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1. INTRODUCTION

For successfully interacting with the environment in daily tasks,
it is crucial to quickly react to ubiquitous dynamic stimuli.
However, reaction time of state-of-the-art robotic platforms is
limited by the low temporal resolution of sensory data acqui-
sition and by the time required to process the corresponding
sensory data.

In conventional robotic systems, sensory information is avail-
able in a sequence of “snapshots” taken at regular intervals. Highly
redundant data are received at fixed frame-rate. High dynamics
can be sensed only by increasing the sampling rate, at the cost
of increasing the quantity of data that needs to be transmitted,
stored and processed.

Additionally, the available bandwidth limits the amount of
information that can be transmitted, and the available comput-
ing platforms limit the speed at which data can be processed,
forcing a compromise between resolution and speed. As a result,
current robotic systems are less efficient in reacting appropriately
to unexpected, dynamic events (Delbruck, 2008). For example,
in robotic soccer competitions (e.g., Robocup, 2011), the perfor-
mance strongly depends on the latencies in the perception loop,
where the robot has to detect, track and predict the trajectory
of the ball, to plan where and when it should be catched. For
the same reason, in manipulation tasks, unexpected failures of the
grasping are difficult to correct online, resulting in the fall of the
object to be grasped. On the contrary, robotic systems equipped
with vision neuromorphic chips show remarkable performance in
tracking (Serrano-Gotarredona et al., 2009), ball goalkeeping and
pencil balancing (Conradt et al., 2009).

Differently from main-stream state-of-the art vision systems
that repeatedly sample the visual input, event-driven vision
(Camunas-Mesa et al., 2012; Wiesmann et al., 2012) samples
changes in the visual input, being driven by the stimuli, rather
than by an external clock. As such, event-driven systems are inher-
ently more efficient because they acquire, transmit and perform
computation only when and where a change in the input has
been detected, removing redundancies at the lowest possible level.

Fast reaction to sudden and potentially interesting stimuli is a crucial feature for safe and
reliable interaction with the environment. Here we present a biologically inspired attention
system developed for the humanoid robot iCub. It is based on input from unconventional
event-driven vision sensors and an efficient computational method. The resulting system
shows low-latency and fast determination of the location of the focus of attention. The
performance is benchmarked against an instance of the state of the art in robotics artificial
attention system used in robotics. Results show that the proposed system is two orders
of magnitude faster that the benchmark in selecting a new stimulus to attend.
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Selective attention is a key component of artificial sensory sys-
tems; in robotics, it is the basis for object segmentation (Qiaorong
et al., 2009), recognition (Miau et al., 2001; Walther et al., 2005)
and tracking (Ouerhani et al., 2005), for scene understanding
and action selection for visual tracking and object manipulation.
It is also used in navigation, for self-localization and simulta-
neous localization and mapping (SLAM) (Frintrop and Jensfelt,
2008). Moreover, the implementation of biologically inspired
models of attention is helpful in robots that interact with human
beings. Engaging attention on similar objects can be the basis for
a common understanding of the environment, of shared goals
and hence of successful cooperation. State-of-the art artificial
attention systems, based on traditional video acquisition, suffer
from the high computational load needed to process each frame.
Extreme computational demand limits the speed of the selection
of new salient stimuli and therefore the dynamics of the attention
scan path. Specific implementations of such models have been
explicitly developed for real-time applications, exploiting either
parallelization on several CPUs (Itti, 2002; Siagian et al., 2011)
or dedicated hardware (Ouerhani and Hiigli, 2003), or the opti-
mization and simplification of the algorithms (Itti et al., 1998;
Frintrop et al., 2007) for the extraction of features from images,
or combination of them (Bumhwi et al., 2011).

An alternative approach is the implementation of simplified
models of attention systems based on frame-less event-driven
neuromorphic vision sensors, so far realized with the design of
ad hoc dedicated hardware devices (Bartolozzi and Indiveri, 2009;
Sonnleithner and Indiveri, 2012).

Along this line of research, we developed an event-driven,
attention system capable of selecting interesting regions of the
visual input with a very short latency. The proposed system
exploits low latency, high temporal resolution and data compres-
sion given by event-driven dynamic vision sensors, as well as an
efficient strategy for the computation of the attention model that
directly uses the output spikes from the sensors. The proposed
implementation is therefore fully “event-driven”, exploiting the
advantages offered by neuromorphic sensors at its maximum.
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Intermediate hybrid approaches can be implemented by recon-
structing frames from the events and applying the vast collection
of available standard machine vision algorithms. However, this
approach would suffer from errors in the frame reconstruction
due to drifts in the gray level calculation, it would increase the
latency of the response and loose the temporal resolution gained
by the use of event-driven sensors, hindering the full exploitation
of the neuromorphic approach advantages.

