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Glucose sensing within autonomic neurocircuits is critical for the effective integration and
regulation of a variety of physiological homeostatic functions including the co-ordination
of vagally-mediated reflexes regulating gastrointestinal (Gl) functions. Glucose regulates
Gl functions via actions at multiple sites of action, from modulating the activity of enteric
neurons, endocrine cells, and glucose transporters within the intestine, to regulating the
activity and responsiveness of the peripheral terminals, cell bodies and central terminals
of vagal sensory neurons, to modifying both the activity and synaptic responsiveness of
central brainstem neurons. Unsurprisingly, significant impairment in Gl functions occurs
in pathophysiological states where glucose levels are dysregulated, such as diabetes. A
substantial obstacle to the development of new therapies to modify the disease, rather
than treat the symptoms, are the gaps in our understanding of the mechanisms by
which glucose modulates Gl functions, particularly vagally-mediated responses and a more
complete understanding of disease-related plasticity within these neurocircuits may open

new avenues and targets for research.
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VAGAL REFLEX CONTROL OF GASTROINTESTINAL
FUNCTIONS

Autonomic neurocircuits are vitally important in the integration
of homeostatic functions including the co-ordination of vago-
vagal reflexes regulating gastric motility and emptying, nutrient
absorption and satiety signaling. Data from several laboratories,
including our own, have demonstrated that a wide variety of
gastrointestinal (GI) neurohormones, and neurotransmitters act
both centrally and peripherally to modulate vagal neurocircuits
regulating GI functions (Dockray, 2004, 2009; Travagli et al.,
2006).

Sensory information (mechanical, chemical, osmotic) from
the GI tract is transduced and transmitted centrally via the affer-
ent vagus nerve, the cell bodies of which lie in the paired nodose
ganglia. While there does not appear to be strict somatotopic
organization of neurons within the nodose ganglia there is a trend
toward a rostro-caudal viscerotopy where neurons innervating
the esophagus are located rostrally while neurons innervating the
stomach are located more caudally (Zhuo et al., 1997). The cen-
tral terminals of these sensory neurons enter the brainstem via the
tractus solitarius (TS) and terminate on neurons of the nucleus
of the tractus solitarius (NTS) using predominantly glutamate
as a neurotransmitter (Andresen and Yang, 1990; Andresen and
Kunze, 1994; Baptista et al., 2005). Unlike the nodose ganglion,
neurons within the NTS are organized in a viscerotopic man-
ner; activation of gastric vagal afferents, for example, activates
neurons within the subnucleus gelatinosus of the NTS, while
the subnucleus centralis receives information relating to the sen-
sory control of swallowing (Altschuler et al., 1989, 1991; Barraco
et al., 1992; Broussard and Altschuler, 2000). NTS neurons are

heterogeneous with respect to their biophysical, neurochemical,
and pharmacological properties (Bailey et al., 2002, 2006; Baptista
et al., 2005; Browning et al., 2011) which contribute to their inte-
gration of this vast volume of sensory afferent information with
metabolic and hormonal signals as well as neural inputs from
brainstem and other CNS nuclei involved the regulation of auto-
nomic functions. Once assimilated and integrated, NTS neurons
relay this information to the adjacent dorsal motor nucleus of
the vagus (DMV) which contains the preganglionic parasympa-
thetic motoneurons which provide the output response back to
the upper GI tract via the efferent vagus nerve.

