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Multivariate pattern classification methods are increasingly applied to neuroimaging data
in the context of both fundamental research and in brain-computer interfacing approaches.
Such methods provide a framework for interpreting measurements made at the single-trial
level with respect to a set of two or more distinct mental states. Here, we define an
approach in which the output of a binary classifier trained on data from an auditory
mismatch paradigm can be used for online tracking of perception and as a neurofeedback
signal. The auditory mismatch paradigm is known to induce distinct perceptual states
related to the presentation of high- and low-probability stimuli, which are reflected in
event-related potential (ERP) components such as the mismatch negativity (MMN). The
first part of this paper illustrates how pattern classification methods can be applied
to data collected in an MMN paradigm, including discussion of the optimization of
preprocessing steps, the interpretation of features and how the performance of these
methods generalizes across individual participants and measurement sessions. We then
go on to show that the output of these decoding methods can be used in online settings as
a continuous index of single-trial brain activation underlying perceptual discrimination. We
conclude by discussing several potential domains of application, including neurofeedback,
cognitive monitoring and passive brain-computer interfaces.
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1. INTRODUCTION
The ability to non-invasively measure real-time changes in the
patterns of brain activity underlying important perceptual and
cognitive processes has led to breakthroughs in areas that were
until recently the domain of science fiction. These approaches
use systems that analyze neuroimaging measurements (e.g., EEG,
MEG, fMRI, PET, fNIRS, etc.) as soon as the necessary data is
available, such that results can be used online or in real time.
As our understanding of the relationship between various forms
of brain activity and specific types of mental states and cogni-
tive processes has grown, so too have the number of potential
applications of this knowledge in clinical, medical and educa-
tional settings (Sellers and Donchin, 2006; Varma et al., 2008;
Sellers, 2013; Tzovara et al., 2013). Here, we present a method
for online tracking of brain activity underlying auditory percep-
tual discrimination. This method is based on the decoding of
single-trial auditory evoked potentials, and is illustrated using
two datasets collected with variants of the mismatch negativity
(MMN) paradigm (Näätänen et al., 2007; Duncan et al., 2009).

In contrast to the averaging methods often used to investigate
brain responses measured in EEG, fMRI and other neuroimag-
ing modalities, real-time tracking methods enable researchers
to monitor the ongoing dynamics of brain activity as individu-
als perform different cognitive or behavioral tasks, to use brain
responses as a control signal in a brain-computer interface (BCI)

setting, or to provide individuals with neurofeedback based on
real-time measurements. For instance, real-time fMRI measure-
ments have allowed researchers to develop methods for com-
munication with locked-in patients and patients in vegetative
states, as well as novel forms of lie detection and neurofeedback
paradigms that help individuals with chronic pain to alleviate
some of their symptoms (de Charms, 2008). Others have devel-
oped techniques for monitoring working memory function and
cognitive load using EEG-based measures (Smith et al., 2001;
Brouwer et al., 2012). Single scan dynamic molecular imaging
is based on PET measurements and allows for the detection of
dopamine release during task performance (Badgaiyan, 2013).

Common to many of these approaches is the use of mul-
tivariate pattern classification methods, or so-called decoding
approaches (Haynes and Rees, 2006; van Gerven et al., 2009;
Blankertz et al., 2011). These machine learning techniques pro-
vide a means for making predictions about the mental state of a
user on the basis of single-trial neuroimaging data. Predictions
are made using a statistical model of a dataset, referred to as a
classifier. The dataset used to create the model contains repeated
measurements of brain responses corresponding to two or more
distinct mental states that are observed in a given task setting. The
classifier is trained to identify specific features in the data (e.g.,
fMRI voxels in regions of interest, EEG samples at specific chan-
nels and time-points) that provide discriminative information
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about the distinct classes of mental states that have been defined
as part of the classification problem. Once trained, a classifier can
make predictions about novel, previously unseen data.

A clear example of this type of classification problem is pro-
vided by BCI systems that use EEG measurements and paradigms
designed to elicit the P300 response [for a review of the event-
related potential (ERP) literature, see Polich (2007), for P300-
based BCIs, see Farwell and Donchin (1988), Nijboer et al. (2008),
Schreuder et al. (2010), Belitski et al. (2011), van der Waal et al.
(2012)]. The P300 response is elicited using sequences containing
a rare target event randomly embedded in a series of non-target
events. The presentation of a target will draw the user’s attention,
and is reflected in the P300 component. Data collected in this
paradigm can be thought of as belonging to two classes: targets
and non-targets. As the P300 response is only elicited by targets,
data collected on target trials will contain the P300 response while
non-target trials will not. Given sufficient amounts of data, a clas-
sifier trained on such a dataset will learn to assign importance
to specific features of the data corresponding to P300 responses
elicited in individual trials while ignoring other features unrelated
to the two classes of interest. Such a classifier can be used in vari-
ous BCIs, such as those implementing communication devices or
menu systems.

In the context of auditory perception, similar sequences are
used to elicit another ERP component: the MMN response. These
“oddball” sequences contain frequent standard trials and rare
deviant trials, each corresponding to a different type of sound.

For example, the standard sound might be a musical tone with
a specific fundamental frequency (f 0), while the deviant sound
has a different f 0. Whereas the P300 response is elicited using
an active task (attend to targets), the MMN is elicited without
attending to the stimuli; participants instead watch silent films
while oddball sequences of sounds are presented. In the audi-
tory ERP, the MMN is usually maximal at fronto-central electrode
locations and peaks between 100 and 300 ms, depending on the
type of stimuli employed (Näätänen et al., 2007). Examples of the
ERPs elicited in an MMN paradigm can be found in Figure 1.

Interestingly, the MMN response reflects individual differences
in perceptual discrimination abilities, such as those related to
native-language background (Naatanen et al., 1997; Winkler et al.,
1999; Brandmeyer et al., 2012) and the effects of musical training
(Koelsch et al., 1999; Fujioka et al., 2004), as well as the lon-
gitudinal effects of perceptual learning (Tremblay et al., 1997;
Menning et al., 2000). Abnormalities in the MMN response are
associated with different clinical and medical conditions, such as
developmental disorders (Bishop, 2007), schizophrenia (Michie,
2001) and coma (Fischer et al., 2004). This diagnostic aspect of
the MMN has led to an interest in the use of decoding meth-
ods to analyze single-trial MMN responses. For instance, it has
been shown that decoding performance reflects differences in
categorical speech perception by native and non-native speak-
ers (Brandmeyer et al., 2013), and that decoding analyses can be
used to predict survival rates in comatose patients (Tzovara et al.,
2013).
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FIGURE 1 | Grand average ERPs and statistical analysis for Dataset 1.

(A) Grand average ERPs of 14 participants in Dataset 1 for both standard and
deviant trials are shown with the deviant minus standard difference wave
used to quantify the mismatch negativity response. ERPs were calculated
using the average of 9 fronto-central electrode locations (indicated in the
scalp map) where the MMN response is typically maximal in amplitude.
Relative to the ERP for the standard trials, the deviant ERP shows an
enhancement of the negative peak in the N1 time window and an additional
positivity between 200 and 300 ms relative to stimulus onset. This
component is referred to as the P3a, and is elicited in MMN paradigms that

employ large stimulus contrasts. (B) Statistical analysis of the group level
responses. Grand average ERPs for all 14 participants were analyzed using a
non-parametric cluster randomization procedure (Maris and Oostenveld,
2007) across all 64 EEG channels for time points between 80–350 ms relative
to stimulus onset. The results of this analysis are presented using an image
of the grand-average difference wave. Two significant clusters of activity
(outlined in black) were found, corresponding to the MMN (p < 0.001) and
P3a (p < 0.001) responses. The brain responses underlying these
components represent two stages in the automatic sensory discrimination
process triggered by the presentation of the deviant stimulus.
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The ability to track ongoing MMN responses in real-time
can provide novel insights into the dynamic nature of per-
ceptual processes. Specifically, real-time monitoring of MMN
responses would provide insights into both short- and long-term
changes in brain responses associated with perceptual learning.
Furthermore, the same real-time tracking technique could serve
as the basis of a neurofeedback paradigm centered on auditory
perceptual learning, by providing users with ongoing feedback
on brain responses associated with discrimination sensitivity. The
remainder of this article defines a real-time tracking approach
based on single-trial decoding of auditory evoked potentials
using a logistic regression classification algorithm. First, impor-
tant aspects of the decoding approach are illustrated, including
an outline of the pattern classification problem, data prepro-
cessing, feature evaluation and the generalization of classifier
performance. Then a method for interpreting the online classifier
output as a continuous signal for use in real-time applications is
presented.

Two datasets are used throughout to illustrate various aspects
of the decoding and real-time tracking method: one collected
using a standard MMN oddball paradigm (Näätänen et al., 2007;
Duncan et al., 2009), and one collected using a so-called optimal
MMN paradigm (Naatanen et al., 2004). All data were collected
using a passive listening task in which participants viewed silent

films while auditory stimuli were presented. For both datasets,
simple tone stimuli were used to elicit the MMN response. Such
stimuli are widely used in auditory research, as well as in MMN
research. Such tones elicit ERPs containing components whose
timing and spatial topography are well understood. A summary
of the two datasets can be found in Table 1. A complete descrip-
tion of the methods used to collect these datasets is provided in
the supplementary materials.