The output of the Event-Driven Visual Attention (EVA) system
has been implemented for the humanoid robot iCub which will
therefore be able to quickly orient its gaze, scrutinize and act on
the selected region and react to unexpected, dynamical events.
Additionally, it can be of generic interest for robotics systems with
fast actuation.

In the following, we will describe EVA, show the improved
latency in the selection of salient stimulus and compare its
performance with the well-known state-of-the art frame-based
selective attention system from the iLab Neuromorphic Vision
C++ Toolkit (iNVT),! developed at the University of Southern
California.

2. METHODS

The selective attention system described in this work has been
developed on the iCub humanoid robot (www.icub.org) and is
entirely based on the input from non-standard sensors. Such
sensors use a new way of encoding information based on a
custom asynchronous communication protocol Address Event
Representation (AER). In the following we shortly describe the
custom hardware and software modules developed for the atten-
tion system implementation.

2.1. HARDWARE

The robot is equipped with two asynchronous bio-inspired
Dynamic Vision Sensors (DVS) (Lichtsteiner et al., 2008). It fea-
tures three degrees of freedom in the eyes to realize the tilt,
vergence and version movements required for the implementa-
tion of active vision. As opposed to the traditional “frame-based”
approach, in the DVS each pixel responds to local variations
of contrast. It emits an asynchronous digital pulse (“spike” or
“event”) when the change of the logarithm of light intensity
exceeds a pre-defined threshold. This bio-inspired sensory trans-
duction method is inherently efficient, as it discards redundancies
at the lowest level, reducing the data acquisition, transfer, storage
and processing needs. This technique preserves the high dynamic
content of the visual scene with a temporal granularity of few
hundreds of nanoseconds.

The visual system is entirely based on the AER protocol (Deiss
et al., 1998). The sensors asynchronously send digital spikes or
“events” that signal a relative contrast change in the pixel. The
address transmitted with the event corresponds to the identity of
the active pixel. Information is self encoded in the timings of the
spikes.

A dedicated printed circuit board located in the head of
the robot hosts a Field Programmable Gate Array (FPGA) and
an embedded processor specialized for asynchronous data, the

Thttp://ilab.usc.edu/toolkit/home.shtml

General Address Event Processor (GAEP) (Hofstaetter et al.,
2010). The FPGA merges the data streams from left and right
camera sensors and interfaces them with the GAEP. The GAEP
provides effective data processing, protocol verification and accu-
rate time-stamping of the events, with a temporal resolution of
160 ns. Processed events are connected to the rest of the sys-
tem thanks to an USB connection to a PC104 embedded CPU.
The PC104 gathers the data and passes them to the processing
infrastructure of the iCub (Metta et al., 2006).

2.2. SOFTWARE

An application running on the embedded PC104 configures the
sensors in the preferred operating state. The same software mod-
ule reads the data through the USB port, checking for protocol
errors and formatting the stream of asynchronous events. Each
address event (AE) is composed of the emitting pixel address and
the corresponding time-stamp. The application sends the received
collection of events on the gigabit network where distributed pro-
cessing takes advantage from middleware YARP? library. From
this point, any process connected to the network can acquire data
and perform computation. There is no limit in the number of
nodes that can be recruited for processing events.

Finally, specific classes are used to efficiently transmit and
(un)mask the AER stream into a dedicated format. The AE format
consists in: address event, polarity, timestamp and type. The struc-
ture transparently manages events from the DVS sensor, as well as
generic events such as complex objects deriving from clustering
and feature extraction (Wiesmann et al., 2012).

Buffers of asynchronous data are handled with a two-threads
method. N-buffering is used to guarantee concurrent access to
data in process, thus avoiding conflicts and allowing each mod-
ule to run at the desired rate irrespective of the incoming flow of
event. Examples of developed modules are used to: display DVS
activity, generate feature maps, perform weighted combination of
multiple feature maps.

2.3. EVENT DRIVEN VISUAL ATTENTION—EVA

EVA is an event-driven reduced implementation of the saliency-
map based attention model proposed by Koch and Ullman (1985)
and Itti and Koch (2001). In this foundational work, the authors
propose a biophysically plausible model of bottom—up attention
where multiple feature maps concur to form a unique saliency
map used to compute the location of the focus of attention. Each
feature map encodes for a characteristic of the visual input such as
color opponency, orientation, contrast, flicker, motion, etc. com-
puted at different spatial scales. These maps are then normalized
and summed together to form the final saliency map. The saliency
map topologically encodes for local scene conspicuity, irrespec-
tive of the feature dimension that has contributed to its salience.
That is, an active location in the saliency map encodes the fact
that this location is salient, no matter whether it corresponds to a
45° oriented object in a field of prevalent orientation of 90°, or to
a stimulus moving in a static background. Eventually, a winner-
take-all (WTA) network selects regions in the map in order of
decreasing saliency, and guides the deployment of the focus of

2Yet Another Robotic platform.
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attention and gaze. In EVA, events from the visual sensor con-
cur to generate a number of feature maps. Figure 1 shows the
model and the distribution of the diverse computing modules
on the hardware platform described in paragraph 2.1. Once col-
lected by the dedicated hardware, the sensor’s events are sent to
software modules that extract diverse visual features. The corre-
sponding feature maps are then normalized and summed. The
resulting saliency map is then transmitted to a WTA network that
generates the attentional shifts.