In contrast to neurons within the NTS, DMV neurons are
not organized viscerotopically but rather in columns or spindles
that span the entire rostro-caudal extent of the nucleus related
to each of the five subdiaphragmatic vagal branches that inner-
vate the viscera (Shapiro and Miselis, 1985; Jarvinen and Powley,
1999; Travagli et al., 2006). While DMV neurons are also het-
erogeneous with respect to their biophysical, neurochemical and
pharmacological properties (Fox and Powley, 1992; Browning
et al.,, 1999, 2005; Jarvinen and Powley, 1999; Martinez de la
Pena y Valenzuela et al., 2004; Babic et al., 2011), as pregan-
glionic parasympathetic neurons they are all a priori cholinergic
and activate postganglionic neurons within the target organ of
interest via release of acetylcholine to activate nicotinic receptors.
Postganglionic neurons within the upper GI tract form two dis-
tinct pathways to control gastric functions; an excitatory pathway
that increases gastric tone, motility, and secretion via activation
of muscarinic cholinergic receptors, and an inhibitory pathway
that decreases gastric functions via release of non-adrenergic
non-cholinergic (NANC) neurotransmitters, principally nitric
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oxide and vasoactive intestinal polypeptide. Gastric relaxation,
therefore, can be achieved by either inhibiting the tonically
active cholinergic pathway or by activating the inhibitory NANC
pathway (Travagli et al., 2000).

EFFECTS OF GLUCOSE ON GASTROINTESTINAL FUNCTIONS

Effective glucose sensing is critical for the efficient integration and
regulation of a wide variety of physiological functions including
the optimal regulation of glycemic levels. One of the most dra-
matic variations in physiological conditions occurs in response to
meal ingestion when blood glucose levels increase dramatically.
Glucose exerts profound vagally-mediated effects upon gastric
motility and emptying, in part to stabilize excessive fluctuations
in blood glucose levels following meal ingestion (MacGregor
et al., 1976; Horowitz and Fraser, 1994; Ferreira et al., 2001;
Rayner et al., 2001; Ishiguchi et al., 2002; Shi et al., 2003; Zhou
et al., 2008). An increase in gastric motility in response to hypo-
glycemia accelerates nutrient delivery to the intestine allowing
increased absorption and re-establishes plasma glucose levels
whereas a hyperglycemia-induced decrease in gastric motility
delays gastric emptying and reduces further glucose absorption
preventing potentially prolonged, and damaging, elevations in
glycemic levels.

Glucose is known to directly alter the activity of enteric ner-
vous system neurons; intraintestinal infusions of glucose not only
activates predominantly sensory neurons in the myenteric and
submucosal plexuses of the upper small intestine (Liu et al.,
1999; Sayegh et al., 2004; Vincent et al., 2011), it also appears
to modulate the response of enteric neurons to other GI neuro-
hormones such as cholecystokinin and serotonin (Roosen et al.,
2012). Glucose appears to decrease gastric motility and delays
gastric emptying primarily via indirect (paracrine) mechanisms
of action, however. Glucose within the lumen of the intestine
induces the release of neurohormones from enteroendocrine cells
including releasing 5-HT from enterochromaffin cells within the
proximal intestine as well as GLP-1 from L-cells in the distal intes-
tine. These released neurohormones activate receptors (5-HT3
and GLP-1 receptors, respectively) on peripheral GI vagal afferent
fiber terminals and the resulting excitatory signals are relayed cen-
trally (Raybould, 1998, 1999, 2002; Glatzle et al., 2002; Raybould
et al., 2003; Vincent et al., 2011). These sensory signals activate
second order neurons within the NTS and, following integration,
the subsequent vagal motor response induces gastric relaxation
and delayed emptying (Zittel et al., 1994; Ferreira et al., 2001;
Raybould et al., 2003; Zhou et al., 2008; Hayes et al., 2010; Vincent
etal., 2011).

The vagal efferent pathway responsible for this glucose-
induced gastric inhibition is somewhat controversial, however.
Studies in rats have demonstrated that, within the brainstem,
increasing extracellular glucose levels decreases gastric motility
via inhibition of the excitatory cholinergic pathway rather than
activation of the inhibitory NANC pathway (Ferreira et al., 2001;
Shi et al., 2005) whereas other studies have suggested that the gas-
tric relaxation induced following peripheral hyperglycemia was
abolished by nitric oxide and VIP antagonists, suggesting that
activation of the inhibitory NANC pathway was involved (Zhou
et al., 2008). While differences in experimental protocols may

account for some of these differences, it is unlikely to explain fully
such divergent results. It is possible that different vagal efferent
pathways are engaged by peripheral vs. central glucose, although
this remains to be elucidated.