2. SINGLE-TRIAL DECODING OF AUDITORY ERPs
CONTAINING THE MMN RESPONSE

The use of pattern classification to decode single-trial EEG data
containing different types of task-related brain responses is a hall-
mark of non-invasive BCI systems (van Gerven et al., 2009) and
EEG-based decoding analyses (Schaefer et al., 2011; Brandmeyer
et al., 2013). Single-trial analysis and classification of ERP compo-
nents can be understood in terms of spatial and temporal patterns
in the data that are associated with one or more components
(Blankertz et al., 2011). Here, we focus specifically on a binary
classification problem in which the aim is to predict whether a
specific single-trial ERP measurement represents a standard (no
MMN) or deviant (MMN) trial. The oddball sequence used to
collect Dataset 1 is illustrated in Figure 2A. Only standard tri-
als which immediately preceded a deviant trial were selected for

Table 1 | Summary of Datasets 1 and 2.

COMMON RECORDING METHODS

EEG System Biosemi Active 2 amplifier with 64 EEG channels w/ horizontal and vertical EOG, left and right mastoid leads. Data recorded
at a sample rate of 2048 Hz and downsampled offline to 256 Hz.

Stimulus presentation Etymotic ER-4P insert headphones calibrated to approximately 70 dB SPL

Data epochs Data epoched between −200 and 600 ms (relative to stimulus onset) for preprocessing, data between −50 to 450 ms
(non-overlapping epochs) used for ERP and classification analysis.

DATASET 1

Participants 14 normal hearing adults

Stimuli Pure sinusoidal tones at 500 Hz (standard) and 600 Hz (deviant), 100 ms duration

Sequence design Oddball sequences with 85% standard stimuli, 15% deviant stimuli, interstimulus interval of 500 ms, 1000 total trials per
block (150 deviants).

Based on Duncan et al. (2009).

No of blocks per session 2

No of sessions 1

DATASET 2

Participants 12 normal hearing adults

Stimuli Harmonic sinusoidal tones at 500 Hz, 75 ms duration with the following deviant stimuli: Location (±800 μS inter aural delay),
Frequency (10% increase in f0), Amplitude (±10 dB), Duration (25 ms) and Gap (insertion of 25 ms of silence).

Sequence design Optimal MMN sequences with 50% standard stimuli and 10% of each of the five types of deviant, alternating standard and
deviant stimuli, interstimulus interval of 500 ms. 600 total trials per block (300 deviants). Based on Naatanen et al. (2004),
Duncan et al. (2009).

No of blocks per session 3

No of sessions 3

www.frontiersin.org December 2013 | Volume 7 | Article 265 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Auditory_Cognitive_Neuroscience/archive


Brandmeyer et al. Decoding auditory mismatch response

... ...

... ...

A 

B

frequency deviant intensity deviant

duration deviant location deviant gap deviant

standard

FIGURE 2 | Sequences used during data collection. (A) Example of
oddball sequences used to collect Dataset 1. An oddball sequence with a
500 Hz standard stimulus (85% of trials) and a 600 Hz deviant stimulus
(15% of trials) was used to collect Dataset 1. Only data from deviant trials
and the standard trials immediately preceding them were used in the
classification analyses (illustrated using red circles). Each block contained a
total of 1000 trials. (B) Example of “optimal” MMN sequences used to
collect Dataset 2. An alternative sequence structure utilizing 5 different
types of deviant stimuli can be used to reduce the overall amount of time
required to collect MMN responses (Naatanen et al., 2004; Duncan et al.,
2009). Here, all standard and deviant trials are utilized in the classification
analysis. Each block contained a total of 600 trials.

inclusion in the classification analysis. This balanced the amount
of data for each of the two trial types, and is the same as the
approach taken in Brandmeyer et al. (2013). More recent MMN
studies have made use of an “optimal” MMN paradigm, which
employs a sequence structure containing multiple deviant stim-
uli, and which is illustrated in Figure 2B. Dataset 2 was collected
using this type of sequence. As an equal number of standard
and deviant stimuli are presented, all trials were utilized in the
analysis.

The data epoch associated with each trial can be represented
as an m ∗ n matrix, where m is the number of EEG channels that
are measured (the spatial dimension) and n is the number of
recorded samples (the temporal dimension). The data presented
here were collected using m = 64 EEG channels and n = 128
samples, representing data collected between −50 and 450 ms
relative to stimulus onset at a sample rate of 256 Hz. Given a
labeled dataset (typically “−” and “+”) containing examples of
standard and deviant trials, a classifier is trained such that each
dimension of the corresponding data is assigned a weight, stored
in an m ∗ n weighting matrix w. The weights are adjusted on
the basis of the training data with respect to differences in the
observed spatio-temporal patterns associated with the two types
of trials, while also taking into account variance in the data not
associated with either of the two classes. This latter aspect of
the classification problem is crucial in determining the perfor-
mance of the analysis, given the low signal to noise ratio of MMN
measurements [approximately 1–5 μV for the MMN response
compared to ongoing EEG activity, which can exceed ±30 μV,
Handy (2005), Duncan et al. (2009)].

The method used to obtain the weights w determines the type
of classifier which is obtained. Methods such as linear discrimi-
nant analysis (LDA), support vector machines (SVM) and logistic
regression represent just a few of the most common algorithms
used. Additionally, the classifier is said to be either linear or non-
linear. The choice to use a linear or non-linear classifier is often
based on the amount and type of data being analyzed, with lin-
ear algorithms often preferred for their simplicity (Muller et al.,
2003). In the present analysis, which aimed at continuous mon-
itoring of EEG signals, we chose to make use of a linear logistic
regression algorithm for a number of reasons. Firstly, logistic
regression classifiers have been shown to provide relatively high
performance for EEG data in the context of BCI applications
(Farquhar and Hill, 2013). Secondly, the output of logistic regres-
sion classifiers can be interpreted probabilistically, as opposed to
the output of SVMs and other classifier families (Bishop, 2009).
This enables a distinct set of applications which are discussed
later.

Given a trained classifier with weights w and an epoch of data
x, both of which are vectorized versions of the corresponding
matrices, the output of a linear classifier is calculated as follows:

f (x) = w�x + b (1)

where b is a bias term. This output is referred to as a “deci-
sion value.” For logistic regression classifiers, the range of f (x) is
(−∞,∞), with the sign of f (x) representing a prediction about
which of the two classes in the binary problem x belongs to.
A classifier’s performance is determined by quantifying the accu-
racy of predictions it makes about previously unseen data. In
other words, we want to know how well a classifier will generalize
to novel situations, such as the real-time applications discussed in
the introduction. To determine generalization, a given dataset is
typically split into two subsets: a training set and a test set. The
training set (also referred to as a calibration set) contains data
that are used to construct the classifier, while the test set is used
to determine how accurately the classifier can make predictions
about novel exemplars; because the labels have been provided
for epochs in the test set, classifier predictions can be compared
with the true class of the individual exemplars, and the percent-
age of correct decisions can be calculated. This is referred to as the
classification rate.

Rather than estimating generalization using a single training
and test set, cross-validation methods can be used. Following the
creation of x partitions of the dataset, x iterations of the classifi-
cation analysis are carried out. In each iteration, a distinct set of
x − 1 partitions are used as the training set while the remaining
partition is used as a test set. Each of the partitions is thus used as
a test set in one of the analyses. The classification rates presented
here reflect the results of a 10-fold cross-validation procedure,
unless otherwise specified. Thus, in each of the 10 iterations, 90%
of the available data is used for training, while the remaining 10%
is used for testing. The final classification rate obtained in such an
analysis, referred to as a cross-validation rate, is the mean of the
classification rates obtained for each of the 10 test sets.

An important relationship is defined between the classification
rate and the number of classes in a given classification problem. In
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the case of a binary classifier, imagine that, instead of a classifier,
we merely had a random number generator spitting out 1 s and 0 s
(i.e., “+” and “−,” the labels of each of the two classes) and mak-
ing predictions about our data. This is equivalent to the problem
of predicting a fair coin toss. In both cases, given infinite trials,
we would expect correct answers 50% of the time. This value is
defined as chance performance. A binary classifier performing at
chance level is essentially no more useful than a random number
generator or flipping a coin.

In real-world classification problems, it is rarely possible to
achieve 100% classification accuracy. However, poorly defined
classification problems can lead to chance-level performance. It
is possible to determine whether the results of a given binary
classification analysis are significantly different from chance-level
performance using binomial confidence intervals (Müller-Putz
et al., 2008; Pereira et al., 2009). This is, for instance, the same
manner in which the error of a poll is determined, and is based
on the number k of observations that are available. A confidence
interval I is defined around a specific value p (in the case of
a binary problem, chance-level performance, where p = 0.5) as
follows:

I = p ± z1 − 1

2
α

√
1

k
p(1 − p) (2)

where z1 − 1
2α represents a z-scored percentile from a normal dis-

tribution for a specific error-value α. Importantly, this implies
that the confidence interval becomes smaller as k grows. For
example, for a statistical confidence level of α = 0.05, the con-
fidence interval for 10 observations is ±25.1%, but is only ±9.6%
for 100 observations and ±3.1% for 1000 observations. The
observation of classification rates significantly above chance level
implies that predictions made by the classifier are non-random.
This in turn suggests that the classifier training data contains
information that is useful for distinguishing new examples of the
different classes from one another, even if this information is not
completely reliable.