2.3.1. Feature extraction

In EVA a number of features are extracted from the DVS output
to populate diverse feature maps. As the DVS does not convey
information about color or absolute intensity, we implemented
a subset of feature maps from Itti and Koch (2001): contrast,
orientation (0°, 45°, 90°, —45°) and flicker map. Specifically,
the flicker map encodes for the scene temporal changes and
in EVA it is implemented by directly using the sensor’s
output. Contrast and orientation feature maps are generated by
the output of filters inspired by receptive fields of center-surround
retinal ganglion cells and simple cells of primary visual cor-
tex (Hubel and Wiesel, 1962; Movshon et al., 1978; De Valois
et al., 1982; Kandel et al., 2000), respectively. Receptive field
activation is usually obtained by convolving the image with

DOG (Difference of Gaussians) and Gabor filters, respectively.
On the contrary, EVA uses a much simpler and efficient imple-
mentation: the mapping. In the mapping, a RF is defined as a
look-up table. The level of activation of the RF increases when
it receives ON-spikes from the DVS pixel located in the ON-
region of the RF and OFF-spikes in the OFF-region. If the neuron
does not receive any spike over time, the activation decreases.
When the neuron activation crosses a threshold, it generates a
new event in the corresponding location of the feature map.
Figures 2A,B show two center-surround RFs. Each RF has a
defined location in the visual space and a specific size. The algo-
rithms below explain the procedure that generates the response
of the RE

The visual field is covered with RFs following a multiscale
approach. In the current implementation, we use two different
scales with 4 x 4 and 8 x 8 pixels receptive fields. Figures 2C,D
show the RFs of oriented cells with different sizes. Sub-regions
contribute to facilitation for aligned RFs: spikes from the visual
field contributing to the activation of the RF at the border of the
elongated central region (in green) contribute to the activation of
neighboring RFs aligned along the same orientation. This feature
enhances the representation of long oriented edges (Ferster and
Koch, 1987) by reinforcing the activity of RFs responding to the
same oriented edge.

iHead PC104

DVS

FPGA

=T j

». Device Driver

DVS

GAEP AexGrabber

FIGURE 1 | Structure of EVA and its implementation on the diverse HW
modules: the DVS cameras send asynchronous events, the FPGA
merges left and right DVS events, the GAEP assigns a timestamp to
each event. The resulting list of addresses and timestamps is sent to the
PC104 that makes them available to the YARP network through the
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AexGrabber module. From then on, any SW module can acquire the events
buffer and perform a specific computation (feature extraction, normalization,
linear weighted sum, and WTA selection). A dedicated connection between
the feature extracting modules and the Event-Selective-Attention module
avoids interferences between feature maps and other trains of events.
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A B C D
FIGURE 2 | Receptive fields of cells used for the mapping 8x 8 cell. ON- and OFFregions in orange and white, respectively.
procedure: center-surround cells. (A) Four 4 x4 cells, (B) one In green, the pixels that contribute to the activity of neighboring
8 x 8 cell. Simple oriented cells: (C) two 4 x4 cells, (D) one cells.

Data: bRE: buffer of retina events, featMap: mapping related
to the feature map

Result: bFE: buffer of feature-maps events

¢ = constant;

foreach event € bRE do

mapEvent = map(event, featMap);

RF = belong(mapEvent);

updateActivation(RF);

if affectNeighbor(mapEvent) then

RFNeighbor = lateralConnection(mapEvent);

updateActivation(RFNeighbor);

if RFNeighbor.activation > positiveThreshold then
featureEvent =

end generateFeatureEvent(RFNeighbor);
featureEvent.polarity = positive;

end

if RF.activation < negativeThreshold then
featureEvent = generateFeatureEvent(RF);
featureEvent.polarity = negative;

end

end

if RF.activation > positiveThreshold then
featureEvent = generateFeatureEvent(RF);
featureEvent.polarity = positive;

end

if RF.activation < negativeThreshold then
featureEvent = generateFeatureEvent(RF);
featureEvent.polarity = negative;

end

Data: RF: receptive field; r : event
Result: update of the activation of RF
if REtype == ON then

end

if r.polarity == ON then

if r € RF.center then
‘ REF.response := RF.response + c;
end
else
‘ REF.response := RF.response — c;
end
end
else
if r € RF.center then
‘ REF.response := RF.response — c;
end
else
‘ REF.response := RF.response 4+ c;
end
end
end
else