EFFECTS OF GLUCOSE ON VAGAL AFFERENT NEURONS

Once absorbed, however, glucose enters the bloodstream from
where it continues to exert profound effects upon vagal neurocir-
cuits controlling GI functions. While glucose increases the firing
rate of vagal afferent fibers innervating the GI tract (Mei, 1978,
1985), it has also been known for some time that the responses
of vagal afferents to intra-intestinal glucose is modulated by
intravenous glucose (Mei, 1978) suggesting that circulating glu-
cose may also modulate the activity and responsiveness of vagal
Sensory neurons.

Despite being contained within the relatively tough capsule
of the nodose ganglion, vagal sensory neurons appear to be
accessible to circulating factors (Lacolley et al., 2006a,b). While
glucose is a universal fuel for neurons, some neurons possess
the additional ability of using variations in extracellular glu-
cose levels as a means of altering their excitability (Adachi et al.,
1995; Levin et al., 2001; Kang et al., 2006). A subpopulation
of vagal sensory neurons appears to display this sensitivity and
are either excited or inhibited by elevations in glucose lev-
els (Grabauskas et al., 2010). Further, the response to glucose
appears to be related to the visceral organ that the vagal sensory
neurons innervate; afferent neurons projecting to the stomach
are more likely to exhibit excitatory responses to elevations in
glucose levels while those that innervate the portal vein were
more likely to be inhibitory in response to an increase in glu-
cose, suggesting that the effects of glucose on vagal sensory
transmission are specialized relative to the visceral information
they transmit (Grabauskas et al., 2010). As with other neurons
excited by elevations in glucose levels, this activation appears
to involve the closure of an ATP-sensitive potassium channel
(Dunn-Meynell et al., 1998; Ferreira et al., 2001; Raupach and
Ballanyi, 2004; Balfour and Trapp, 2007; Grabauskas et al., 2010)
while inhibition of vagal sensory neurons by glucose appears to
involve an ATP-insensitive potassium channel although the ionic
current involved remains to be elucidated (Grabauskas et al.,
2010).

In addition to direct actions upon vagal afferent neurons,
glucose also exerts indirect actions via modulation of neurotrans-
mitter receptor density on the neuronal surface. In particular,
we have demonstrated recently that glucose induces trafficking
of 5-HT3 receptors in GI vagal afferent neurons; following an
increase in glucose levels, 5-HT3 receptors are trafficked to the
neuronal membrane (Babic et al., 2012). In contrast, a decrease
in glucose levels results in receptor internalization (Babic et al.,
2012). The functional consequence of this glucose-induced recep-
tor trafficking is an increase or decrease in the inward current
induced by 5-HT in response to an elevation or reduction of
extracellular glucose level (Babic et al., 2012). Importantly, this
glucose-induced modulation of 5-HT3 receptor function occurs
rapidly (within minutes) suggesting that, in addition to induc-
ing the release of 5-HT from enterochromaffin cells, glucose may
also increase the ability of GI vagal afferent neurons to respond
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to released 5-HT. In this regard, it is also notable that, follow-
ing the glucose-induced release of GI neurohormones and their
activation of vagal afferent terminals within the intestine, these
neurohormones also enter the circulation and gain access to
vagal afferent neurons; circulating levels of platelet free 5-HT
increase approximately 3-fold after meal ingestion (Houghton
et al., 2003). Thus, the glucose-induced modulation of 5-HT;
receptor density and function on vagal afferent neurons appears
to be a means by which sensory signaling from the GI tract can be
amplified or prolonged.

