and keep it pressed for 1ṡ. If the A
button is successfully pressed for 1 s, the B button turns on. The
hand of the subject then has to push the B button within 1 s and
keep it pressed for 1 s.

When the subject succeeded in pressing all three buttons cor-
rectly, it was considered as success, and only successful trials were
analyzed in this study. After pressing the three buttons, the subject
takes a rest between 3 and 4 s, then, it goes to the next trial. The
task of the next trial is decided randomly. By performing 10 trials
for one of four tasks randomly, each subject conducted 40 trials

within one set. A total of seven sets of experiment were conducted
for one subject. The leave-one-out cross-validation method was
used to analyze the measured data by using six sets for training
data and one set for the test data.

fMRI EXPERIMENT
Figure 2 shows the fMRI task used to collect fMRI data as prior
information to estimate cortical activity. One trial consisted of
the execution task in which the participant moves the right index
finger (e.g., up or down) every 1 s. This is followed by a resting
period in which the participant takes a break for 15 s. Each par-
ticipant conducted 24 trials of the fMRI task. The fMRI activity
when participants take a rest (rest periods) was subtracted from
the fMRI activity when participants moved their fingers (execu-
tion periods). All five participants conducted the fMRI task to get
their individual prior information.

ESTIMATION OF CORTICAL ACTIVITIES FROM EEG SIGNALS
EEG signals were measured at 1 kHz sampling rate on 64 channels
by using a biosemi system (Amsterdam, Netherlands). The mea-
sured EEG signals were taken baseline corrected (baseline data
from −1 to 0 s) and band-pass filtered between 8 and 30 Hz using
a fifth-order butterworth filter.

FIGURE 2 | fMRI task. During 15 s, the participant moves the right index
finger in the instructed direction every 1 s. The monitor then goes blank and
the participant takes a break for 15 s while watching the monitor.

FIGURE 1 | Experimental task. (A) A subject performs a continuous arm-reaching task while facing a touch screen displaying five lights and five buttons.
(B) Sequential arm-reaching task (Hold-C-A-B sequence).
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To estimate cortical activities from EEG signals, an inverse fil-
ter L (a matrix of dimensions 2240 × 64) in Equation 1 was used.
By multiplying real-time EEG signals to the obtained inverse fil-
ter as in Equation 1, it is possible to quickly estimate the cortical
activity.

L

(∑−1

α

)
=

∑−1

α
· G′ ·

(
G ·

∑−1

α
· G′ + β−1IM

)−1

,

J(t) = L

(∑−1

α

)
· E(t) (1)

Here, E(t) represents measured real-time EEG signals given by
64 × 256 Hz (sampling rate). J(t) denotes the estimated corti-
cal activities over 2240 vertexes every second and is given by
2240 × 256 Hz entries. G (64 × 2240) is a lead field matrix which
represents the impulse response of each source vector component
at every measurement site (Baillet et al., 2001) and G′ denotes
its transpose. The boundaries between brain, skull, and scalp
were generated by using the Curry 5 software (Compumedics,
USA). Here, the relative conductivities of the brain, skull, and
scalp are 10.0125 and 1. IM represents an identity matrix of
M-by-M (M:number of sensors), β−1 (64 × 64) corresponds to
the inverse of the noise variance of the observed EEG signals.∑−1

α denotes the source covariance matrix, and is calculated as∑−1
α = diag(α−1). Here, α−1(2240 × 2240) represents the source

current variance which is considered unknown parameters in this
study and estimated from the measured EEG data by applying a
hierarchical prior on current variance.

Artifact dipoles were also incorporated in the estimation
according to previous studies (Fujiwara et al., 2009; Morishige
et al., 2009). Artifact dipoles were located at the center of the
heart, the right shoulder, and wrist joints, the left and right
eyeballs, and the carotid arteries, and estimated.

Estimation of current variance
In this study, the current variance α−1was estimated by the
Automatic relevance determination (ARD) hierarchical prior
(Neal, 1996).

P(J(t)|α, β) ∝ exp

[
−β

2
J′(t) · A · J(t)

]

P(αi) = �(αi|α0i, r0) ,

P(β) = 1

β
(2)

where β is the inverse noise variance of the observed EEG signals,
A = diag(α), and α is an I-by-1 vector whose component αi is the
inverse current variance corresponding to the i-th current dipole.
� represents the Gamma distribution with mean α0i and degree
of freedom r0. Intuitively, the hyper-parameter r0 represents con-
fidence of the hierarchical prior information. A prior current
variance v0i = α−1

0i represents the prior information on current
intensity. For large and small v0i, estimated current Ji(t) tends
to be large and small, respectively. These values were determined
from the fMRI information:

v0i = vbase + (m0 − 1) · vbase · (
t̂i
)2

, (3)

where t̂i is a normalized T-value on the i-th vertex. Normalized
T-values are computed by dividing the original T-values by the
maximum of those T-values (thus ranging from 0 to 1).

vbase is a baseline of the current variance, which is estimated
from the pre-movement interval (1.0–0.5 s before the movement
initiation) of the EEG data by a Bayesian minimum norm estima-
tion. A variance magnification parameter m0, which is the other
hyper-parameter, specifies the scaling between the current vari-
ances in the baseline and task periods. m0 = 100 and r0 = 10 were
used.