if r.polarity == ON then

if r € RF.center then

‘ RF.response := RF.response + c;
end
else

‘ REF.response := RF.response — c;
end

if r € RF.center then

‘ RF.response := RF.response — c;
end
else

‘ REF.response := RF.response + c;
end

end
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The mapping is less computationally demanding than a tra-
ditional convolution operation. Additionally, with this approach,
the feature maps are only updated at the arrival of a new spike,
without calculation of the RF activation for the complete image
at each time step. To further reduce the computational load,
we implemented non-overlapping receptive fields, at the cost of
reducing the output resolution. However, in EVA the final goal
is to obtain short latency in relation to saliency map resolution
that guarantees reliable gaze shift. As a result the selected region
is focused in the sensor’s fovea for detailed inspection.

2.3.2. Saliency map and attention selection

The final saliency map is obtained through weighted linear com-
bination of the computed contrast (I), orientation (O) feature
maps and flicker feature map (F):

S=Norm(k; - I+ ko-O+kg-F) (1)

The weights k1, ko, and kp can be changed in real-time to
bias saliency computation toward behaviorally relevant features,
implementing a task-dependent bias (Itti and Koch, 2001).
Finally, a WTA module selects the most conspicuous location of
the saliency map, defining the current focus of attention. Feature
extraction can be performed in parallel by multiple modules,
however, the normalization and sum of feature maps into the
saliency map is sequential and requires time. The data-driven sys-
tem further improves the speed of computation, as the saliency
map is updated only with the last train of events, avoiding a
complete generation of the entire map.

In iNVT, as well as in most of saliency map based selective
attention models, the currently selected location is deselected
thanks to a self-inhibition mechanism, known as Inhibition of
Return (IOR). This mechanism prevents the system from imme-
diately re-select the current winner, and allows for a scan of many
points of the saliency map in order of decreasing conspicuity.
However, in our setup neither EVA nor iNVT implement IOR,
rather, the shifts of the focus of attention are determined by
intrinsic noise in the system.

2.3.3. Ocular movements

A dedicated module implements saccades or gaze shifts toward
salient regions selected by EVA. Tremor and microsaccades are
used to generate motion of static visual stimuli on the DVS sen-
sor focal plane, to elicit activity of the pixels that only respond to
stimulus changes. This approach is similar to the mammals visual
system, where small eye movements counteract photoreceptors
bleaching adaptation (Kowler, 2011). Tremor is implemented as
an omnidirectional movement of 0.45° amplitude with frequency
0f 500 Hz and random direction, superimposed on microsaccades
of amplitude 0.75° and frequency 2.5 Hz in exclusively horizontal
direction.

3. PERFORMANCE AND BENCHMARK

The absolute novelty of EVA is in the short latency of the atten-
tional shifts that guarantees fast reaction times. The proposed
processing of the attention system generates short latency that
hardly compares with the performance of frame-based attention
systems. The selected attended location can be communicated

to the oculomotor controllers to direct the robot’s gaze toward
salient regions with a saccade command. It continuously updates
the saliency map and the resulting focus of attention location,
allowing for fast reaction to unexpected, dynamic events and for
a more natural interaction of robots with the environment.

The improvement in computation latency is obtained thanks
to many factors, among which the asynchronous low-latency and
low-redundancy input, efficient sensory encoding, and efficient
computing strategy (the mapping).

To assess its performances and validate our results, we tested
EVA in three different experimental setups. Unfortunately, a
direct quantitative comparison of the performance of EVA with
literature state-of-the art artificial bottom—up attention systems
cannot be performed as each has its own characteristics in terms
of feature maps, methods for feature map calculation, hardware,
software implementation, and stimuli (Borji and Itti, 2012). For
this reason, we rather preferred to benchmark our implemen-
tation against the state-of-the art main-stream system based on
the Itti and Koch (2001) model: the iLab Neuromorphic Vision
Toolkit (iNVT) (Itti et al., 1998, 2003; Navalpakkam and Ttti,
2005) sharing the same number and type of feature maps, hard-
ware platform and stimuli. The iINVT algorithm is based on
traditional frame-based cameras and convolution operation for
the calculation of the feature maps.

The two systems are at the two opposite extremes, one is fully
event-driven, the other fully frame-based. Other intermediate
solutions might be implemented, where the output of the DVS
is first translated into frames by integrating spikes over time, then
iNVT is used on the resulting sensory output. However, the nec-
essary transition from event-driven to frame-based information
coding spoils some of the advantages of event-driven acquisition,
such as temporal resolution and low latency and brings addi-
tional costs and relevant overhead in the computation. It is worth
to further detail at which extent the performance improvement
inherits from the use of DVS sensor as compared to the use of
event-based algorithm implementation. As shown in the sum-
mary table 2, the latency of EVA amounts to 23 us, of which 15us
can be attributed to the characteristic latency of the DVS sensor
(Lichtsteiner et al., 2008) and the remaining 8 s as result of the
event-based algorithm. On the contrary, in frame-based scenario,
the latency is affected by both the acquisition time (for 30 fps
acquisition the acquisition time interval is 33 ms) and the frame-
based algorithm for the image processing which we measured in
23 ms. The performance of such systems would be in terms of
qualitative performance and computational cost in between the
two extremes that are analyzed in the following.