EFFECTS OF GLUCOSE ON CENTRAL VAGAL NEUROCIRCUITS

In addition to modulating the activity and functions of vagal sen-
sory neurons and peripheral terminals, glucose also modulates
the release of neurotransmitter from the central terminals of vagal
sensory neurons; increasing the extracellular glucose concen-
tration increased action potential-dependent and -independent
glutamate release onto second order NTS neurons, while decreas-
ing extracellular glucose levels inhibited glutamate release (Wan
and Browning, 2008a). Further studies demonstrated that, as
with vagal sensory somata, glucose induces the trafficking of
5-HT3 receptors to the membrane of vagal sensory nerve ter-
minals, the activation of which increases glutamate release (Wan
and Browning, 2008b). 5-HT3 receptors on vagal afferent termi-
nals appear to be activated tonically; in fact, the 5-HT3 receptor
antagonist, ondansetron, decreases action potential dependent
and independent synaptic transmission to second order NTS neu-
rons implying an ongoing activation of these receptors (Wan and
Browning, 2008b). The NTS receives a dense serotonergic input
from other brainstem nuclei, most prominently the medullary
raphe nuclei (Steinbusch, 1981; Steinbusch and Nieuwenhuys,
1981; Thor and Helke, 1989) although vagal afferent neurons
themselves contain 5-HT (Nosjean et al., 1990; Sykes et al,
1994).

Early studies using extracellular recording techniques showed
that glucose is able to modulate the activity of subpopulations of
neurons within the brainstem. Hepatic vagal afferent fibers that
showed a decrease in activity in response to increased glucose
exposure, for example, innervate NTS neurons that are also inhib-
ited by local application of glucose (Adachi et al., 1984). Other
NTS neurons, in contrast, increased their activity in response
to elevated glucose levels (Adachi et al., 1995; Yettefti et al,
1995, 1997; Dallaporta et al., 2000); as described earlier for vagal
sensory neurons, as well as for other glucose-sensitive central
neurons (Dunn-Meynell et al., 1998; Levin et al., 2001), this
increase in neuronal activity in response to increased extracellular
glucose levels appear to involve ATP-sensitive potassium channels
(Dallaporta et al., 2000; Balfour et al., 2006; Balfour and Trapp,
2007). The mechanism responsible for glucose-induced neuronal
inhibition awaits further study, although modulation of chloride
conductances may be involved (Balfour and Trapp, 2007).

The ability of glucose to modulate the activity of DMV
neurons is more controversial, however. An earlier study
using extracellular recording techniques suggested that a small
subpopulation of DMV neurons that project via the ventral,
or anterior, gastric branch increased or decreased their activ-
ity in response to topical glucose administration (Kobashi and

Adachi, 1994; Adachi et al., 1995). Other studies using whole
cell patch clamp recording techniques confirmed the presence
of ATP-sensitive potassium channels on DMV neurons (Trapp
et al.,, 1994; Karschin et al., 1998; Ferreira et al., 2001; Kulik et al.,
2002; Raupach and Ballanyi, 2004; Balfour et al., 2006; Balfour
and Trapp, 2007; Blake and Smith, 2012) suggesting their activ-
ity may be modulated by extracellular glucose levels. In contrast,
later studies failed to observe any direct effects of glucose on DMV
neuronal activity but, rather, demonstrated indirect effects via
modulation of synaptic inputs presumably from NTS neurons
(Ferreira et al., 2001). In part, these studies highlight the potential
difficulties in separating direct from indirect effects when record-
ing from neurons in brain slice preparations and the additional
care required when examining ATP-sensitive potassium channels
in neurons (to prevent unintentional channel closure via ATP
supplied in the intracellular patch pipette solution).