Due to the hierarchical prior, the estimation problem becomes
non-linear and cannot be solved analytically. Therefore, the VB
method (Attias, 1999; Sato, 2001) is employed. In the VB method,
J(t), α, and β are iterately updated until convergence.

Figure 3A depicts the fMRI activity while subject 1 conducts
the Hold-C-A-B sequence task with the right arm. The left pri-
mary motor area is strongly activated. The fMRI information
was used as the prior information to estimate cortical activities.
Figure 3B shows the cortical activities of subject 1 estimated from
the EEG signals for the Hold-C-A-B task. As expected, strong cor-
tical activities are estimated in the left motor cortex. Meanwhile,
several parts in the visual cortex are activated in the figure. The
reason of the activation of the visual cortex is that while the sub-
ject performs the task of the experiment, he sees the target buttons
emitting high intensity light.

EMG SIGNAL PROCESSING
For all trials in this study, EEG, EMG signals, and the posi-
tions of the shoulder, the elbow, and the wrist of the subject
were simultaneously measured. EMG signals were collected in the
nine muscles involving four degrees of freedom (see Figure 4 and
Table 1).

In order to measure the EMG signals, a silver/silver chloride
surface electrode (NE-102, Nihon Kohden) was used. After dif-
ferential amplification, each signal was sampled at 1 kHz with
a 12-bit resolution. The signals were digitally rectified, averaged

FIGURE 3 | (A) The fMRI activity while subject 1 performs the Hold-C-A-B
sequence task. (B) Estimated cortical activities of subject 1 for the task of
the Hold-C-A-B sequence (an average of 70 trials).
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over 5 ms, and then filtered through a second-order low-pass filter
with a cut-off frequency of ∼3 Hz (Koike and Kawato, 1995).

fEMG(t) =
n∑

j = 1

hjEMG(t − j + 1), (4)

h(t) = 6.44 × (
exp−10.80t − exp−16.52t), (5)

The coefficient hj in Equation 4 can be acquired by sampling h(t)
in Equation 5 discretely. The resulting signal is very similar to the
actual tension; consequently, it is called quasi-tension (Basmajian
and DeLuca, 1985).

The method that uses a low-pass filter to estimate muscle
tension shows good performance when the velocity of muscle
contraction is slow. However, the method cannot estimate mus-
cle tension precisely when the velocity of contraction is very high,
and the method does not consider the non-linear characteristics
of muscles, such as length and velocity. However, it is reasonable
to assume that the output of the low-pass filter is similar to the
actual tension (Mannard and Stein, 1973).

KINEMATICS
In order to measure the position of the shoulder, the elbow, and
the wrist of the subjects, an infrared marker was attached on
their arms and measured each position by using a 3D position

FIGURE 4 | Four-degrees-of-freedom arm movement.

Table 1 | Muscles measured for EMG signals.

θ1 Adduction Pectoralis major, Teres major
Abduction Deltoid, Deltoideus

θ2 Extension Deltoid, Teres major, Triceps Brachii C. L., T. B. C.
Laterale

Flexion Deltoid, Pectoralis major, Biceps Brachii,
Deltoideus

θ3 Medial rotation Deltoid, Pectoralis major, Teres major, Deltoideus
Lateral rotation Deltoid, Infraspinatus, Deltoideus

θ4 Extension Triceps Brachii Caput Longus, Triceps Brachii
Caput Laterale

Flexion Biceps Brachii, Brachialis

measurement system (MacReflex, Qualisys). The sampling rate
was 120 Hz. In order to calculate the joint angles of the four
degrees of freedom in the shoulder and elbow from the positions
measured, the inverse kinematics equations (Koike and Kawato,
1994) was used.

In Figure 5, if we set the transition matrix of θ1θ2, · · · , θ7 to
Ax (θ1) , Ay (θ2) , · · · , Az(θ7) and the transition matrix of l1(the
length of the upper arm), l2(the length of the fore arm), and l3(the
length of the hand) to Lz(l1), Lz(l2), and Lz(l3), we can represent
the transition matrix of AE, AW , and AH , which represents the
relation from the elbow position E to the hand position H, like
below,

AE = Ax (θ1) Ay (θ2) Lz(l1) =
[

C2 C2lzl

0T 1

]
, (6)

Here,

C2 = Cx (θ1) Cy (θ2) =
⎡
⎣ 1 0 0

0 c1 −s1

0 s1 c1

⎤
⎦ ×

⎡
⎣ c2 0 s2

0 1 0
−s2 0 c2

⎤
⎦ , (7)

lz1 = [
0 0 −l1

]T
, (8)

Equation 6 becomes

AE =

⎡
⎢⎢⎣

c2 0 s2 −s2l1
s1s2 c1 −s1c2 s1c2l1

−c1s2 s1 c1c2 −c1c2l1
0 0 0 1

⎤
⎥⎥⎦ , (9)

The coordination of the elbow E (xE, yE, zE) is represented in the
4th column that is,

⎡
⎣ xE

yE

zE

⎤
⎦ = −l1

⎡
⎣ s2

−s1c2

c1c2

⎤
⎦ , (10)

FIGURE 5 | The structure of the joints of a human.
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Therefore,

⎡
⎣ xW

yW

zW

⎤
⎦ =

⎡
⎣ xE

yE

zE

⎤
⎦ + l2

⎡
⎣ −s2c4 − c2s3s4

s1c2c4 + (c1c3 − s1s2s3)s4

−c1c2c4 + (s1c3 − c1c2s3)s4

⎤
⎦ , (11)