The two systems are implemented on the iCub robot using
respectively the DVS and the standard robot’s Dragonfly cam-
eras. They simultaneously run on two identical machines®; both of
them distribute the processing over the four available CPU cores.
To correctly compare the two systems, we implemented the same
type and number of feature maps in both, restricting the numer-
ous feature maps of iNVT to intensity, orientation and flicker. In

3Intel Core 2 Quad Cpu Q9950 @2.83GHz
4ezvision —in=raster:*.ppm —display=display -T -j 4 —input-frames=@30Hz —
textlog=iNVTLog.log —vc-chans=IOF —ior-type=None —use-random.
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order to remove any overhead to the computation time, the iNVT
program processes a batch of camera images.

The stimulus is placed at a distance d in front of the robot and
centered in the fovea of both the Dragonfly and DVS cameras,
such that it is completely visible and the quantity of received light
is comparable for both sensors. The sensors have been configured
with typical parameters (see Table 1) and have not been specif-
ically tuned for the experiments, in order to assess the system’s
performance in typical use cases.

For each experiment we report the diffuse scene light measure’
since the performance of both sensors and, consequently, of the
two attention systems depend on the illumination level.

For all of the validation setups we report the focus of
attention’s scan path generated by the two systems, giving an
immediate qualitative evaluation of the computation time. For
a quantitative assessment the benchmark comprises a set of
predefined measurements:

o Number of shifts of the focus of attention over time Fgys and
Finvr and the correspondent time interval between consecu-
tive shifts Atgya and Aty

e CPU utilization Ugya and Uiyt ©

e Data rate Dgya and DinyT

e Latency time interval Lgya and LinyT

The time interval between two consecutive shifts in the selec-
tive attention is a good measure of the frequency of attentional
redeployments. The latency measure gives an estimate of the
minimum reaction time to the new stimuli.

We measure the latency in both systems as the time interval
from the instant a novel stimulus is presented to a complete pro-
cessing of the visual input. In EVA, the latency interval comprises
the time interval for feature extraction and WTA selection. The
former represents the time necessary to generate a new flow of

Table 1| Setup parameters of DVS and Dragonfly sensors.

Parameter dragonfly Value Bias DVS Value (pA)
Width 320 (pixel) cas 0.094
Height 640 (pixel) injg 0.0182
Shutter 0.913 regPd 3.0
Gain 0.312 pux 1.4401
White balance A 0.506 diffoff 2.378e75
White balance B 0.494 req 0.0287
Sharpness 0.5 refr 1.688e~*
Hue 0.48 puy 3.0
Gamma 0.4 diffon 0.1143
Saturation 0.271 diff 0.0054
Framerate 30 (fps) foll 3.576e78
pr 1.431¢78

>Measured by portable hand-held exposure meter Gossen Lunasix F.
%Measurements performed with SAR, a program that directly measures the
computational load on the processor over a user-defined time interval.

events associated to feature maps from the moment a new stim-
ulus arrives. The latter represents the time interval to process the
generated trains of events and determine attentional shift. In both
measures, a sequence of events is needed to alter the output of the
module. The frequency of redeployment of the focus of attention
depends on the time needed to acquire enough visual data and
the time required to extract features, compute saliency and per-
form the winner-take-all selection. On the contrary, for iNVT we
present a single frame and we measure the time interval necessary
for the system to process the camera image.

CPU utilization and data rate give an accurate measure of
the computation demand of both implementations. To obtain
an unbiased measure, we normalized by the number of atten-
tional shifts and report the computational load per shift. The
benchmark comprises three test experiments. The first uses typi-
cal stimuli for visual experiments, such as oriented gratings, and
is run under two different illumination conditions. The second
shows the performance of the EVA system with a fast unpre-
dictable stimulus such as a chaotic pendulum. The third indicates
how performance changes with the increase of the information to
process.

3.1. FIRST EXPERIMENT, GRATINGS WITH DIFFERENT ORIENTATIONS
Figure 3A shows the stimulus used in the first characterization
setup: two horizontal and two vertical gratings of 4 x 4 cm with
a gaussian profile, each positioned at the distance d = 20cm
from the camera. In this scenario the stimuli are static and the
DVS output is generated with the use of microsaccades (see
section 2.3.3).