One important caveat to the studies investigating the role of
glucose within the brainstem is the concentration or dose of
extracellular glucose used in most studies, which almost cer-
tainly exceeds physiological levels. Extracellular glucose levels
in most CNS regions are assumed to be 15-20% of periph-
eral levels; hypothalamic glucose levels certainly vary in concert
with blood glucose levels, but they do so within a very nar-
row range (~0.25-1.0 mM; Dunn-Meynell et al., 2009) although
other studies have measured cortical glucose levels between 0.2
and 4.5 mM (Silver and Erecinska, 1994). It should be borne in
mind, however, that brainstem vagal neurons may be exposed to
higher glucose levels than many other central nuclei since they
are essentially circumventricular organs with a leaky blood-brain
barrier and fenestrated capillaries (Cottrell and Ferguson, 2004).
Regardless, our laboratory has demonstrated recently that, even at
similarly low (0.5-5 mM, presumably more physiological) levels,
glucose modulates glutamate release from the central terminals of
vagal afferent neurons onto second order NTS neurons (Figure 1;
Browning, unpublished data). This would suggest that the cen-
tral terminals of some GI vagal sensory neurons may function
as glucose sensors, in the sense that extracellular glucose levels
regulate neurotransmitter release in a linear fashion across both
physiological and pathophysiological ranges (Wan and Browning,
2008a).

ALTERATIONS IN ACTIONS OF GLUCOSE ON VAGALLY-
MEDIATED GASTROINTESTINAL REFLEXES DURING
PATHOPHYSIOLOGICAL STATES

As described earlier, GI functions including gastric motility and
emptying are modulated by physiological alterations in blood
glucose levels (Rayner et al., 2001). It is hardly surprising, there-
fore, that pathophysiological alterations in glucose levels result in
profound disruption of GI functions. Although gastric hyperac-
tivity has been observed in some rodent models of hyperglycemia
and is experienced by some patients with diabetes, a signifi-
cant proportion of animal models as well as patients exhibit
diabetic gastroparesis, defined as delayed gastric emptying accom-
panied by other upper GI symptoms such as early satiety, fullness,
abdominal pain, bloating, and nausea (Horowitz et al., 2002;
Chaikomin et al., 2006). The severity of diabetic gastropare-
sis can vary widely from symptoms of mild discomfort up to
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FIGURE 1 | Physiological extracellular glucose levels modulate
glutamate release from the central terminals of vagal afferent neurons,
an effect that is lost in diabetes. (A) Previously, we demonstrated that
glucose acted presynaptically to increase the release of glutamate from the
central terminals of vagal afferents (Wan and Browning, 2008b). To determine
whether the release of glutamate is modulated by more physiological levels
of glucose, whole cell patch clamp recordings were made from 27 neurons of
the NTS subnucleus centralis (cNTS); neurons were voltage clamped

at —60 mV and the effects of exposure to different physiological
concentrations of extracellular glucose on spontaneous excitatory
postsynaptic currents (SEPSCs) were recorded. A neuron was considered
responsive if glucose altered either frequency or amplitude of sEPSCs by at
least 20%. The proportion of neurons responding to a decrease in
extracellular glucose concentration with a decrease in sEPSC frequency were
as follows: from 2.5 to 0.5 mM, 4/6 neurons responded; from 0.5 to
0.75mM, 6/7 neurons responded; from 2.5 to 1 mM, 5/6 neurons responded;
from 2.5 to 1.25 mM, 4/6 neurons responded. In contrast, increasing
extracellular glucose concentration from 2.5 to 5mM increased sEPSC
frequency in 6/7 neurons tested. Even within this narrow, presumably more
physiological, range of glucose concentrations (0.5-56 mM), the frequency, but
not amplitude, of sSEPSCs was modulated by extracellular glucose
concentration. (B) Summary graphics illustrating the relationship between
extracellular glucose level and frequency of SEPSCs in cNTS neurons in rats.
When expressed both as absolute frequency (pulse per second; p.p.ps; left)
and as a percentage of sEPSC frequency at control glucose level (2.5 mM;
right), the frequency of sSEPSCs was dependent upon extracellular glucose
concentration in a linear manner. *P < 0.05 vs. 2.6 mM glucose. These
results suggest that the ability of glucose to modulate glutamate release
from the central terminals of vagal afferents occurs across a wide range of
conditions both physiological, as well as pathophysiological. The rapid
alteration in glutamate transmission in response to extracellular glucose
levels further suggests that glucose may set a background “tone” or ongoing
level of transmission from the central terminals of gastrointestinal vagal
afferents that can be up- or down-regulated in an ongoing, and rapidly
reversible, manner. (C) To determine whether the sensitivity of vagal afferent
terminals to glucose (Wan and Browning, 2008b) is (a) also present in the

sEPSC amplitude (pA)