An alternative to the binomial confidence interval is the per-
mutation test, which can be used in cases where the assumption
of class independence does not hold, or when there is reason
to suspect bias. Rather then testing the null hypothesis using
the binomial distribution, the observed results are compared
to the distribution obtained by repeatedly permuting the true
class labels belonging to the data and recalculating the classifica-
tion performance. The probability of the null hypothesis is then
calculated as the proportion of the resulting distribution with
classification performance greater than or equal to the observed
result Pereira et al. (2009). In general, however, the significance of
classification results presented here are based on the use of bino-
mial confidence intervals, assuming chance-level performance
of 0.5.

A potential problem arising in classification analyses is the
over-fitting of the classifier to the training data. What this means
is that the model does not generalize well to new examples
outside the training set. This is especially troublesome for high-
dimensional data sets such as those encountered in neuroimaging.
For instance, the present data contains 64 × 128 = 8192 dimen-
sions. A rule-of-thumb in pattern classification is that the number

of examples needed to train a classifier is roughly equal to the
number of dimensions in the data (Duda et al., 2001; Blankertz
et al., 2010). However, this is very often impractical in the case of
neuroimaging data due to the amount of time required to obtain
suitable training data.

One solution for dealing with over-fitting is the use of regular-
ization methods. These methods limit the complexity of classifier
models, as over-fitting is associated with relatively more complex
models. For logistic regression classifiers, the level of regulariza-
tion is a function of the total variance observed in the training
data. A weighting parameter c determines classifier complexity,
with smaller values leading to more complex models. The optimal
value of c is determined using a grid search with the values [0.001,
0.01, 0.1, 0, 1, 10, 1000], respective to the overall variance of the
data: the 10-fold cross-validation procedure is repeated for each
value of c, and the model trained with the regularization setting
leading to the highest overall performance is selected.

A principal requirement of classifiers intended for use in real-
world applications is that their performance should be as high as
possible. Prior to classifier training, pre-processing and/or feature
selection steps are typically performed. These steps aim to remove
noise from the data and to reduce its dimensionality. The precise
nature of the steps taking during pre-processing and feature selec-
tion is determined by the type of data. Additionally, the amount
and type of data available for classifier training can significantly
impact their performance.

To summarize, the present approach uses pattern classifica-
tion methods to make predictions about single-trial auditory
ERPs collected in an auditory mismatch paradigm. Specifically,
we use 500 ms epochs of 64-channel EEG data from two types
of trials, standard and deviant, to define a binary classification
problem. We then train a regularized, linear logistic regression
classifier using equal amounts of data from both types of trials.
A 10-fold cross-validation is used initially to estimate generaliza-
tion performance. The following sections present a data-driven
approach in which preprocessing parameters for classification of
MMN responses are optimized, and examine the effects of train-
ing set size and data selection on classifier performance. Relative
changes in classifier performance between analysis steps are eval-
uated using paired-samples t-tests. Methods for evaluating data
features that influence classification performance are also pre-
sented, followed by an assessment of generalization performance
using datasets collected from different measurement sessions or
individuals.

2.1. PRE-PROCESSING
In the case of EEG data, pre-processing is also a typical step in
ERP analyses, and many of the specific actions taken, such as arti-
fact removal, filtering and resampling, remain the same. However,
due to the nature of the pattern classification problem, the param-
eters used during these steps may differ from those employed in
ERP paradigms. For instance, the cutoff frequencies and down-
sampling employed by decoding approaches are often more severe
due to the influence of noise and brain activity unrelated to the
primary task on classifier performance. Recent work has evalu-
ated pre-processing methods for obtaining optimal classification
performance with EEG data collected in different BCI paradigms
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(Farquhar and Hill, 2013). We perform a similar evaluation, and
show that the optimal parameters are somewhat different for data
collected using an MMN paradigm.

The datasets presented here were initially preprocessed using
the following steps: (1) Bad channels (i.e., those with offsets
greater than 35 mV or with 50 Hz power greater than 1000 μV2)
were repaired using a spherical spline interpolation procedure
(Perrin et al., 1989) on a per epoch basis. This has the effect
of removing artifactual and noise-related activity that can influ-
ence classification performance, and preserves the full electrode
montage for subsequent steps in the decoding analysis. (2) An
independent component analysis was performed, and compo-
nents containing artifactual activity were selected using a thresh-
old calculated on the basis of the mean variance across trials and
components. These selected components were removed from the
data, and the remaining components were reprojected onto the
original EEG recording channels. The same method has been
employed in Bishop and Hardiman (2010) and Brandmeyer et al.
(2013) in the context of MMN paradigms, and was originally
described in Jung et al. (2000). This has the effect of removing
eye movements and other muscular artifacts that would other-
wise lead to the rejection of data epochs in subsequent steps.
The preservation of individual epochs is important for optimizing
performance, as increased training set size leads to higher classi-
fications rates. (3) Data were band-pass filtered between 1 and
25 Hz (Kujala et al., 2007). (4) Individual epochs were inspected
at all EEG channels for activity exceeding ±75 μV, in which case
they were excluded from subsequent analyses. (5) Lastly, data were
re-referenced to the average of the two mastoid leads, which is
known to enhance the signal-to-noise ratio of MMN responses
(Kujala et al., 2007; Duncan et al., 2009).

Figure 3A presents average cross-validation rates obtained
with Dataset 1 when training classifiers on individual datasets
following each preprocessing step. Significant improvements
in performance were obtained when the data were filtered
[t(13) = −3.026, p = 0.01]. Are additional improvements pos-
sible through more refined selection of cutoff frequencies?
Figure 3B presents an assessment of the effects of high- and
low-cutoff frequencies. Maximal performance was obtained with
high- and low-pass frequencies of 0.5 and 13 Hz, respectively.
A comparison of performance using different filters is presented
in Figure 3C. Performance was slightly higher relative to the orig-
inal 1-25 Hz band-pass filter when using a 0.5–13 Hz band-pass
filter, as well as relative to a 1–20 Hz band-pass filter as recom-
mended for MMN recordings in Duncan et al. (2009). Research
investigating the oscillatory activity underlying the time-domain
MMN response has revealed that phase resetting and power mod-
ulation of theta band activity (4–8 Hz) in the temporal and
frontal MMN generators, respectively, occur during deviant tri-
als (Fuentemilla et al., 2008). This suggests that activity in and
around this frequency band will provide discriminative informa-
tion for the present classification analysis. Other studies classi-
fying MMN data (Herrmann et al., 2012) and auditory evoked
responses to music (Schaefer et al., 2011) have also made use of
similar filter settings during preprocessing, indicating that band-
pass filtering in the 0.5–13 Hz range might improve decoding
performance for auditory brain responses.

The choice of reference electrodes represents another prepro-
cessing step where multiple choices exist that might influence
overall classification performance. This was evaluated by compar-
ing performance when using three different reference montages
(surface laplacian reference, common average reference, and aver-
aged mastoid reference) as well as when the referencing step was
omitted. The results are presented in Figure 3D. No significant
differences in overall performance were found, but classification
performance was highest overall for the mastoid reference, sug-
gesting that the signal-to-noise benefits provided by a mastoid
reference that have previously been described (Kujala et al., 2007;
Duncan et al., 2009) might also contribute to higher classification
rates.

Two final preprocessing steps were evaluated: additional
downsampling of the data, and reduction of the number of elec-
trodes included in the final montage. These steps have important
consequences for the classification problem: the reduction of the
number of temporal (i.e., number of samples) and spatial (i.e.,
number of EEG channels) dimensions leads to overall reduc-
tion in the dimensionality of the data. As previously mentioned,
dimensionality reduction implies that fewer training examples
are needed to obtain optimal performance. Another benefit of
removing EEG channels is the use of less electrodes during
measurements, which saves time during cap-fitting.

The effects of temporal and spatial downsampling on cross-
validation rates are presented in Figures 3E,F, respectively.
A contrasting picture emerges. While performance signifi-
cantly improves when downsampling from 256 Hz to 128 Hz
[t(13) = −2.360, p < 0.05], performance is reduced overall when
the number of electrodes is decreased from 64 to 32 [t(13) =
2.956, p < 0.05]. There are several factors that might underly
this difference in spatial vs. temporal features. Firstly, in the
temporal dimension, the sampling rate determines the Nyquist
frequency, and thus the spectral range of activities that are cap-
tured in the data. The data has been filtered between 0.5 and
13 Hz, meaning that sample rates of 26 Hz and higher should
capture the range of activity in the data. By reducing the sam-
ple rate to 32 Hz, the dimensionality of the data has been reduced
by 77.5%, from 8192 dimensions to 1024. This may impact over-
all performance. Secondly, the ability of the classifier to optimally
represent the spatial structure of both class-relevant signals and
class-irrelevant noise might also depend on the relative density
of electrode placement. Thus, reduction according to the 10–20
system is potentially suboptimal. Several previous studies have
investigated the use of spatial filtering techniques (i.e., weight-
ing of specific electrode locations) in the context of EEG pattern
classification. Brunner and colleagues showed that the output of
an infomax-based ICA could be used as a spatial filter to improve
classifier performance in a dataset collected in an imagined move-
ment paradigm (Brunner et al., 2007). Farquhar and Hill also
showed that a technique known as spatial whitening could be
used to attain similar improvements in performance as with ICA
(Farquhar and Hill, 2013).