3.1.1. Case A, bright illumination

The focus of attention locations selected by EVA and iNVT and
their hit frequency are shown in Figures 3C,B, respectively. Both
systems select conspicuous locations corresponding to the ori-
ented gratings, with slightly different patterns. As we disabled
inhibition of return, the specific focus of attention scan-path
depends on the computed saliency and on the noise present in the
system. Small differences in stimulus illumination and noise pat-
tern can contribute to slightly different computed saliency for the
same grating placed in different regions; the missing inhibition
of selected areas over a long period of time leads to the selection
of fewer stimuli with very similar salience, as shown in Figure 3B.
Two of the oriented gratings are not selected by iNVT, despite they
should have had exactly the same salience. In this scenario, EVA
is capable of selecting more stimuli, reducing the latency, prob-
ably thanks to the different pattern of noise, that is intrinsically
generated by the hardware.

In EVA, the data rate depends on the lighting condition and
on the stimulus, under these conditions it is about 7 kAE/s.
Conversely, the data rate produced by a traditional color cam-
era only depends on intrinsic parameters of the systems such as
number of pixels, color resolution and frame rate, being indepen-
dent from the stimulus; for the Dragonfly used on the iCub this
amounts to 530 Mbits/s. The lower amount of data corresponds
to lower processing demand and, hence, in a faster computation
of the focus of attention location. Consequently this results in
higher shifts frequency generated by EVA with respect to iNVT,
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FIGURE 3 | First scenario. Case A: comparison of the shifts
generated by iINVT (B) and EVA (C) in response to four oriented
gratings (A) under bright background illumination (~55.6 LUX—indoor
illumination of a diffuse bright natural light). Case B: comparison of
the shifts generated by iNVT (E) and EVA (F) under dim background
illumination (~2.7 LUX—dim illumination that typically would require
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the use of artificial light). The (x,y) coordinates of the two attention
systems correspond to the image coordinates of the sensors
(240 x 320 for the Dragonfly and 128 x 128 for the DVS). (D) Mean
and standard deviation of CPU system percentage of utilization
(green), temporal distance between consecutive shifts (blue) over 10
repetitions of 10 trials in both illumination conditions.

Table 2 | Quantitative benchmark: f : frequency of attentional shifts [shifts/s], L : Latency time interval [s], U : normalized cpu utilization [%] ,

D : data rate of input [Kbit/s], § : duration of the acquisition[s].

Experiment 1

Experiment 2

Bright (~55.6 LUX) Dim (~2.7 LUX) ~27.2 LUX
iNVT EVA iNVT EVA EVA
hor. top 60.85% 33.53% 100% 0%
hor. bot 0% 33.19% 0% 0%
ver. top 39.15% 15.06% 0% 0%
ver. bot 0% 18.21% 0% 100% .
f (shifts/s) 1.89 158.2 18.08 3.72 1708.80
L(s) (5.60 £ 0.3)e72 (23.2+3)e™* (5.56 + 0.3)e~2 (23.1+3)e™* 3.72+1e™3
U (%) 6.79 0.2 8.4 1.3 0.2
D (Kbit/s) 530¢° 226.72 +0.078 53063 2032 +1.2 2.16°
5t (s) 100 100 100 100 2.68

First experiment: number of hits clustered on the horizontally (top and bottom) and vertically (top and bottom) oriented grating stimuli under bright and dim
illumination. Second experiment: performance of the EVA in details.

and higher number of attention relocation, as shown in Table 2.
EVA, because of the temporal resolution of the visual signal and
the low computational demand, can generate a shift of attention
approximately every 1.5 ms, on the contrary, iNVT is limited by

the frame acquisition frequency (30 ms) and the time between
two attentional shifts amounts to 50 ms. The latencies of the
two systems differ of two orders of magnitude, showing the high
responsiveness of EVA to sudden and potentially relevant stimuli.
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Figure 3 shows that the computation demand of EVA is lower
than iINVT of at least one order of magnitude, as expected from
the lower Data Rate and the different computational load of the
mapping procedure. This different performance is also reflected
in the shift latency that amounts to about 300 ns for EVA and
0.4 ms for iNVT.

3.1.2. Case B, dim illumination

One of the advantages of using the logarithmic encoding in
the DVS is the wider dynamic range with respect to traditional
sensors. Thus, we tested the attention systems in the scenario
described above, but with reduced ambient light. The result-
ing focus of attention scan path is shown in Figures 3E,F. The
selection of the top horizontally oriented grating in the iNVT sys-
tem and the selection of the bottom vertical oriented grating in
EVA are the results of a strong decrease of the response strength.
The lower illumination affects both systems by drastically reduc-
ing the number of shifts. A way to improve this behavior in
EVA would be the implementation of adaptive firing threshold,
that can be dynamically set according to the level of background
illumination (Delbruck and Oberhof, 2004).