Finally, we can get the following Equations (12–15).

tan θ1 = −yE

zE
, (12)

sin θ2 = −xE

l1
, (13)

sin θ3 = (xE − xW )/l2 − sin θ2 cos θ4

cos θ2 sin θ4
, (14)

cos θ4 = l21 + l22 − R2

2l1l2
, (15)

ESTIMATION OF EMG SIGNALS FROM ESTIMATED CORTICAL
ACTIVITIES
A sparse linear regression method (Toda et al., 2011) was used
to estimate filtered EMG signals from the cortical activities esti-
mated over 2240 vertexes.

f EMGi(t + δt) =
Nsource∑

j = 1

wij × Jj(t) + bias, (16)

Here, f EMGi describes the i-th filtered EMG signal from the cor-
tical activity on the j-th vertex (Jj). Nsource denotes the number
of vertexes used in estimating filtered EMG signals. In this study,

since all subjects are right-handed, the cortical activities over 33
vertexes in the left primary motor cortex were used to estimate
the filtered EMG signals. The weighting factor wij represents the
strength influence from the cortical activity on the j-th vertex on
muscle i-th muscle. δt is the delay between the cortical activity of
the primary motor cortex and the EMG signals.

MODULAR ARTIFICIAL NEURAL NETWORK MODEL
In order to estimate joint angles from the filtered EMG signals, a
modular artificial neural network (Jacobs et al., 1991) was used, as
shown in Figure 6. Training the data of posture and movement in
different networks will improve the accuracy of estimating joint
angles compared to training the entire set of data in the same
network, since the muscle tension is different in these two cases.
Here, posture is defined as the state where the arm of the sub-
ject is in contact with a button on the screen, and movement
is defined as the condition where the arm of the subject moves
from one button to another. If training is done well, a gating net-
work will select one of the two expert networks by its input signal.
In this case, one of the two expert networks is used for posture
control and the other is used for movement control. Since the gat-
ing network determines the output ratio for each expert network
depending on its input signal, the sum of the outputs of the gating
network should always be equal to 1.

To achieve this, as shown in Equation 17, the output gj of the
gating network, which corresponds to the j-th expert network, is
normalized by using the soft max activation function.

gj = exj

N∑
i = 1

exi

, (17)

FIGURE 6 | Joint-angle estimation model with a modular architecture.
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Here, xi is the value determined by the input signal of the gat-
ing network and N is the total number of outputs of the gating
network. The total output is calculated by multiplying the output
of the gating network by the output of each expert network and
summing the result, as given in Equation 18.

θ =
N∑

i = 1

giθ̂i, (18)

The gating network and each expert network are trained to max-
imize the likelihood function lnL (Equation 19) by the back
propagation algorithm (Rumelhart et al., 1986).

ln L = ln
N∑

i = 1

gie

−‖θ − θ̂i‖2

2σ2
i , (19)

The update of the weights of the gating network is calculated by a
chain rule, as in Equation 20.

∂ ln L

∂xi
=

N∑
i = 1

(
g(i|X, θ̂i) − gi

)
, (20)

Here, X is the input of the gating network, and the posteriori

probability g
(

i|X, θ̂i

)
is

g
(

i|X, θ̂i

)
= gie

−‖θ − θ̂i‖2

2σ2
i

N∑
j = 1

gje

−
∥∥∥θ − θ̂j

∥∥∥2

2σ2
j

, (21)

The update of the weights of each expert network is calculated by
a chain rule as in Equation 22.

∂ ln L

∂ θ̂i

=
N∑

i = 1

g
(

i|X, θ̂i

) θ − θ̂i

σ2
i

, (22)

Each network is trained by using the kick-out method (Ochiai
and Usui, 1993).

The filtered EMG signals of the nine muscles were used as
the input of each expert network model. The summed-squared
velocity value of the four joint angles were used as the input
of the gating network because when the value of the cortical
activities in the primary motor cortex was directly used as the
input of the gating network, the gating network could not distin-
guish between posture and movement. However, when using the
summed-squared velocity of the four joint angles as the input, the
gating network distinguished posture and movement correctly.

ANALYSIS
The correlation coefficient (CC) was used to evaluate the sim-
ilarity between actual and predicted signals. Accuracy was also
evaluated using normalized root-mean-square error (nRMSE)

between actual and predicted signals, defined as

nRMSE =

√√√√√
n∑

i = 1

(
y

predicted
i − yactual

i

)2

n

/(
yactual

max − yactual
min

)
, (23)

where for each time i (i = 1, 2, . . . , n), y
predicted
i is the predicted

signal and yactual
i is the actual signal, and yactual

max and yactual
min are the

maximum and minimum of actual signal, respectively.

RESULTS
ESTIMATION RESULT OF FILTERED EMG SIGNALS FROM THE CORTICAL
ACTIVITIES OF THE PRIMARY MOTOR CORTEX
The filtered EMG signals were estimated from the cortical activ-
ities in the primary motor cortex by using Equation 23. To
determine the delay-time parameter, the intracortical microstim-
ulation (ICMS) method (Heusler et al., 2000) was used and the
delay time 17 ms was decided when the filtered EMG signals are
estimated from the cortical activities of the primary motor cortex.