Compared to the results obtained with the original preprocess-
ing parameters, classifier performance is significantly improved
using the updated parameters [t(13) = −4.216, p = 0.0001]. It’s
worth knowing whether the improvements obtained through
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FIGURE 3 | Effects of preprocessing on cross-validation performance for

Dataset 1. (A) Comparison of average cross-validation rates across
subsequent stages of preprocessing. Individual participant’s data were used
to train a linear logistic regression classifier following each of five
preprocessing steps: bad channel repair (BCR), independent component
analysis based artifact removal (ICA) (Bishop and Hardiman, 2010), band-pass
filtering between 1 and 25 Hz [as suggested in (Kujala et al., 2007)], rejection
of data epochs containing activity exceeding ±100 μ V, and re-referencing the
data to the average of the two mastoid leads (Kujala et al., 2007; Duncan
et al., 2009). Baseline correction between −50 and 0 ms (relative to stimulus
onset) was applied at each step. As is illustrated, a significant increase in
performance was obtained during the filtering stage. (B) Evaluation of filter
cutoff frequencies. Two separate grid search procedures were used to
evaluate the effect of high- and low-pass cutoff frequencies on performance.
Optimal cutoffs of 0.5 and 13 Hz were found for the low- and high-pass filters,
respectively, and are illustrated in the plot. (C) Comparison of filters.
Classification rates using the optimal low- and high-pass filter parameters as
well as the original 1–25 Hz band-pass filter (Kujala et al., 2007), a 1–20 Hz
band-pass filter as recommended by Duncan et al. (2009) and a 0.5–13 Hz
band-pass filter based on the previous analysis are shown. Performance was
highest using the 0.5–13 Hz band-pass filter. (D) Comparison of reference
choice. Cross-validation rates are shown for unreferenced data as well as for

three possible reference choices: common-average reference (CAR), a
surface laplacian reference (Farquhar and Hill, 2013) and a mastoid reference.
Although no significant difference in classifier performance was found,
performance was highest overall when using a mastoid reference. As has
been previously discussed in the literature, the use of a mastoid reference
can enhance the signal-to-noise ratio of auditory ERPs collected using an
MMN paradigm (Kujala et al., 2007; Duncan et al., 2009). (E) Effect of
downsampling on cross-validation rates. Classifier performance using the
original 256 Hz sampling rate and the updated filter cutoffs was compared to
performance using data resampled at 128, 64, and 3 Hz. A significant
improvement in average performance was observed for the initial step, with
the highest performance observed for data downsampled to 32 Hz. As the
high-pass cutoff of 13 Hz is below the nyquist frequency (approximately
16 Hz), these improvements suggest that the removal of unnecessary
dimensions in the data has a beneficial effect on classifier performance.
(F) Effect of reduced EEG channels. A comparison of the initial 64-channel
montage with 32- and 20-channel montages based on the international 10–20
system showed a significant decrease in performance. This implies that
features of the data related to the topography of the EEG signal have an
important bearing on classification performance. For all subfigures, the
significance of paired-sample t-test comparisons is indicated using asterisks:
∗p < 0.05, ∗∗p < 0.01.

changes in filter settings and by downsampling generalize to other
datasets collected in an MMN paradigm and using different types
of stimuli. This was evaluated with Dataset 2, as well as using
a subset of the data from Brandmeyer et al. (2013) collected
in an MMN paradigm from 11 native-English speakers using
English phonemes. This study made use of similar initial prepro-
cessing steps and a decoding analysis. Significant improvements
in average classification rates were obtained using the current
parameters for both Dataset 2 [t(11) = −4.484, p < 0.001] and
for the data from Brandmeyer et al. (2013) [t(10) = −2.479, p <

0.05] (see Figure 4). This implies that these parameters may serve
as useful guidelines for EEG based-decoding approaches using an
MMN paradigm. A summary of the optimized parameters can be
found in Table 2. The remainder of this article makes use of data
pre-processed using these parameters.

2.2. EFFECTS OF COLLECTION METHODS AND DATASET SIZE
Data collection methods and the amount of available data can
also influence classifier performance. For example, ERP compo-
nent amplitudes will often decrease during measurements due
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FIGURE 4 | Comparison of preprocessing effects on classification

performance across datasets. The two datasets presented in this paper,
as well as data collected in Brandmeyer et al. (2013) from 11 native English
speakers using English language speech stimuli, were used to evaluate
whether the optimal parameters for preprocessing steps observed for
Dataset 1 generalized to novel datasets and types of stimuli. Performance
was compared when using the original filter (1–25 Hz band-pass) and
sampling rates (256 Hz for Datasets 1 & 2, 128 Hz for Brandmeyer et al.,
2013), and when using the optimal filter (0.5–13 Hz) and sample rate (32
Hz). Significant improvements in mean performance were observed for all
three datasets. The significance of paired-sample t-test comparisons is
indicated using asterisks: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

Table 2 | Summary of optimized preprocessing parameters.

Step Parameters

Bad-channel
detection and
repair

Individual electrodes with offsets greater than ±35 mV
or 50 Hz greater than 1000 μV2 repaired using
spherical-spline interpolation of neighboring electrodes
on a per-epoch basis

ICA-based
artifact removal

Infomax-based ICA procedure used to obtain
independent component transform of EEG data.
Individual components with variance above overall
mean variance of the dataset selected for removal,
visual inspection of selected components followed by
reproduction of data to EEG channels

Filter Band-pass between 0.5 and 13 Hz

Artifact rejection ±75 μV

Rereferencing Average of left and right mastoid leads

Resampling 32 Hz

to habituation (Ritter et al., 1968; Fruhstorfer, 1971; Sams et al.,
1984). Previous BCI research has demonstrated that such habit-
uation effects can lead to reduced performance (Sellers and
Donchin, 2006; Salvaris and Sepulveda, 2009).

Figure 5 illustrates this phenomenon using Dataset 2, for
which three consecutive measurement blocks were available for
each of three separate measurement sessions on different days. On
the one hand, looking at average classifier performance across the
three blocks of the first session, classification rates progressively
decrease, with the difference in performance between the first
and third blocks reaching significance [t(11) = 2.979, p < 0.05].
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FIGURE 5 | Comparison of performance across measurement blocks

and sessions. Classification rates obtained using individual measurement
blocks from Dataset 2 were compared. While no significant difference in
performance was found for the initial blocks in each of the three sessions, a
significant decrease in performance from the first to the third block of the
first session was observed. This may be due to a number of factors,
including response habituation and experimental fatigue, both of which
have been shown to influence ERP classification performance (Sellers and
Donchin, 2006; Salvaris and Sepulveda, 2009). Such effects should be
carefully considered during the design of experiments and procedures that
make use of ERP classification. The significance of paired-sample t-test
comparisons is indicated using asterisks: ∗p < 0.05.

On the other hand, when comparing the initial blocks recorded
in each of the three sessions, no significant differences in the
average performance rates are observed. This suggests that class-
relevant differences in brain responses to standard and deviant
trials are relatively enhanced in the initial portions of a given
measurement session. In support of this, an analysis of the mean
MMN component amplitudes across the three blocks measured
in the first session showed a gradual reduction in negativity (First
block: −3.90 μV, second block: −3.71 μV, third block −3.43 μV),
although these differences were not significant.

Another factor that influences performance is the amount of
MMN data used for classifier training. This is an issue shared
with ERP paradigms that analyze individual MMN responses. It
has been suggested that 200–300 deviant trials should be collected
to reliably estimate individual MMN amplitudes, latencies and
statistical significance(Bukard et al., 2007; Duncan et al., 2009;
Bishop and Hardiman, 2010). Previous analyses looking at the
effects of EEG dataset size on classification performance have also
shown consistent improvement in classification accuracy as more
data becomes available (Blankertz et al., 2011; Farquhar and Hill,
2013).

The effects of incrementally increasing dataset size on cross-
validation performance are illustrated in Figure 6. For both
datasets, performance improves as more data are included.
Gains in performance are greatest during the initial increases in
dataset size. For Dataset 1, performance significantly improved
when the amount of total trials was increased from 100 to 200
[t(13) = −2.515, p < 0.05]. For Dataset 2, significant increases
were observed when increasing from 400 to 500 [t(11) = −2.337,
p < 0.05], and from 500 to 600 trials [t(11) = −3.448, p < 0.01].
As Dataset 2 contained a much larger number of total data epochs
(up to 5400 per individual participant), it was possible to exam-
ine whether these gains continue when including data recorded
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FIGURE 6 | Effects of dataset size on average cross-validation rates.

Individual data from Dataset 1 and Dataset 2 were used in incremental steps
to train classifiers on increasingly larger amounts of data. The order in which
the data was collected was preserved. Block/session boundaries are
indicated along with binomial confidence intervals for the maximal number of
available data points in each iteration. The amount actually used for some
participants was slightly reduced at certain intervals due to the removal of
data epochs during the artifact rejection preprocessing step. Data from
additional blocks collected for some participants in Dataset 1 were utilized in
the final iteration. With respect to Dataset 1, a significant increase in
performance was observed for the initial increase in dataset size, from 100

trials to 200 trials. Performance was highest when using the complete
dataset. For Dataset 2, data from each of the three blocks in each of the
three measurement sessions were incrementally added to the analysis.
Significant improvements were observed up to the inclusion of 3600 data
epochs (i.e., the full data sets from the first and second sessions). From here
on, average classification performance remained at approximately 70%. Error
bars indicate the standard error across participants, while the small horizontal
lines indicate the binomial confidence interval for the maximum number of
data epochs that were available. Consecutive pairs of incrementation steps
for which significant improvements in performance were observed are
indicated with brackets and asterisks: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

across multiple sessions. Additional performance benefits were
observed when increasing the amount of data utilized from 600
to 2400 trials [t(11) = −3.176, p < 0.01], and from 2400 to 3600
trials [t(11) = −6.675, p < 0.001]. Indeed, performance was max-
imal (70% on average) when utilizing all data from the first
two sessions or from all three sessions combined. We conclude
that decoding analyses of MMN data from multiple measure-
ment sessions can benefit from pooling data within and across
sessions. This benefit seems to outweigh the decrease in per-
formance observed across consecutive blocks measured within a
session.