Figure 3 shows the aggregated performance measures for
case A and B for both EVA and iNVT; Despite the latency
of both systems remains largely unchanged, EVA outperforms
iNVT, while the normalized computational load increases, with
different slopes. In case B (low illumination), iNVT abso-
lute CPU usage remains unchanged but it is normalized for
a lower number of shifts; in EVA both the number of shifts
and the CPU utilization decrease, as a result of a lower
input data rate, as shown in Table2. The resulting nor-
malized computation load increases less than what observed
for iNVT.

3.2. SECOND EXPERIMENT: CHAOTIC PENDULUM

We used a chaotic pendulum to test EVA with fast unpredictable
stimuli. The chaotic pendulum shown in Figure 4A is composed
of two black bars (22 and 18 cm) connected by a low friction
joint and attached to a fixed support via a second low friction
joint. In this configuration, the first bar can freely rotate with
respect to the support and its movement is influenced by the sec-
ond bar that revolves independently around the first joint. The
pendulum is mounted over a white background and we used an
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FIGURE 4 | Second scenario. (A) The chaotic pendulum is located 50
cm far from the robot to keep the whole stimulus in the camera’s field
of view. In the setup, DVS sensors are embedded in the iCub's eyes
to exploit ocular movements, while the Dragonfly cameras are mounted
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on the head with fixed supports. (B) Raster representation of the
activation of pixels in the DVS and relative location of the WTA
selected by EVA. (C) Events generated by the chaotic pendulum, (D)
focus of attention scan-path generated by EVA.
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average lighting condition of 27.6LUX—corresponding to diffuse
illumination where artificial light is not required.

The stimulus is so fast that neither the Dragonfly, nor the
human eye, can successfully perceive its full motion. In this
scenario, iNVT hardly relocates the focus of interest on the pen-
dulum without introducing an evident delay. In iNVT, such shift
is clearly shown in the video provided in Technical Materials.’

Conversely, we accurately assess the performance of EVA as a
viable to technological solution for fast dynamic stimuli in a wide
range of operating conditions.

The fast movement of the pendulum generates a higher data
rate with respect to the previous scenario. The resulting perfor-
mance parameters are listed in Table 2.

To estimate the quality of the attention system, in Figure 4
we compare the trajectory generated by the pendulum with the
location of the attention shifts over time. To achieve this, we syn-
chronized the generation of attention shifts with the batch data
of the generated events, using the temporal information stored in
the timestamp.

3.3. THIRD EXPERIMENT: PERFORMANCE SCALING WITH QUANTITY
OF INFORMATION
In this scenario, we assess how the performance of EVA scales
with increasing number of events. In EVA, the number of events
can increase for cluttered scenes and for higher resolution sen-
sors, increasing the computational demand of the system. This
happens also for iNVT, when higher resolution sensors are used.
We estimate how the computation demand expressed in CPU uti-
lization scales with the processed information (number of bits).
In order to perform such analysis we determined how the com-
putation demand of the two systems change when the quantity
of information scales. For EVA, we control the number of gener-
ated events (and then quantity of information) by increasing the
number of black edges printed on a white disk rotating at con-
stant speed. We use five different configurations, where the edge
is repeated every 360°, 180°, 90°, 45°, and 22.5°. Figure 5 shows
the normalized CPU utilization measured in this experiment (red
dots in the inset); we do a linear fit of the normalized CPU uti-
lization in relation with the increasing quantity of information
processed. We use this function as reference to estimate the com-
putation demand of EVA at arbitrary number of generated events.
Similarly, for iNVT, we provide different sets of images. The sets
differ only for the dimension of the images, the stimulus is the
same of Figure 4A. The computation demand increases with the
quantity of processed information (green dots in Figure 5) and
we fit a first order curve that best describes the distribution.
Figure 5 shows that the required level of processing for EVA
(in red) never exceeds the required level of processing of iNVT
(in green) as it increases with a more gradual slope. Figure 5
shows that the required level of processing for EVA (in red) never
exceeds the required level of processing of iNVT (in green) as it
increases with a more gradual slope. This observed divergence
indicates the increasingly better performance of EVA, as more
processing is required. Key points (arrows in figure) help identi-
fying the estimated computation demand for both the systems in

7http://youtu.be/Nqd3uRbjXHE
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FIGURE 5 | Expected evolution of the normalized computation
demand for increasing the sensor’s output by increasing the sensor’s
size, in green iINVT and in red EVA. In the inset the measured data for
EVA, for increasing number of events, generated by increasing number of
black rotating edges repeated, respectively, at 360°, 180°, 90°, 45°, and
22.5°, in red the fit from which we extrapolate the computational demand

for bigger sensors.

correspondence of quantity of information generated by different
fixed size sensors (128 x 128, 320 x 240, 640 x 480).

To estimate these numbers, we select speed of rotating bar that
covers typical use (4.2284 rad/s). Even though in normal scene
operation the DVS activation is about 30%, in this test, we con-
sider the worst case scenario where all the pixels in the sensor
show the maximum level of activation (27 events per pixel).