[glucose] mM

mouse and (b) altered during pathophysiological conditions such as diabetes,
whole cell patch clamp recordings were made from NTS subnucleus centralis
(cNTS) neurons (n = 9) in control (C57/BI6) mice as well as from neurons

(n = 8) in a mouse model of spontaneously developing Type 1 diabetes
(Ins2Akita mice). As in the rat, the frequency of sSEPSCs in cNTS neurons was
dependent upon the extracellular glucose level in C57/BI6 mice (left). In
detail, in 5/6 neurons tested, decreasing the extracellular glucose
concentration from 5 to 2.5 mM decreased sEPSC frequency; in contrast, in
6/7 neurons tested, increasing the extracellular glucose concentration from 5
to 10 mM increased sEPSC frequency. In no instance was any effect on
sEPCS amplitude observed (113 + 10% of control amplitude in 2.6 mM
glucose and 100 + 6% of control amplitude in 10 MM glucose; P > 0.05 in
each case). In contrast, the ability of glucose to modulate the frequency of
sEPSCs was lost in neurons from Ins2Akita mice (right). In detail, 4/5 neurons
tested, decreasing the extracellular glucose concentration from 5 to 2.5mM
had no effect on sEPSC frequency while increasing extracellular glucose
concentration from 5 to 10 mM had no effect on sEPSC frequency in any of
the 5 neurons tested. (D) Computer generated graphics from the same
control C57/BI6 neuron as above showing that glucose increases the
frequency (left) but not amplitude (right) of SEPSCs suggesting that, as in the
rat, glucose acts at presynaptic sites to modulate glutamate release. (E)
Summary graphic illustrating the relationship between extracellular glucose
level and frequency of SEPSCs in cNTS neurons from control C57/BI6 and
diabetic Ins2Akita mice. When expressed a percentage of frequency at
control glucose level (5 mM glucose), the ability of glucose to modulate the
frequency of SEPSCs was lost in diabetes. *P < 0.05 vs. control frequency.
These results suggest that the ability of glucose to modulate glutamatergic
transmission from the central terminals of vagal afferents may be a more
generalized phenomenon that occurs across species. The results further
suggest that the glucose-dependent modulation of central vagal neurocircuits
is compromised by chronic hyperglycemia. The timing of this loss in
responsiveness, as well as its cause-or-effect response to the development
of diabetes, may provide valuable insights into the effects of acute vs. chronic
hyperglycemia on autonomic neurocircuitry and the consequence effects on
gastrointestinal homeostatic regulation including the gastric dysmotility and
delayed gastric emptying observed during hyperglycemia/diabetes.
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impaired glycemic control, electrolyte imbalance, and malnutri-
tion (Horowitz et al., 2002; Chaikomin et al., 2006). Despite the
considerable healthcare and social costs associated with this dis-
ease, the pathophysiology of diabetic gastroparesis remains to be
elucidated fully. That both Type 1 and Type 2 diabetic patients
experience gastroparesis symptoms suggests that hyperglycemia,
or dysregulated glycemic control per se, may play an important
role in symptom development, although insulin itself certainly
modulates the activity of central vagal motoneurons (Blake and
Smith, 2012) and induces vagally-mediated increases in gastric
motility (Krowicki et al., 1998).