2.3. EVALUATION OF CLASS-RELEVANT FEATURES OF MMN DATA
We now illustrate methods for evaluating specific class-relevant
features of these data. In general, when applying classification
methods to time-domain EEG data, it is useful to understand
which specific ERP components contribute to classifier perfor-
mance (Blankertz et al., 2011). While we would obviously expect
the MMN component to contribute to classifier performance in
these analyses, it is not the only component of the auditory ERP
modulated during the presentation of a deviant trial. For instance,
Figure 1 illustrates that the P3a response is clearly elicited by
deviant trials. We illustrate two methods for evaluating these
class-relevant features using Dataset 1: so-called “searchlight”
methods (Haynes and Rees, 2006; Blankertz et al., 2011; Chen
et al., 2011; Herrmann et al., 2012) in the temporal and spatial

domains, and area-under-the receiver operating characteristic, or
area-under-the-curve (AUC) scores (Fawcett, 2006).

Individual components such as the MMN are defined by both
the time intervals in which they occur as well as by the spatial dis-
tribution of the corresponding scalp potentials. One method for
evaluating the contribution of individual time-points and EEG
channels is to perform a searchlight analysis in the temporal and
spatial domains. When a searchlight analysis is performed in the
spatial domain, a series of classification analyses are performed
at each individual EEG channel using all available time-points.
Channels at which the various ERP components distinguishing
the two types of trials are maximal will show the highest cross-
validation rates. Conversely, in the temporal domain, a series
of classification analyses are performed on each available time-
point using all available EEG channels. Time-points with large
differences in the amplitudes of the scalp potentials across chan-
nels for the two types of trials will generally show the best
performance.

The results of both types of searchlight analyses are presented
for two individual participants as well as averaged across all 14
participants from Dataset 1 in Figure 7. Figure 7A presents results
in the spatial domain. Here, the fronto-central channels typically
associated with MMN peak amplitude clearly show the highest
classification performance, indicating that these channels pro-
vide the most information regarding the two classes of ERPs.
Conversely, occipital channels show relatively poor performance,
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FIGURE 7 | Use of searchlight procedures for spatial and temporal

classification of Dataset 1. (A) Classifier performance using individual EEG
channels. Cross-validation rates at individual EEG channels are shown for the
two participants with the lowest and highest cross-validation rates, as well
as the average rates across all participants. The fronto-central electrode
locations typically associated with maximal MMN responses are where the
highest performance was observed. (B) Classification performance using
individual time-points. Performance for the same two participants and the
average across participants are shown. Peaks in performance can be seen
for both the MMN and P3a component time-ranges, as well as an additional
peak near stimulus onset. When comparing the timing of the peaks for the
two individual participants, a relative shift in their latencies can be observed.
Similar shifts in ERP component latencies are typically associated with
individual differences in perceptual discrimination and task performance.
(C) Effects of incremental inclusion of channels and time-points based on

searchlight performance results. Cross-validation performance rates were
evaluated using an incremental procedure in which either individual EEG
channels or time-points were included on the basis of their performance
ranking in the previous searchlight analyses. This was done using the
rankings obtained for both individual participants as well as the average
ranking across participants. The peak performance is indicated for both
individual and group rankings. (D) Selection of optimal channels and
time-points on the basis of average rankings. 51 EEG-channels and 13
time-points are highlighted on the basis of the maximal average
cross-validation rates obtained using the incremental procedure. The
selection of optimal EEG channels can potentially reduce the size of the
cap-montage used during measurements, thus reducing the time needed for
cap-fitting by approximately 20%, as well as further reducing the
dimensionality of the data used during classifier training (from 64
channels × 16 time points = 1024 dimensions to 663).
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which is not surprising, given what is known about the scalp
distributions associated with auditory evoked potentials (Bukard
et al., 2007).

Figure 7B plots the equivalent results for the searchlight anal-
ysis performed in the temporal domain. Here, clear peaks in both
the individual and average data can be seen for time-points corre-
sponding to the MMN and P3a intervals, and, to a lesser-extent,
at time-intervals immediately preceding and following stimulus
onset. Interestingly, classifier performance of individual time-
points is maximal within the time-interval associated with the P3a
interval, which suggests that the attentional shift associated with
the P3a component corresponds to single-trial brain responses
that are relatively robust compared to the MMN component.

In the section on preprocessing, it was shown that temporal
downsampling led to an overall improvement in performance
while spatial downsampling had a negative impact on perfor-
mance. The results of both searchlight procedures can also be
used to investigate the effects of gradually increasing the number
of channels and time-points utilized in the classification analy-
sis. By sorting these channels and time-points on the basis of
both individual and averaged results, an incremental procedure
can be used to estimate which subsets lead to optimal classifier
performance. We prefer this incremental procedure to a more
comprehensive evaluation of electrode combinations due to the
very large (approximately 1089) number of possible permutations.

These results are presented in Figure 7C. Analyses based on
both individual and average searchlight results converge at rel-
atively similar points: between 7 and 13 channels and 1–3
time-points can be removed without reducing overall perfor-
mance. Results based on the average searchlight results across
participants lead to a slightly smaller number of channels and
time-points than the individual results. These channels and time-
points are illustrated in Figure 7D. In particular, the results of
channel removal could potentially be used to reduce the number
of electrodes in the optimal cap-montage to 51, a reduction of
approximately 20% that could positively impact cap-fitting times
in online settings. Further reductions appear to negatively impact
performance. It has been suggested that the use of a larger num-
ber of EEG channels generally improves the performance of ERP
component classification, provided that appropriate regulariza-
tion methods are used (Blankertz et al., 2010).

Methods also exist for evaluating individual spatio-temporal
features of the data. An AUC analysis represents one such
approach that has proven useful in the context of classification
analysis (Fawcett, 2006). AUC scores are derived from the receiver
operating characteristic (also referred to as the ROC curve),
which is an analytical tool developed in the context of signal
detection theory, and which is also widely used in psychophysics
(Green and Swets, 1966). Essentially, the AUC score (between 0
and 1) quantifies the ratio of true-positives to false-positives in
a signal detection task. This has proven useful in the context of
machine learning and pattern classification, as it provides a richer
measure of classifier performance than accuracy alone.

An AUC score of 0.5 indicates chance level performance, and
suggests no discriminative information is available. In the con-
text of the present binary classification problem, we would like to
know if a given spatio-temporal dimension of the data provides

information about the two classes (i.e., standard and deviant
trials). Following an analysis of each individual dimension, the
scores can be visualized as a two-dimensional image (i.e., space x
time), similar to that used for visualizing the grand-average dif-
ference wave in Figure 1. Examples of these plots can be found in
Figure 8A for the same two individual participants as in Figure 7,
as well as for the entire dataset. Features corresponding to the
MMN and P3a components can be seen at the expected channels
and time-points.

Similarly to the incremental procedure used to select channels
and time-points on the basis of the searchlight analysis, the AUC
scores for individual spatio-temporal dimensions can be used to
incrementally reduce the overall number of dimensions in the
data used to train a classifier. This procedure is illustrated using
both individual and group data in Figure 8B. Corresponding
effects on classifier performance and the data dimensionality are
presented in Figure 8C. Similarly to the searchlight procedure, the
results of this analysis suggest that specific channels and time-
points can be removed from the data without affecting overall
performance.

While searchlight and AUC methods both offer a means of
evaluating features that contribute to classifier performance, their
use in selecting features for removal does not lead to any substan-
tial gains in performance relative to the performance obtained
following the optimization of preprocessing parameters. This is
due to the fact that both methods are essentially univariate in
nature, while the classifier training methods are multivariate. In
essence, they fail to capture specific patterns in the covariance
of multiple features useful for distinguishing class-relevant sig-
nals mixed with class-irrelevant noise. In contrast, the gradient
descent and regularization methods employed during classifier
training to determine the optimal weighting of individual fea-
tures have in fact already selected the most informative features
of the data. However, both methods provide tools for under-
standing which features of the data contribute to classification
performance.

One final method of selecting features for classification is
based on the cognitive mechanisms underlying the generation
of specific ERP components. In the case of auditory mismatch
data, two principal components distinguish the standard and
deviant trials: the MMN and the P3a. While the MMN reflects
pre-attentive sensory processes that occur in bilateral auditory
cortex, the P3a component reflects subsequent activity generated
in frontal cortex that is associated with an attentional switching
mechanism (Näätänen et al., 2007; Polich, 2007). While these pro-
cesses are essentially intertwined, they reflect two distinct forms of
brain activity related to perception and attention. In the context
of different perceptual tracking and neurofeedback applications,
it may be the case that the decoding analysis should focus on one
or the other component, depending on which specific cognitive
processes are deemed to be most relevant.