Of the 70 trials measured for each task (Hold-C-A-B, etc.), 60
trials were used for training data and 10 trials for the test data.
The sparse linear regression method has an ability to automati-
cally select only useful features in estimation among all extracted
features. Therefore, this method is very strong against the overfit-
ting problem. Figure 7A shows the weights of the selected features
in estimating filtered EMG signals from the cortical activities in
the left primary motor cortex while subject 3 performs the exper-
imental task. In the case of Figure 7A, 20 vertexes are selected
among 33 vertexes located in the left primary motor cortex to
estimate filtered EMG signals.

Figure 7B shows the filtered EMG signals of subject 1 esti-
mated from the cortical activities over selected 20 vertexes in the
left primary motor cortex. The estimated filtered EMG signals
had a CC of 0.827 (±0.10) and nRMSE of 0.142 (±0.38) with
the actual EMG signals. Table 2 shows the CC between the actual
EMG signals and the reconstructed EMG signals of all of the 5
subjects participated in the experiment. The averaged CC and
nRMSE of 5 subjects were 0.851 (±0.11) and 0.233 (±0.17).

ESTIMATION RESULT OF JOINT ANGLES FROM FILTERED EMG
SIGNALS
After measuring 70 trials of the EMG signals and movement tra-
jectories of the subject’s arm, 60 trials were used as training data
and one trial as test data. The number of training data samples
was 1,080,720 (60 trials × 1 kHz × 4.503 s × 4 cases) and the
number of test data samples was 180,120 (10 trials × 1 kHz ×
4.503 s × 4 cases). In the case of the gating network, the net-
work was trained by the summed-squared velocity value of the
four joint angles. However, since this value cannot be used as
test data, the velocity values from the filtered EMG signals were
estimated. Figure 8 shows the four joint angles of subject 1 esti-
mated from the cortical activities of the primary motor cortex.
The CC and nRMSE between the estimated joint angles and the
actual joint angles were about 0.817 (±0.10) and 0.212(±0.04).
Table 3 depicts the CC between the actual joint angles of 5 sub-
jects and the joint angles reconstructed by the modular artificial
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FIGURE 7 | Reconstruction of the filtered EMG signals from the cortical

activities estimated on 33 vertexes in the left primary motor cortex.

(A) The weights of the important features selected by the sparse linear
regression to estimated filtered EMG signals from the cortical activities while

subject 3 performs four tasks. (B) The filtered EMG signals estimated from
the selected 20 features. Dotted lines (blue) represents the actual filtered
EMG signals, and solid lines (red) show the reconstructed filtered EMG
signals (normalized scale).
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neural network model. The averages of the CC and nRMSE of the
reconstructed joint angles were 0.807 (±0.10) and 0.176 (±0.29).

DISCUSSION
In this study, the cortical activities on 2240 vertexes were
estimated from the EEG signals of 64 channels using the
hierarchical Bayesian method. Then, of the estimated cortical

Table 2 | The correlation coefficient (CC) and normalized

root-mean-square error (nRMSE) between the actual EMG signals

and the estimated EMG signals.

Subject Statistics Task

CAB CDB DBA DCA

1 CC 0.82 (0.12) 0.83 (0.12) 0.83 (0.10) 0.83 (0.09)

nRMSE 0.28 (0.24) 0.14 (0.04) 0.12 (0.07) 0.12 (0.39)

2 CC 0.86 (0.11) 0.88 (0.09) 0.82 (0.07) 0.89 (0.10)

nRMSE 0.19 (0.25) 0.12 (0.05) 0.18 (0.10) 0.15 (0.05)

3 CC 0.82 (0.11) 0.85 (0.12) 0.86 (0.09) 0.86 (0.09)

nRMSE 0.14 (0.38) 0.23 (0.24) 0.22 (0.17) 0.23 (0.18)

4 CC 0.88 (0.10) 0.86 (0.13) 0.87 (0.08) 0.84 (0.11)

nRMSE 0.11 (0.07) 0.12 (0.05) 0.10 (0.06) 0.27 (0.43)

5 CC 0.85 (0.07) 0.86 (0.07) 0.85 (0.12) 0.86 (0.11)

nRMSE 0.23 (0.43) 0.18 (0.11) 0.22 (0.18) 0.22 (0.42)

Average CC 0.84 (0.10) 0.85 (0.11) 0.84 (0.10) 0.85 (0.12)

nRMSE 0.19 (0.06) 0.15 (0.04) 0.16 (0.05) 0.19 (0.06)

activities, only the cortical activities in the left primary motor
cortex were used to reconstruct the EMG signals of nine mus-
cles through the sparse linear regression method. When recon-
structing EMG signals from the cortical activities, we could
determine the delay time between the cortical activities and

Table 3 | The correlation coefficient (CC) and normalized

root-mean-square error (nRMSE) between the actual joint angles and

the joint angles estimated by the modular artificial neural network

model.