The GI dysfunctions induced by either Type 1 or Type 2 dia-
betes may occur through actions at multiple sites (Figure 2). A
loss of enteric neurons neurons, particularly inhibitory neurons
(nitric oxide synthase-, vasoactive intestinal peptide-, neuropep-
tide Y- and galanin-immunoreactive) has been reported in rodent
models of both Type 1 and Type 2 diabetes during the early stages
of the disease [reviewed in Chandrasekharan and Srinivasan

(2007)] which may contribute to the observed disordered motil-
ity patterns and decreased NANC-dependent muscle relaxations
(Jenkinson and Reid, 2000; Yoneda et al., 2001; Demedts et al.,
2013). Loss of Inhibitory Cells of Cajal (ICC) has also been
reported in both Type 1 and Type 2 diabetes (Ordog et al., 2000;
He et al., 2001; Iwasaki et al., 2006; Forrest et al., 2008; Wang
et al., 2009; Grover et al., 2011) suggesting this may be another
important means by which persistant hyperglycemia dysregulates
GI motility although reduced levels of insulin and insulin signal-
ing, rather than hyperglycemia per se, has also been shown to be
involved in ICC depletion (Horvath et al., 2005).

Glucose sensing within enteroendocrine cells is also disrupted
in diabetes (Lee et al., 2012) as are both the basal expression and
function of intestinal sodium-glucose transporters (Bihler and
Freund, 1975; Morton and Hanson, 1984; Dyer et al., 2002; Bhutta
et al., 2013) suggesting that the increased absorption of glucose
further amplifies the disrupted and dysregulated responses of
GI neurocircuits to glucose. It is hardly surprising, therefore,
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FIGURE 2 | Schematic representation of the effects of glucose
on vago-vagal reflex control of the stomach. Glucose within the
intestine induces the release of serotonin from enteroendocrine
(EC) cells (Zhu et al, 2001; Freeman et al, 2006). The released
5-HT acts upon 5-HT3 receptors present on the peripheral
terminals of vagal afferent neurons to cause their excitation
(Hillsley et al., 1998; Raybould et al., 2003; Grundy, 2006); this
peripheral signal is relayed centrally via the afferent vagus nerve.
Once absorbed into the circulation, glucose is also able to act
directly upon vagal afferent neurons within the nodose ganglion.
Glucose induces neuronal excitation via actions upon ATP-sensitive
potassium channels (KATP channels; Grabauskas et al., 2010) as
well as causing neuronal inhibition via an as yet unidentified
mechanism (Grabauskas et al., 2010). Glucose also rapidly and
reversibly traffics 5-HT3 receptors to and from the membrane of
gastrointestinal vagal afferent neurons (Babic et al., 2012). Since
circulating platelet-free 5-HT levels increase following ingestion of a
meal (Houghton et al., 2003), this provides a means by which
glucose is able to modulate its own “perception” and amplify or
prolong vagal afferent signaling. The central terminals of vagal

EC Luminal
G —5HT «— Eo e e

afferent neurons enter the brainstem via the tractus solitarius and
terminate on NTS neurons using predominantly glutamate as a
neurotransmitter (Andresen and Yang, 1990; Andresen and Kunze,
1994). Glucose is also able to modulate the release of glutamate
from the central terminals of vagal afferents by actions that
involve 5-HT3 receptors (Wan and Browning, 2008a,b). Glucose can
also activate NTS neurons via actions on KATP channels and
increase synaptic transmission to gastric-projecting DMV neurons
(Adachi et al, 1984, 1995; Ferreira et al., 2001). Glucose can
also modulate the activity of DMV neurons directly (Trapp et al,
1994; Karschin et al., 1998; Balfour et al., 2006; Balfour and
Trapp, 2007). The result of these central and peripheral actions of
glucose is gastric relaxation and delayed gastric emptying (Schvarcz
et al., 1997, Raymer et al, 2000; Rayner et al, 2001). The vagal
efferent pathway involved in this gastric relaxation and delayed
gastric emptying is still controversial. Peripheral actions of glucose
appear to involve activation of a non-adrenergic, non-cholinergic
pathway (Zhou et al., 2008) whereas central glucose appears to
involve inhibition of the tonically active cholinergic pathway (Ferreira
et al, 2001; Shi et al, 2003, 2005).
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that altered vagal sensory and motor fiber functions have been
reported in both humans (Tougas et al., 1992) and rodent mod-
els of diabetes (Yagihashi and Sima, 1986; Lee et al., 2001, 2012;
Regalia et al., 2002). While frank autonomic neuropathy almost
certainly contributes to the altered vagal sensory and motor
functions observed in chronic diabetes, the actions of acute
hyperglycemia to modulate vagal afferent and efferent functions
(MacGregor et al., 1976; Shi et al., 2003; Takahashi et al., 2003;
Zhou et al., 2008) suggests that poor glycemic control per se also
negatively impacts vagal reflex functions.