Thus, we estimate the maximum computation load associ-
ated to sensors that have dimension 128 x 128, like the DVS,
320 x 240, like the Dragonfly used for iNVT and 640 x 480. As
the processing required by EVA sets well below iNVT, we con-
clude that for any possible situation, the required processing of
EVA results less impacting on the performance than iNVT.

This confirms the assumption that relevant saving in compu-
tation demand is associated to the design of the processing in EVA
and it is not limited to the hardware of the system.

4. DISCUSSION

In this manuscript we described EVA, a real-time implemen-
tation of selective attention based on the bio-inspired model
proposed in the foundational work of Itti and Koch (2001), that
uses a frame-less asynchronous vision sensor as input. The goal
of the implementation was to offer a flexible and light com-
putational paradigm for the computation of the feature maps,
exploiting the mapping mechanism. The overall performance of
the developed system takes advantage of the efficient informa-
tion encoding operated of the sensor, its high dynamic range,
low response latency and high temporal resolution. The use of
non-conventional sensors coupled with an efficient processing
results in a unprecedented fast attentional selection. We report the
behavior of the system in three different experiments that high-
light performance in detail. The three experiments give insights
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on the three major benefits of EVA: low computation demand,
high responsiveness to high frequency stimuli and favorable
scalability. The attention system EVA requires lower computation
utilization up to one order of magnitude with respect to iNVT
when stimulated by identical stimulus. This positive characteris-
tic does not degrade the quality of the generated attention shifts.
The characteristic of low response latency and high temporal res-
olution resulting from the efficient design of the attention system
EVA allow remarkable performance in highly dynamic scenarios.
The attention system accurately and swiftly redeploys the atten-
tional foci on the most salient regions in the visual field even in
situations where frame-based algorithms of visual attention fail
in obtaining clear interpretation of the stimulus. The second sce-
nario shows that the high temporal resolution allows the attention
system to track very fast stimuli, expanding the application range
of the system from humanoid robotics to even more demanding
use cases. We presented a solution that, by sensing via efficient
event-driven hardware sensor, provides outperforming selective
attention mechanism with low latency and high dynamic range.
In addition, for increasing the information load, e.g., for higher
resolution sensors, EVA’s CPU utilization increases with lower rate
than iNVT’s. The design of efficient processing in EVA guaran-
tees, when compared with iNVT, relative superior performance of
growing effectiveness with the amount of processed information.
Finally, the last benchmark shows that the computational advan-
tage of EVA is not restricted to the specific stimuli and sensor
dimension used in this experimental setup, rather is more general.

Most attention systems designed for real-time applications
report the computational cost in terms of time needed to pro-
cess a frame. The relative saliency map is often obtained in about
50-60 ms, slower than typical image frame-rate (30 frames per
second) (Frintrop et al.,, 2007). This time scale is appropriate
to reproduce typical attentional scan-paths, nevertheless, 50 ms
(plus 30 ms for frame acquisition) is the lower bound for reacting
to the onset of a new potentially interesting or threatening stimu-
lus. With EVA, this limit is estimated to be as small as about 1 ms
[plus 15 ps of sensor latency (Lichtsteiner et al., 2008)], thanks to
the low-latency event-driven front-end data acquisition and the
low computational cost of the attention system. This property is
crucial in robotics systems, as it allows the robot to plan actions
for reacting to unforeseen situations and sudden stimuli.

EVA has been developed to equip the iCub with a fast and low
weight attention system, exploiting the event-driven vision sys-
tem of the iCub (Bartolozzi et al., 2011). The mapping procedure
for events filtering and feature maps generation derives from AER
implementations (Bartolozzi and Indiveri, 2009; Sonnleithner
and Indiveri, 2012), where a simple mapping is realized to use
the sensor output as feature map. The resulting saliency map
is sent to a dedicated hardware platform that implements the
winner-takes-all selection enriched with dedicated inhibition of
return mechanism (the Selective Attention Chip, SAC). The
modules developed in this work and EVA can easily be inte-
grated with such a system and further optimized. For example,
maximization of the performance can be achieved by imple-
menting the mapping procedure and the relative feature maps
on an embedded FPGA (Bartolozzi et al., 2011; Fasnacht and
Indiveri, 2011) or implementing fast convolution on ConvNet

chips (Serrano-Gotarredona et al., 2008) and using the SAC (or
higher resolution implementations) for WTA and IOR. Both
implementations would probably be faster than the software
mapping procedure described in this manuscript, for example,
the ConvNet chip can start providing the output of oriented filters
with a 1 ps latency and is shown to perform pseudo-simultaneous
object recognition. This system, with the appropriate miniatur-
ization and integration with top—down modules implemented on
the robot, will be able to give a fast estimate of the focus of atten-
tion, leaving the computational units of the iCub free for other
more complex tasks.
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