Subject Statistics Task

CAB CDB DBA DCA

1 CC 0.81 (0.12) 0.82 (0.11) 0.84 (0.09) 0.80 (0.10)

nRMSE 0.21 (0.22) 0.19 (0.21) 0.13 (0.12) 0.20 (0.19)

2 CC 0.82 (0.11) 0.75 (0.10) 0.75 (0.09) 0.79 (0.10)

nRMSE 0.14 (0.05) 0.25 (0.15) 0.22 (0.15) 0.21 (0.11)

3 CC 0.83 (0.11) 0.86 (0.13) 0.79 (0.08) 0.81 (0.08)

nRMSE 0.24 (0.22) 0.21 (0.24) 0.13 (0.05) 0.22 (0.20)

4 CC 0.78 (0.10) 0.78 (0.14) 0.82 (0.09) 0.88 (0.10)

nRMSE 0.24 (0.15) 0.23 (0.16) 0.11 (0.07) 0.17 (0.29)

5 CC 0.85 (0.08) 0.82(0.08) 0.84 (0.10) 0.88 (0.10)

nRMSE 0.25 (0.33) 0.19 (0.21) 0.13 (0.13) 0.20 (0.06)

Average CC 0.81 (0.08) 0.80 (0.11) 0.80 (0.08) 0.82 (0.08)

nRMSE 0.21 (0.04) 0.21 (0.02) 0.14 (0.04) 0.20 (0.01)

FIGURE 8 | Estimated joint angles from the cortical activities of the primary motor cortex. Dashed lines represent the actual joint angles and solid lines
show the estimated joint angles.
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the EMG signals by searching the correlation of those two
signals. However, the pattern of EMG signals has a simple
waveform which has one or two peaks, and that of cortical
activities is also similar. Thus, in this study, the ICMS method
was used to decide the delay time. The delay time of 17 ms
found from ICMS method was applied for all the subjects
for estimating EMG signals from the cortical activities. In the
future, we are going to study whether or not this delay time
is effective for individuals in disease state. A modular arti-
ficial neural network model was used to estimate four joint
angles on the elbow and the shoulder from the estimated EMG
signals.

WHY IS IT IMPORTANT TO RECONSTRUCT EMG SIGNALS FROM BRAIN
SIGNALS?
Morrow et al. (Morrow and Miller, 2003) succeeded in recon-
structing the EMG signals of the distal forelimb muscles from
the 50 M1 neurons of an non-human primate while performing a
stereotyped precision grips task. Furthermore, Koike et al. (2006)
estimated the EMG signals of seven arm muscles from the neural
activities of 18 neurons of an non-human primate during an arm
reaching task. Then, three joint angles (two at the shoulder and
one at the elbow) were reconstructed from the estimated EMG
signals. Similarly, most existing brain-machine interface studies
reconstruct EMG signals from the neural activities of the primary
motor cortex of non-human primates, by using invasive needle
electrodes. In such cases, it is possible to obtain relatively clean
brain signals.

When reconstructing EMG signals with non-invasive BMI
technologies however, there are several difficulties because the
skull, which is an insulator, is located between the brain and the
sensors, thus introducing noise. Ganesh et al. (2008) succeeded
in reconstructing the EMG signals of two antagonist muscles
from fMRI signals measured in the primary motor cortex and
pre-motor cortex. EEG signals have good time resolution, but its
spatial resolution is poor. Consequently, it is difficult to estimate
EMG signals with EEG signals. In this study, spatial resolution is
improved by estimating cortical activities over 2240 vertexes from
the EEG signals measured over 64 channels through the hierar-
chical Bayesian method. Among the features being abundant, the
sparse linear regression method automatically selects only useful
features in reconstructing EMG signals. The proposed method is
very robust against the overfitting problem.

When EMG signals are reconstructed from the brain signals,
there are several advantages: First, we can reconstruct not only
position related information such as hand position but also force
related information such as joint torque and stiffness from the
estimated EMG signals (Koike and Kawato, 1993, 1994, 1995). For
example, when we pick up an object, the brain stabilizes the pos-
ture of the arm by controlling muscle tensions. The stiffness is
controlled by the co-contraction of the muscles. It is difficult to
model this phenomenon by directly estimating the hand position
because co-contraction causes different muscle patterns for the
same posture. Similarly, when in addition to reconstructing the
kinematics of hand motion, we obtain force information such as
joint torque and stiffness from the brain signals, it is possible to
control a robotic arm based on these information. In such cases

it could also be possible to implement a brain-machine interface
more compatible with features of the human arm.

Second, by using the estimated EMG signals as the command
signals of the FES, we raise the possibility that a paralyzed person
could in principle control his arm once we electrically stimu-
late his paralyzed muscles (Degnan et al., 2002; Uechi et al.,
2004). Fagg et al. (2007), without modeling the characteristics of
the musculoskeletal system, controlled arm movement by electri-
cal stimulation of arm muscles through FES after reconstructing
EMG signals from the neural activities in the primary motor cor-
tex. Furthermore, Moritz et al. (2008), by facilitating the direct
control of the stimulation of muscles from the neural activities of
the primary motor cortex, made it possible for non-human pri-
mates to control bidirectional wrist torques from cortical cells.
This research suggests that it may be possible to create more real-
istic neuro-prostheses. By modeling the musculoskeletal system,
we may be able to extend non-invasive brain-machine interfaces
to control anthropomorphic robotic devices.