While diabetes is most often considered a peripheral metabolic
disease, an increasing body of evidence indicates a significant
involvement of the central nervous system, including vagal neuro-
circuits within the hindbrain, in its development and functional
outcomes. In a mouse model of spontaneously developing Type 1
diabetes, the Ins2(Akita) mouse, the ability of glucose to modu-
late synaptic transmission to second order NTS neurons is lost
(see Figures 1C,D; Browning, unpublished data) suggesting an
impairment of glucose sensitivity within vagal sensory neuro-
circuits. Recent studies have demonstrated that even short time
periods of glycemic dysregulation result in significant modulation
of synaptic transmission within vagal neurocircuits (Zsombok
et al.,, 2011). This would suggest that the vagal control of GI
functions may by disrupted even in the early stages of glycemic
dysregulation, rather than as a consequence of autonomic neu-
ropathy. In this regard, preliminary evidence that even short
periods of exposure to a high fat diet disrupts the glucose-induced
trafficking of 5-HT3 receptors on GI vagal sensory neurons,
well in advance of the development of obesity or hyperglycemia
(Troy and Browning, 2013), raises the possibility that altered glu-
cose signaling within vagal neurocircuits may precede, and even
contribute to, disease development.

FUTURE DIRECTIONS

Glucose sensing within autonomic neurocircuits is critical for
the effective integration and regulation of a variety of physio-
logical homeostatic functions involved in the optimal regulation
of blood glucose levels, including the co-ordination of vagally-
mediated reflexes regulating GI functions (e.g., gastric motility
and emptying, nutrient absorption and satiety signaling). Glucose
regulates GI functions via actions at multiple sites of action, from
modulating the activity of enteric neurons, endocrine cells and
glucose transporters within the intestine, to regulating the activ-
ity and responsiveness of the peripheral terminals, cell bodies
and central terminals of vagal sensory neurons, to modifying
both the activity and synaptic responsiveness of NTS and DMV
neurons. Unsurprisingly, significant impairment in GI functions
results occurs in pathophysiological states where glucose levels
are dysregulated, such as diabetes. A substantial obstacle to the
development of new therapies to modify the disease, rather than
treat the symptoms, are the gaps in our understanding of the
mechanisms by which glucose modulates GI functions, particu-
larly vagally-mediated responses. Vagal afferent and efferent fibers
represent a much more readily available target for new therapies
and a more complete understanding of disease-related plasticity
within these neurocircuits may open new avenues and targets for
research.

It will be of particular interest to elucidate the reversibility
of hyperglycemia- and diabetes-induced vagal dysregulation—is
there a period of exposure to hyperglycemia beyond which vagal
neural damage is irreversible or is the neurocircuitry sufficiently
plastic to recover with subsequent tight glycemic control? In this
regard, the recent demonstration that the diet-induced obesity
associated decrease in excitability and responsiveness of vagal
motoneurons is reversed completely by Roux-en-Y gastric bypass
surgery (Browning et al., 2013) suggests that vagal neurocir-
cuits remain open to adaptation and that long-term dysregulation
of their activity does not necessarily result in permanent and
irrecoverable damage. The rapid remission of Type 2 diabetes
following bariatric surgery, far in advance of weight loss, raises
questions as to its mechanism of action and the degree to which
recovery of glycemic regulation is related to the recovery of vagal
afferent and efferent homeostatic control.
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