Figure 9A presents the results of two additional classifica-
tion analyses performed using only data in the time inter-
vals associated with the MMN and P3a responses, relative
to the performance obtained using the entire 500 ms window
(−50 to 450 ms) previously established. Classifier performance
significantly decreased for both the MMN [t(13) = 4.715, p <
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FIGURE 8 | Area under the receiver operating curve (AUC) scores and

masking procedure. AUC scores are often used to evaluate the
class-relevant information present in datasets used for classifier training.
Additionally, they can be used to select the most relevant dimensions of the
data during classification analysis. (A) Such a procedure is illustrated here
using the same two individual participants as in Figure 7 as well as using all
participant data from Dataset 1. Individual dimensions were selectively
masked (i.e., removed from the dataset) on the basis of their AUC score. This
masking value was defined as |AUC − 0.5|, that is, the absolute value of the
AUC Score minus 0.5. This is effectively a measure of a feature’s distance

from the no discrimination line of the ROC plot. Additionally, we performed
this analysis on the basis of AUC scores calculated using both the individual
and the group data. (B,C) Using features selected on the basis of the group
data and a masking value of 0.04, it is possible to reduce the dimensionality of
the data by over half (from 1024 to approximately 400, shown in panel C)
without a reduction in average performance (see panel B). The remaining
dimensions correspond approximately to the two clusters observed in the
statistical analysis presented in Figure 1 (i.e., MMN and P3a components) as
well as to additional activity around stimulus onset and between 400 and
450 ms following stimulus onset.

0.001] and the P3a [t(13) = 4.796, p < 0.001] time windows.
This is not surprising, given that both windows provide infor-
mation about the types of trials being observed, and thus
offer some redundancy with respect to the binary classification
problem. Additionally, the relationship between classifier perfor-
mance and individual ERP component amplitudes is presented
in Figure 9B. In both cases, strong correlations suggest that the

analyses successfully capture relevant single-trial features in the
data. These results pose a trade-off with respect to the specificity
of a particular classification analysis (i.e., the focus on specific
cognitive processes and associated ERP components) and the
overall performance that can be expected from a given analysis.

The three approaches used to evaluate class-relevant features
in auditory mismatch data all tell a similar story: single-trial brain

Frontiers in Neuroscience | Auditory Cognitive Neuroscience December 2013 | Volume 7 | Article 265 | 12

http://www.frontiersin.org/Auditory_Cognitive_Neuroscience
http://www.frontiersin.org/Auditory_Cognitive_Neuroscience
http://www.frontiersin.org/Auditory_Cognitive_Neuroscience/archive


Brandmeyer et al. Decoding auditory mismatch response

responses measured during standard and deviant trials are pri-
marily distinguished by activity in time-windows corresponding
to the MMN and P3a ERP components, with maximal differ-
ences at fronto-central electrodes. Additional brain activation in
early (0–50 ms) and late (400 and 450 ms) time windows relative
to stimulus onset are also informative. In essence, the classifiers
trained in the present analyses make use of data features cor-
responding to a sequence of perceptual and cognitive processes
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FIGURE 9 | Classification of individual ERP components. (A) Two
classification analyses were performed using individual participant’s data
from Dataset 1. Subsets of the data from the time windows associated
with the MMN (82–207 ms) and P3a (238–363 ms) were selected and
classified. Relative to analyses using the entire time range (−50 to 450 ms),
cross-validation rates in both of these analyses were significantly lower,
indicated using asterisks: (∗∗∗p < 0.001 B) Correlation analyses of the
individual results with the ERP component amplitudes measured using the
individual difference waves were significant for both the MMN and P3a,
indicating that classifier performance is strongly related to the amplitude of
these components.

triggered by a stimulus. Single-trial EEG measurements are mod-
ulated in a consistent manner during deviant trials, providing the
classifier with features that can be used to predict which type of
trial has been observed.

2.4. ESTIMATING GENERALIZATION PERFORMANCE
While the previous cross-validation methods are useful for esti-
mating performance in the context of a particular classification
problem, the ability to generalize to new datasets lies at the heart
of real-world systems that use classifiers for different applica-
tions. This is referred to as “generalization” or “transfer learning”
(van Gerven et al., 2009). Typically, generalization performance
is lower than cross-validation performance due to non-stationary
features that aren’t adequately represented in the training data.
In EEG data, many factors influencing the measurement of class-
relevant brain signals will change between the collection of train-
ing data and the subsequent use of the trained classifier, such as
the quality of electrode connectivity and the individual’s subjec-
tive state (i.e., fatigue, concentration) (McFarland and Wolpaw,
2005; Blankertz et al., 2010). These effects are more pronounced
in paradigms that make use of across-session designs in which
training data is collected on one day, followed by online use of the
classifier on subsequent days. Therefore, it is useful to estimate
performance in these settings.

Figure 10 shows the mean generalization performance
obtained for individual participants using Dataset 2, for both
within- and across-session designs. For the within-session data,
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FIGURE 10 | Within-participant generalization across measurement

blocks and sessions. The ability of classifiers trained on individual data to
generalize to novel data collected during either the same or in different
measurement sessions was evaluated using Dataset 2. In the
within-session analysis, classifiers were trained using data collected in the
first measurement block and then tested using data from the second and
third blocks. In the across-session analysis, classifiers were trained using
data from all three blocks measured in the first session, and tested using
the initial blocks measured in the second and third sessions. For both
analyses, a significant drop in performance was observed relative to the
cross-validation rates obtained when training the classifiers. The
significance of these paired-sample t-test comparisons is indicated using
asterisks: ∗∗p < 0.01, ∗∗∗p < 0.001. The drop across sessions was more
severe, and could be potentially due to a number of factors, including
changes related to the placement of electrodes as well as differences in the
subjective states of the individual participants on different days.
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performance decreases significantly in the second [t(11) = 4.569,
p < 0.001] and third measurement blocks [t(11) = 4.222,
p = 0.0014] relative to the cross-validation rates obtained when
training a classifier using data from the first block, following a
similar pattern as seen with the cross-validation rates obtained
when training classifiers using these two blocks (shown in
Figure 5). The mean across-session generalization performance
was also significantly lower for the second [t(11) = 4.340,
p = 0.0012] and third [t(11) = 5.391, p < 0.001] sessions than
the cross-validation rates obtained when training a classifier
using all available data from measurements on the first session.
Here, the drop in performance is larger, given that the initial
cross-validation rates are also higher than when training using
only data from the first measurement block. However, in both the
within- and across-session versions of the analysis, the average
generalization rates are still significantly above chance level, with
performance approximately between 60 and 65%.

Another form of generalization that has drawn interest is the
ability of classifiers to generalize across participants. Here, a clas-
sifier is trained using data from multiple individuals, and is then
tested using another individual’s previously unseen data. Such
analyses have been used to investigate the extent to which various
forms of brain activity associated with auditory perception and
language processing overlap between individuals (Schaefer et al.,
2011; Herrmann et al., 2012; Brandmeyer et al., 2013). The use
of cross-participant classifiers has several potential advantages:
firstly, the use of data from multiple participants provides a means
for assembling relatively large datasets for classifier training,
which, as was discussed previously, can improve performance.
Additionally, the use of a previously trained cross-participant
classifier could eliminate the need for collecting training data
during online applications, thereby reducing the amount of time
required along with associated issues such as response habituation
and fatigue. On the other hand, cross-participant classifiers might
also fail to capture individual variability in class relevant features.

The results of cross-participant analyses of both Dataset 1 and
Dataset 2 are presented in Figure 11A. Here, we present a compar-
ison of the cross-validation rates obtained when training a clas-
sifier using individual data and the performance obtained when
applying a classifier trained using data from all other participants
(within the same dataset) to the same individual data. The analy-
sis for Dataset 1 made use of all available data, while the analysis
of Dataset 2 made use of 3 blocks of data (maximally 1800 tri-
als per participant). On average, there was approximately a 2–3%
decrease in performance relative to the individual cross-validation
rates. This decrease was significant for both Dataset 1 [t(13) =
3.876, p < 0.01] and Dataset 2 [t(11) = 5.056, p < 0.001]. This
decrease is substantially less than the across-session generalization
performance that was seen in the analysis of individual data from
Dataset 2, suggesting that cross-participant classifiers might offer
some advantages in paradigms making use of longitudinal mea-
surements. Classification rates for all participants in both datasets
were significantly above chance-level, based on the binomial con-
fidence intervals. In order to verify that that these results were
not influenced by a bias in the data, we also conducted a permu-
tation test of the results by shuffling the labels of the individual
epochs (10000 permutations) and estimating the p-value as the

fraction of the permutation distribution with scores greater than
or equal to the observed classification rate. Here, all of the results
were highly significant (p < 0.001, except for PP10 in Dataset 1,
p = 0.0025).

An additional question regards the extent to which these clas-
sifiers generalize to novel datasets collected using different stimuli
and measurement paradigms. This was evaluated by applying the
cross-participant classifiers trained in the previous analysis (using
all participants) to the other dataset. The results can be seen in
Figure 11B. While significant decreases in performance relative
to the cross-participant generalization rates were observed for
both Dataset 1 [t(13) = 3.341, p < 0.01] and Dataset 2 [t(11) =
4.735, p < 0.001], performance for both datasets was on average
higher than the across-day generalization performance obtained
when using individually trained classifiers. Only one participant
in Dataset 1 (PP10, classification rate = 0.521) did not show clas-
sification rates significantly above chance level; classification rates
for the remaining Dataset 1 participants (range: 0.566–0.734)
and all Dataset 2 participants (range: 0.541–0.690) were signifi-
cantly above chance. Such results suggest that the brain responses
collected using different variations of the MMN paradigm and
stimuli generalize well enough to obtain reasonably high clas-
sification accuracies. This in turn opens the door for online
paradigms that make use of variable stimuli and sequence types,
depending on required performance.