WHICH BRAIN PART IS MEASURED FOR RECONSTRUCTING EMG
SIGNALS?
The cortical region of choice to harness the control neural signal
from seems to be important. In the case of studies using non-
human primates, the neural activities of the primary motor cortex
are mainly measured to reconstruct EMG signals (Nicolelis et al.,
1998; Shoham et al., 2005; Wu et al., 2006). From the research
result of Fried et al. (1991), the process of motor related infor-
mation in the brain is that first the urge to move the arm occurs
from the premotor cortex, then the occurred signals goes to the
primary motor cortex via the supplementary motor area. The
primary motor cortex is the final output part of motor related
signals in the brain. The signal is transmitted to the arm muscles
through the alpha motor neuron of the spinal cord, and finally it
generates arm movement. Anatomically, since the primary motor

FIGURE 9 | The correlation coefficients when reconstructing EMG

signals from the cortical activities estimated in different brain areas

(M1, primary motor cortex; PMd, dorsal premotor cortex; PP, posterior

parietal cortex; and All, using all brain areas).
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cortex is linked to the muscles via one or more intermediate neu-
rons, the neural activities of the primary motor cortex have high
correlation with muscle activities. Figure 9 shows the CCs when
reconstructing EMG signals from the cortical activities in several
brain areas. In this study, it is found that when reconstructing
EMG signals from the cortical activities estimated in the primary
motor cortex, the highest CC is obtained.

LIMITATIONS AND FUTURE WORK
There are some limitations with the use of modular neural net-
works for joint angle estimation. The estimated joint angles have
a CC of 0.81 with the actual joint angles. The reason the modu-
lar artificial neural network model was used in estimating joint
angles is because, in the case of isotonic movement, where force
is outputted with a changing length of the muscle, the tension
is different depending on the velocity that the muscle flexes or
extends. In the case of muscle flexion, the tension decreases as
the flex velocity increases. In the case of muscle extension, the
tension increases as the extension velocity increases. The perfor-
mance of estimating joint angles could be improved by training
two networks with tension values, which change depending on
the velocity, rather than training the data in the same network.
One network was used for 0 velocity and the other for movement

velocity. When joint angles are estimated from muscle tensions,
the muscle tensions for posture have low values. In comparison,
the muscle tensions for movement have significantly high val-
ues. If we trained these data in the same network, the network
would determine that the error of posture data is much lower than
that of movement data. Consequently, in the case of posture data,
the estimated results are poor. In future work we will use differ-
ent neural network structures for joint angle estimation. Recent
advances in machine learning point at deep learning algorithms
and neural networks (Salakhutdinov and Hinton, 2009, 2012) as
a possibility for improving feature extraction to reconstruct the
joint angles. We plan to explore these new avenues of research.

In this study, five normal subject’s joint angles were estimated
from EEG signals through EMG signals. In the case of individu-
als with spinal cord injuries where the pathway between primary
motor cortex and muscles was disconnected, there was a neces-
sity of identifying the relationship between EMG signals and joint
angles of a normal subject. Then, the EEG signals of an individual
with spinal cord injury is connected to EMG signals of the normal
subject. In the future, we are going to study more about this topic
with individuals with spinal cord injury. Furthermore, there is a
possibility of using this proposed method in a study of post-stroke
individual where primary motor cortex is not damaged.

REFERENCES
Attias, H. (1999). “Inferring parame-

ters and structure of latent vari-
ables models by variation Bayes,”
in Proceedings of 15th Conference on
Uncertainty in Artificial Intelligence
(Stockholm), 21–30.

Baillet, S., Riera, J. J., Marin, G.,
Mangin, J. F., Aubert, J., and
Garnero, L. (2001). Evaluation of
inverse methods and head mod-
els for EEG source localization
using a human skull phantom.
Phys. Med. Biol. 46, 77–96. doi:
10.1088/0031-9155/46/1/306

Basmajian, J. V., and DeLuca, C. J.
(1985). Muscles Alive. Williams and
Wilkins.

Bradberry, T. J., Gentili, R. J., and
Contreras-Vidal, J. L. (2010).
Reconstructing three-dimensional
hand movements from noninvasive
electroencephalographic signals.
J. Neurosci. 30, 3432–3437. doi:
10.1523/JNEUROSCI.6107-09.2010

Carmena, J. M., Lebedev, M. A.,
Crist, R. E., O’Doherty, J. E.,
Santucci, D. M., Dimitrov, D. F.,
et al. (2003). Learning to con-
trol a brain-machine interface
for reaching and grasping by
primats. PLoS Biol. 1:e42. doi:
10.1371/journal.pbio.0000042

Chadwick, E. K., Blana, D., Simeral,
J. D., Lambrecht, J., Kim, S. P.,
Cornwell, A. S., et al. (2011)
Continuous neural ensemble con-
trol of simulated arm reaching
by a human with tetraplegia.

J. Neural Eng. 8, 1741–1750. doi:
10.1088/1741-2560/8/3/034003

Chapin, J. K., Moxon, K. A., Markowitz,
R. S., and Nicolelis, M. A. L. (1999).
Real-time control of a robot arm
using simultaneously recorded
neurons in the motor cortex.
Nat. Neurosci. 2, 664–670. doi:
10.1038/10223

Degnan, G. G., Wind, T. C., Jones, E. V.,
and Edlich, R. F. (2002). Functional
electrical stimulation in tetraplegic
patients to restore hand function.
J. Long Term Eff. Med. Implants 12,
175–188.

Fagg, A. H., Hatsopoulos, N. G., de
Lafuente, V., Moxon, K. A., Nemati,
S., Rebesco, J. M., et al. (2007).
Biomimetic brain machine inter-
faces for the control of movement.
J. Neurosci. 27, 11842–11846. doi:
10.1523/JNEUROSCI.3516-07.2007

Fried, I., Katz, A., McCarthy, G., Sass,
K., Williamson, P., Spencer, S., et al.
(1991). Functional organization of
human supplementary motor cor-
tex studied by electrical stimulation.
J. Neurosci. 11, 3656–3666.