The average classification rates in the preceding analyses of
generalization performance fall approximately between 60 and
66%. In BCI paradigms that make use of single-trial classifica-
tion, it is common to combine predictions made for multiple
data epochs in order to increase the accuracy of the predictions.
Recalling equation 1, classifier predictions can be combined by
summing the decision values obtained for each epoch xi in a set
of k epochs.

Figure 11C presents an analysis of the improvements in accu-
racy obtained when combining single-trial predictions across
differing numbers of trials. The analysis made use of the predic-
tions obtained in the cross-participant and cross-dataset analyses
of generalization performance. As can be seen, average classifica-
tion rates rapidly improve when combining up to 10 trials, with
the rate of improvement gradually decreasing thereafter. While
the combination of multiple trials will lead to an increase in the
accuracy of predictions, it comes with a trade-off: collecting mul-
tiple epochs of data requires additional time, and thus decreases
the speed at which the system is able to make predictions. In the
BCI literature, the term “bit rate” is used to describe the infor-
mational output of a system (van Gerven et al., 2009), and is
a function of the classification accuracy and the time require to
obtain the data. Lower single-trial classification rates will lead to
systems with a lower bit rate, due to either the number of incor-
rect predictions made or the increased amounts of time needed
to collect multiple epochs in order to increase the accuracy of the
predictions. The role of this trade-off between time and accuracy
in the decoding of MMN responses for different applications is
discussed in the subsequent sections.

In summary, we have shown that classifiers trained on individ-
ual and group MMN data generalize well to new datasets. While
performance drops relative to the cross-validation rates obtained
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FIGURE 11 | Classifier generalization to novel participants and

datasets. (A) Both datasets were used to perform a cross-participant
analysis of generalization performance, in which a series of classifiers
were trained using all but one participant’s data, and then tested on the
remaining participant. The results of these analyses are presented along
with the individual cross-validation rates for comparison. For both
datasets, a significant decrease in performance relative to the individual
cross-validation rates was observed (approximately. 2–3% reduction). This
drop in performance is most likely due to the variability of ERP features
across individual participants, such as component latencies and spatial
topographies. However, it also appears that these features generalize
across participants to the extent that average classifier performance of
65% or higher is still possible. (B) The ability to generalize across
datasets was evaluated by training a classifier using all available data

from one of the datasets, and testing it using the data from the other
dataset. The average performance of these tests across individual
participants is shown relative to the cross-participant classification rates
obtained when training and testing within each dataset. As expected, a
significant drop in performance was observed in both cases. However, in
both cases, average classification rates were above 60%, well above the
binomial confidence interval, and higher than the performance observed
for within-participant generalization across sessions. (C) Classifier
predictions can be combined across multiple trials to increase prediction
accuracy. This was evaluated for both datasets using the results of the
within-dataset cross-participant analysis and the across-dataset analysis.
Results shown are averaged across all participants within each dataset.
For panels (B,C), the significance of the statistical comparisons are
indicated using asterisks: ∗∗p < 0.01, ∗∗∗p < 0.001.
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during classifier training, generalization performance within- and
across-sessions, as well as across participants and data sets, is
on average in the range of 60 to 65%, and can be improved by
combining classifier predictions across multiple, non-overlapping
trials.

3. ONLINE TRACKING OF PERCEPTUAL DISCRIMINATION
The previous sections illustrated how classification analyses can
be used together with single-trial data collected in an MMN
paradigm. We now illustrate how these methods can be used to
track the brain activity underlying the MMN and P3a responses
online. In particular, we show how the output of a logistic regres-
sion classifier can be interpreted as a probability that a particular
type of brain activity (i.e., the MMN response) has been observed
in a given epoch of data. Logistic regression classifiers make use
of the logistic function, which always takes on values in the range
[0, 1]:

p(+|x) = 1

1 − e−f (x)
(3)

where p(+|x) is the posterior probability of the positive class
given a data epoch x. A plot of the logistic function is shown in

Figure 12A. Thus, the output can be interpreted as the posterior
probability that the positive class has been observed by providing
it as input to the logistic function. The probability of the negative
class is equivalently 1 − p(+|x). Differences in the observed prob-
abilities obtained when applying a classifier to a given data epoch
reflect differences in the class-relevant features of the data. Thus,
the observed probabilities can be used to order or index data on
the basis of these features.

Figure 12B presents the distribution of decision values
obtained for cross-validation test-set data in Dataset 1 during the
cross-participant generalization analysis. Standard and deviant
trials are plotted with separate colors. The corresponding prob-
abilities for the trials can be inferred by referencing the logistic
function plot above it. By dividing this data into subsets on the
basis of ordered classifier decisions, it is possible to track under-
lying changes in the single-trial ERP morphology. Figure 12C
displays ERP images and ERP waveforms for 4 subsets of the data.
No distinction between standard and deviant trials or participants
is made. Rather, data are grouped on the basis of classifier deci-
sions. Each subset of the data has a distinct morphology, with
the primary differences related to the N1/MMN components,
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FIGURE 12 | Online tracking of single trial brain activity in an auditory

mismatch paradigm. (A) The logistic regression function. (B) Sorted
single-trial classifier decisions for test set data in the cross-participant
analysis of Dataset 1 (see Figure 11A, upper panel). A division of the trials
into quartiles on the basis of the decision values is shown using thick black
lines. (C) Grand average ERPs for sorted single-trial data in each quartile.
Upper panels show ERP activations at all 64 EEG channels, while the lower
panels show the averaged waveforms obtained at nine fronto-central

electrodes (see Figure 1 for reference). A clear shift in both the number and
amplitude of the components in the obtained ERPs is visible across the four
subsets of the data. (D) Grand average ERPs based on classifier signal
detection performance. Correct and incorrect decisions for both the target
(deviant) and non-target (standard) classes are used to group trials. As can be
seen, shifts in the relative amplitudes of multiple ERP components are
associated with correct and incorrect decisions for both standard and deviant
trials.
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the P2/P3a components, and a late component between 400 and
450 ms following stimulus onset. For example, when comparing
averaged data from the first quartile and the fourth quartile, the
opposite patterns of activity can be seen at approximately 100,
250, and 425 ms. Moreover, the gradual change in the average
amplitude of the corresponding ERP components can be clearly
observed in the second and third quartiles. This indicates that
the decision values are tracking amplitude fluctuations and spa-
tial shifts in brain activity at these specific points in time in the
single-trial data. An alternative grouping of trials is presented in
Figure 12D. Here, grand average ERPs are presented based on
whether a trial was classified correctly. This corresponds to “Hits”
and “Misses” for deviant trials, and to “True Negatives” and “False
Positives” for standard trials. A similar pattern to the ERPs in
Figure 12C emerges, suggesting that the trial-to-trial fluctuations
in brain responses at specific time points within a given trial-type
are being tracked by the classifier.

The ability to track fluctuations in specific ERP components
at the single-trial level offers the possibility to investigate the
short-term dynamics of the brain activity underlying their gen-
eration. The assumptions made by this approach are essentially
the same as those upon which general ERP methodology is based.
In essence, the time-locked brain activities measured in single-
trial EEG data reflect meaningful sources of variation, such as
individual differences (e.g., expert/non-expert), task differences
(e.g., target/non-target trials), habituation effects or stimulus
differences (e.g., standard/deviant trial). Using averaging, these
differences in the time-locked ERPs are typically visible to the eye,
and can be subjected to statistical analysis. However, such meth-
ods have no means of investigating trial-to-trial fluctuations in
the generation of these response. Methods such as ERP images
(Makeig et al., 2004) have been developed as a means of sorting
data from individually measured trials post hoc using a variable
of interest, such as oscillatory phase. Recently, models of MMN
generation based on the free-energy principle have been used to
explain trial-to-trial variation in MMN amplitudes (Lieder et al.,
2013). The continuous output of a classifier trained on represen-
tative data provides another means of indexing single-trial brain
responses that can also be used online.

Examples of classifier output across time can be found in
Figure 13A. The results of the cross-participant analysis for 150
consecutive trials are used to visualize fluctuations in the con-
tinuous output of the classifier for both standard and deviant
trials. Results are shown for three representative participants from
Dataset 1. The effects of using different numbers of trials are
also presented. Combining multiple trials leads to output which
is generally more stable across consecutive predictions, but also
reduces the frequency at which predictions are made about the
data. Individual participants also show differences with respect to
the relative strength of the predictions being made about standard
and deviant trials, as well as the specific points in time when fluc-
tuations in classifier output are observed. These differences are
most clearly observable when combining across 10 trials.

Mean output across all participants in Dataset 1 is shown
for different numbers of trials (1, 3, 5, or 10) in Figure 13B. In
general, overall predictive confidence improves through the com-
bination of multiple single-trial predictions. Continuous classifier

output also tends toward higher values for standard trials than
for deviant trials. This corresponds to a slightly higher single-trial
classification accuracy for standard trials (67.6%, see Figure 12D
“True Negatives”) than deviant trials (64.9%, see Figure 12D,
“Hits”), as well as to a median decision value (see Figure 12)
that is slightly negative. While these differences are small, they
suggest that classifier predictions about standard trials are more
reliable and confident than those about deviant trials. In the con-
text of the auditory mismatch paradigm being investigated, one
possible explanation is that there is less variation in the brain
responses measured on standard trials than in deviant trials, given
the greater frequency (and predictability) of standard trials. In
other words, brain responses measured in standard trials may be
more stable as compared to deviant trials.

Given the average single-trial classification accuracies (approx-
imately 66%) obtained in the present analysis, one factor that will
influence classifier output is change in the EEG signal unrelated to
the auditory evoked potentials being analyzed. This implies that
the output of the classifier is noisy. While data can be combined
across multiple trials to reduce the effects of this noise, this comes
with a trade-off: rather than estimating the probability of a partic-
ular set of brain responses at the single-trial level, an estimation
of these responses is made across a longer period of time. This
means that changes in the brain responses across shorter inter-
vals will be mixed together, and that a delay is introduced into the
tracking procedure.

The present approach of tracking brain responses underly-
ing perceptual discrimination is in many ways similar to BCI
paradigms which also make use of single-trial pattern classifica-
tion analysis. A key aspect is the interpretation of classifier output
as a continuous probability rather than as a binary decision. These
values correspond to graded modulations of brain activity mea-
sured using EEG at time points where ERP components such as
the MMN and P3a are typically observed, and as such, serve as
an index of ongoing perceptual discrimination. As such, ongo-
ing fluctuations in classifier output effectively track changes in
perception online. Differing degrees of single-trial classification
accuracy for standard and deviant trials are also reflected in the
continuous interpretation of classifier output, suggesting that the
patterns of brain activity measured in individual standard trials
are somewhat more stable than in deviant trials. While the accu-
racy of this tracking procedure is also influenced by noise sources
in the EEG signal, predictions can be combined across multi-
ple trials in order to obtain a more stable measure of perceptual
discrimination across longer time intervals.

4. POTENTIAL DOMAINS OF APPLICATION
This article has thus far presented a method for utilizing pattern
classification methods and single-trial EEG data recorded in two
variants of the auditory mismatch paradigm to track brain activ-
ity associated with perceptual discrimination processes. It serves
as a “recipe” for online applications that aim to monitor changes
in perceptual discrimination, including the effects of learning.

4.1. COGNITIVE MONITORING AND PASSIVE BCI
One domain where these decoding methods can be applied is cog-
nitive monitoring, in which real-time measurements are used by
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FIGURE 13 | Probabilistic interpretation of classifier output over trials.

(A) Data from three representative participants in Dataset 1 (left to right)
illustrates a probabilistic interpretation of classifier decisions for single and
varying group lengths of (non-overlapping) trials. Results are taken from the
first 150 consecutive trials analyzed in the cross-participant analysis. From top
to bottom, the number of trials used to make predictions about ongoing brain
responses is varied, using either 1, 3, 5, or 10 trials. This effectively reduces

the number of predictions that can be made: while 150 individual predictions
are made when using only 1 trial, only 15 predictions are made when using 10
trials. As can be seen, the output becomes increasingly stable as the number
of trials is increased. (B) Similarly to the increase in single-trial classification
rates observed when combining across multiple trials (see Figure 11C), the
mean of the continuous classifier output for all 150 trials increases as
predictions are combined across groups of trials of increasing size.

clinicians and researchers to infer the cognitive state of a user.
For example, the working memory load of an individual can
be monitored as they engage in challenging tasks using single-
trial decoding of EEG data (Brouwer et al., 2012). The ability to
detect ongoing changes in working memory and cognitive load
has also been proposed for use in the enhancement of aspects of
human-computer interfaces (Grimes et al., 2008).

Variations in MMN response characteristics are associated
with both differences in perceptual discrimination abilities and
with various clinical and medical conditions. The ability to
decode MMN responses at the single trial using existing classifiers
and to perform a probabilistic assessment of the MMN response
using a reduced number of trials and/or electrode recording
channels might offer a valuable alternative in settings where
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assessment of brain responses augments or is preferred to behav-
ioral assessments, but in which time is limited. This might include
forms of objective audiometry (Bukard et al., 2007), which
measure perceptual thresholds using auditory evoked potentials
instead of behavior.

Closely related to cognitive monitoring are passive BCIs
(Zander and Kothe, 2011), which measure ongoing brain
responses as an auxiliary input to an interface. For instance,
a computer could automatically adapt the difficulty of a given
learning task on the basis of ongoing measurements of work-
ing memory load. Similarly, a passive BCI based on an auditory
mismatch paradigm would be able to adapt the difficulty of
an auditory learning task on the basis of a probabilistic assess-
ment that an MMN response had been observed in the preceding
trial(s). Additional work should assess how adapting the diffi-
culty of a listening task (i.e., stimulus contrast size) influences
classifier performance, as changes in contrast salience are known
to influence the timing and amplitude of the MMN component
(Näätänen et al., 2007).

4.2. NEUROFEEDBACK
Neurofeedback is an approach in which measurements of an
individual’s ongoing brain activity are mapped onto a feed-
back signal of some kind, typically in the auditory or visual
modality (Hammond, 2011). The goal of neurofeedback is to
modulate the targeted forms of brain activity, which are associ-
ated with particular cognitive or mental states, such as attention,
concentration or anxiety (Lansbergen et al., 2011; Zotev et al.,
2011). For instance, many EEG-based approaches use measure-
ments in the frequency domain of oscillatory activity at specific
electrode locations in the alpha, theta and other bandwidths
(Hammond, 2011). Neurofeedback paradigms using fMRI mea-
surements can measure activity in specific brain regions, such
as the limbic system (Zotev et al., 2011) or perceptual cor-
tices (Yoo et al., 2006; Scharnowski et al., 2012). Neurofeedback
approaches have shown promise in treating various clinical disor-
ders such as chronic pain (de Charms, 2008) and tinnitus (Weisz
et al., 2011), and can also improve cognitive performance (Zoefel
et al., 2011) and emotional regulation abilities (Johnston et al.,
2010).

Two studies recently demonstrated that neurofeedback train-
ing using fMRI measurements of activity in early visual cor-
tex can induce perceptual learning effects (Shibata et al., 2011;
Scharnowski et al., 2012). These findings are relevant for the
present method, as modulations of the MMN response have
also been linked to perceptual learning (Tremblay et al., 1997;
Menning et al., 2000). In particular, Shibata et al. (2011) made
use of neurofeedback based on the decoding of specific activity
patterns in visual cortex corresponding to three Gabor stimuli
with different orientations. This was done using a logistic regres-
sion classifier. Similarly to the present method, the neurofeedback
was based on a probabilistic interpretation of a classifier’s output
when applied to novel data during the neurofeedback sessions.
Their results indicated that the mean probability that the tar-
geted class of brain response had been observed (i.e., the feedback
signal) increased on average across the course of the training
sessions. This suggests that the continuous changes in classifier

output observed online and provided as feedback reflect mean-
ingful variations in the decoded brain activations, and that mod-
ulation of this feedback signal can lead to concomitant perceptual
learning effects.

Given the link between MMN response characteristics and
the perceptual skills underlying language and music profi-
ciency, neurofeedback based on single-trial decoding of MMN
responses has the potential to augment language and music
training paradigms. Future research into MMN-based neurofeed-
back paradigms should investigate the specific task and stimulus
parameters that optimize the effectiveness of the neurofeedback
training paradigm. This might include issues such as stimulus
contrast size, task instructions (active or passive use of the neu-
rofeedback), and the number of trials used to generate feedback.
The trade-off between accuracy (i.e., single-trial classification
rates) and time (i.e., number of trials used to make predictions) is
an issue that has been considered in the context of reinforcement
learning (Cardinal, 2006). As both temporal delays and noise
influence the effectiveness of a reinforcer stimulus (in this case,
the classifier decisions mapped onto a feedback signal), either the
use of single- (noisy) or multi-trial (delayed) classifier output will
reduce the effectiveness of the feedback. It is worth noting that
the mean classifier output in the study of Shibata et al. (2011),
which was used to induce perceptual learning via neurofeedback
training, was comparable to that obtained here. This suggests that
even noisy neurofeedback signals can be effective in modulating
targeted forms of brain activity.

5. CONCLUSION
Pattern classification analyses play an increasing role in fun-
damental and applied research settings that make use of neu-
roimaging. This paper has presented a framework for decoding
analysis of EEG data collected in an auditory mismatch paradigm,
along with guidelines for the development and optimization of
online paradigms based on this framework. Firstly, it demon-
strated how MMN data collection and preprocessing can be opti-
mized for pattern classification analysis through careful selection
of filter frequencies and appropriate temporal downsampling.
The parameters used in these steps were shown to generalize
across MMN datasets. It then showed how searchlight, AUC
and ERP based methods can be used to evaluate the contribu-
tion of components such as the MMN and P3a to single-trial
decoding performance. Additionally, estimates of both across-
session and across-individual generalization performance were
presented. Finally, it was shown how the same decoding meth-
ods can be used online to index fluctuations in the amplitude of
brain responses at different points in time in single-trial data. This
framework can serve as a basis for subsequent research seeking
to implement specific online applications based on an auditory
mismatch paradigm.
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