Fujiwara, Y., Yamashita, O., Kawawaki,
D., Doya, K., Kawato, M., Toyama,
K., et al. (2009). A hierarchi-
cal Bayesian method to resolve an
inverse problem of MEG contam-
inated with eye movement arti-
facts. Neuroimage 45, 393–409. doi:
10.1016/j.neuroimage.2008.12.012

Ganesh, G., Burdet, E., Haruno,
M., and Kawato, M. (2008).
Sparse linear regression for

reconstructing muscle activ-
ity from human cortical fMRI.
Neuroimage 42, 1463–1472. doi:
10.1016/j.neuroimage.2008.06.018

Heusler, P., Cebulla, B., Boehmer, G.,
and Dinse, H. R. (2000). A repet-
itive intracortical microstimulation
pattern induces long-lasting synap-
tic depression in brain slices of the
rat primary somatosensory cortex.
Exp. Brain Res. 135, 300–310. doi:
10.1007/s002210000530

Hochberg, L. R., Serruya, M. D.,
Friehs, G. M., Mukand, J. A.,Saleh,
M., Caplan, A. H., et al. (2006).
Neuronal ensemble control of pros-
thetic devices by a human with
tetraplegia. Nature 442, 164–171.
doi: 10.1038/nature04970

Jacobs, R. A., Jordan, M. I., Nowlan,
S. J., and Hinton, G. E. (1991).
Adaptive mixtures of local experts.
Neural Comput. 3, 79–87. doi:
10.1162/neco.1991.3.1.79

Koike, Y., and Kawato, M. (1993).
Virtual trajectories predicted from
surface EMG signals. Soc. Neurosci.
12:543.

Koike, Y., and Kawato, M. (1994).
Estimation of arm posture in 3D-
space from surface EMG signals
using a neural network model.
IEICE Trans. Fundam. E77-D,
368–375.

Koike, Y., and Kawato, M. (1995).
Estimation of dynamic joint torques
and trajectory formation from
surface electromyography signals
using a neural network model.

Biol. Cybern. 73, 291–300. doi:
10.1007/BF00199465

Koike, Y., Hirose, H., Sakurai, Y.,
and Iijima, T. (2006). Prediction
of arm trajectory from a small
number of neuron activities
in the primary motor cortex.
Neurosci. Res. 55, 146–153. doi:
10.1016/j.neures.2006.02.012

Lebedev, M. A., and Nicolelis, M.
A. (2006) Brain-machine inter-
faces: past, present and future.
Trends Neurosci. 29, 536–546. doi:
10.1016/j.tins.2006.07.004

Mannard, A., and Stein, R. (1973).
Determination of the frequency
response of isometric soleus muscle
in the cat using random nerve stim-
ulation. J. Physiol. 229, 275–296.

Morishige, K., Kawawaki, D., Yoshioka,
T., Sato, M. A., and Kawato, M.
(2009). “Artifact removal using
simultaneous current estimation
of noise and cortical sources,”
in Lecture Notes in Computer
Science: ICONIP 2008 (Berlin:
Springer-Verlag), 335–342.

Moritz, C. T., Perlutter, S. I., and
Fetz, E. E. (2008). Direct control
of paralyzed muscles by cortical
neurons. Nature 456, 639–642. doi:
10.1038/nature07418

Morrow, M. M., and Miller, L.
E. (2003) Prediction of mus-
cle activity by populations
of sequentially recorded pri-
mary motor cortex neurons.
J. Neurophysiol. 89, 2279–2288. doi:
10.1152/jn.00632.2002

Frontiers in Neuroscience | Neuroprosthetics October 2013 | Volume 7 | Article 190 | 10

http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


Choi Reconstructing joint angles from EEG

Neal, R. M. (1996). Bayesian Learning
for Neural Networks. New York, NY:
Springer. doi: 10.1007/978-1-4612-
0745-0

Nicolelis, M. A. L., Ghazanfar, A. A.,
Stambaugh, C. R., Oliveira, L. M.
O., Laubach, M., Chapin, J. K., et al.
(1998). Simultaneous encoding of
tactile information by three pri-
mary cortical area. Nat. Neurosci. 1,
621–630. doi: 10.1038/2855

Ochiai, K., and Usui, S. (1993).
Improved kick out learning
algorithm with delta-bar-
delta-bar rule. IEEE Int. Conf.
Neural Netw. 1, 269–274. doi:
10.1109/ICNN.1993.298568

Ramoser, H., Muller-Gerking, J., and
Pfurtscheller, G. (2000). Optimal
spatial filtering of single trial EEG
during imagined hand move-
ment. IEEE Trans. Rehabil. Eng. 8,
441–446. doi: 10.1109/86.895946

Rumelhart, D., Hinton, G., and
Williams, R. (1986) Learning rep-
resentations by back-propagation
errors. Nature 323, 533–536. doi:
10.1038/323533a0

Salakhutdinov, R., and Hinton, G.
(2009). Deep Boltzmann Machines.
NIPS Neural Information Processing
Systems. Vancouver, BC: MIT Press.

Salakhutdinov, R., and Hinton, G.
(2012). An efficient learning proce-
dure for deep Boltzmann machines.
Neural Comput. 24, 1967–2006. doi:
10.1162/NECO_a_00311

Sanchez, J. C., Gunduz, A., Carney,
P. R., and Principe, J. C. (2008)

Extraction and localization of
mesoscopic motor control signals
for human ECoG neuropros-
thetics. J. Neurosci. Methods 167,
63–81. doi: 10.1016/j.jneumeth.
2007.04.019

Sato, M. A. (2001). Online model selec-
tion based on the variational Bayes.
Neural Comput. 13, 1649–1681. doi:
10.1162/089976601750265045

Sato, M. A., Yoshioka, T., Kajihara,
S., Toyama, K., Goda, N., Doya,
K., et al. (2004). Hierarchical
Bayesian estimation for MEG
inverse problem. Neuroimage 23,
806–826. doi: 10.1016/
j.neuroimage.2004.06.037

Schalk, G., Kubanek, J., Miller, K.
J., Anderson, N. R., Leuthardt,
E. C., Ojemann, J. G., et al.
(2007) Decoding two-dimensional
movement trajectories using
electrocorticographic signals in
humans. J. Neural Eng. 4, 264–275.
doi: 10.1088/1741-2560/4/3/012

Serruya, M. D., Hatsopoulos, N. G.,
Paninski, L., Fellows, M. R., and
Donoghue, J. P. (2002). Instant neu-
ral control of a movement sig-
nal. Nature 416, 141–142. doi:
10.1038/416141a

Shoham, S., Paninski, L. M., Fellowss,
M. R., Hatsopoulos, N. G.,
Donoghue, J. P., and Normann,
R. A. (2005). Statistical encoding
model for a primary motor cortical
brain-machine interface. IEEE
Trans. Biomed. Eng. 52, 1312–1322.
doi: 10.1109/TBME.2005.847542

Talylor, D. M., Tillery, S. I., and
Schwartz, A. B. (2002). Direct cor-
tical control of 3D neuroprostheic
devices. Science 296, 1829–1832.
doi: 10.1126/science.1070291

Toda, A., Imamizu, H., Kawato, M., and
Sato, M. A. (2011). Reconstruction
of two-dimensional movement
trajectories from selected mag-
netoencephalography cortical
currents by combined sparse
Bayesian methods. Neuroimage 54,
892–905. doi: 10.1016/j.neuroi
mage.2010.09.057

Uechi, M., Naito, Y., Sato, M., and
Koike, Y. (2004). Stiffness teach-
ing and motion assist system
using functional electrical stim-
ulation and electromyogram
signals. J. Rob. Mechatron. 16,
446–455.

Wessberg, J., Stambaugh, C. R., Kralik,
J. D., Beck, P. D., and Laubach,
M. (2000). Real time prediction
of hand trajectory by ensembles
of cortical neurons in primates.
Nature 408, 361–365. doi: 10.1038/
35042582

Wolpaw, J. R., and McFarland, D.
J. (2004). Control of a two-
dimensional movement signal by
a noninvasive brain-computer
interface in humans. Proc. Natl.
Acad. Sci. U.S.A. 101, 17849–17854.
doi: 10.1073/pnas.0403504101

Wu, W., Gao, Y., Bienenstock, E.,
Donoghue, J. P., and Black,
M. J. (2006). Bayesian popula-
tion decoding of motor cortical

activity using a Kalman filter.
Neural Comput. 18, 80–118. doi:
10.1162/089976606774841585

Conflict of Interest Statement: The
author declares that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 18 June 2013; paper pend-
ing published: 14 August 2013; accepted:
03 October 2013; published online: 24
October 2013.
Citation: Choi K (2013) Reconstructing
for joint angles on the shoulder
and elbow from non-invasive elec-
troencephalographic signals through
electromyography. Front. Neurosci.
7:190. doi: 10.3389/fnins.2013.00190
This article was submitted to
Neuroprosthetics, a section of the
journal Frontiers in Neuroscience.
Copyright © 2013 Choi. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the orig-
inal author(s) or licensor are cred-
ited and that the original publication
in this journal is cited, in accordance
with accepted academic practice. No use,
distribution or reproduction is permit-
ted which does not comply with these
terms.

www.frontiersin.org October 2013 | Volume 7 | Article 190 | 11

http://dx.doi.org/10.3389/fnins.2013.00190
http://dx.doi.org/10.3389/fnins.2013.00190
http://dx.doi.org/10.3389/fnins.2013.00190
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroprosthetics/archive

	Reconstructing for joint angles on the shoulder and elbow from non-invasive electroencephalographic signals through electromyography
	Introduction
	Materials and Methods
	Experimental Task
	fMRI Experiment
	Estimation of Cortical Activities from EEG Signals
	Estimation of current variance

	EMG Signal Processing
	Kinematics
	Estimation of EMG Signals from Estimated Cortical Activities
	Modular Artificial Neural Network Model
	Analysis

	Results
	Estimation Result of Filtered EMG Signals from the Cortical Activities of the Primary Motor Cortex
	Estimation Result of Joint Angles from Filtered EMG Signals

	Discussion
	Why is it Important to Reconstruct EMG Signals from Brain Signals?
	Which Brain Part is Measured for Reconstructing EMG Signals?

	Limitations and Future Work
	References


