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Dynamic Field Theory (DFT) is an established framework for modeling embodied cognition.
In DFT, elementary cognitive functions such as memory formation, formation of grounded
representations, attentional processes, decision making, adaptation, and learning emerge
from neuronal dynamics. The basic computational element of this framework is a Dynamic
Neural Field (DNF). Under constraints on the time-scale of the dynamics, the DNF is
computationally equivalent to a soft winner-take-all (WTA) network, which is considered
one of the basic computational units in neuronal processing. Recently, it has been
shown how a WTA network may be implemented in neuromorphic hardware, such as
analog Very Large Scale Integration (VLSI) device. This paper leverages the relationship
between DFT and soft WTA networks to systematically revise and integrate established
DFT mechanisms that have previously been spread among different architectures. In
addition, I also identify some novel computational and architectural mechanisms of DFT
which may be implemented in neuromorphic VLSI devices using WTA networks as an
intermediate computational layer. These specific mechanisms include the stabilization of
working memory, the coupling of sensory systems to motor dynamics, intentionality, and
autonomous learning. I further demonstrate how all these elements may be integrated
into a unified architecture to generate behavior and autonomous learning.
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1. INTRODUCTION
Organisms, such as animals and humans, are remarkable in
their ability to generate behavior in complex and changing envi-
ronments. Their neural systems solve challenging problems of
perception and movement generation in the real world with a
flexibility, adaptability, and robustness that surpasses the capabil-
ities of any technical system available today. The question of how
biological neural systems cope with the complexity and dynam-
ics of real-world environments and achieve their behavioral goals,
does not have a simple answer. Processes such as memory for-
mation, attention, adaptation, and learning all play crucial roles
in the biological solution to the problem of behavior generation
in real-world environments. Understanding how these processes
are realized by the neural networks of biological brains is at the
core of understanding biological cognition and building cognitive
artifacts that successfully contend with real world constraints.

The field of neuromorphic engineering may contribute to
the ambitious goal of understanding these cognitive processes
by offering platforms in which neural models may be imple-
mented in hardware using the VLSI (Very Large Scale Integration)
technology. The analog neuromorphic hardware shares several
properties with biological neural networks such as the presence
of the inherent noise, the potential mismatch of computing ele-
ments, constraints on connectivity, and a limited number of
learning mechanisms. Apart from these shared constraints, artifi-
cial and biological neural networks also maintain the advantages
of pervasive parallel computation, redundant systems to handle

sensory and motor noise, and low power consumption. Success in
the implementation of cognitive models on neuromorphic hard-
ware may lead to breakthroughs both in understanding the neural
basis of human cognition and in the development of performant
technical systems (robots) acting in real-world environments.

VLSI technology allows one to implement large neural net-
works in hardware by configuring the VLSI device to simulate
the dynamics and connectivity of a network of spiking neurons.
Such networks may be efficiently configured, connected to sen-
sors and motors, and operate in real time (Mead and Ismail,
1989; Indiveri et al., 2009, 2011). However, a challenging question
remains: how to develop these neuromorphic systems beyond
simple feed-forward reactive architectures toward architectures
capable of cognitive behavior?

Soft winner-take-all (WTA) connectivity has been recently
proposed as an important milestone on the way toward such
functional cognitive neuromorphic systems (Indiveri et al., 2009;
Rutishauser and Douglas, 2009). Soft WTA networks are com-
putational elements that are hypothesized to play a central role
in cortical processing (Douglas and Martin, 2004; Rutishauser
and Douglas, 2009). Recently, a wide variety of WTA networks
of spiking neurons have been implemented in hardware (Indiveri
et al., 2001; Abrahamsen et al., 2004; Oster and Liu, 2004; Indiveri
et al., 2009). These initial architectures have made use of WTA
connectivity to enable the effective processing of sensory infor-
mation (Liu and Delbruck, 2010) and the implementation of
finite state machines (Neftci et al., 2013). Soft WTAs introduce
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a cognitive layer to the neuromorphic hardware systems, which
enables reliable processing on unreliable elements (Neftci et al.,
2013). The WTA networks contribute to making neuromorphic
systems more cognitive, because they stabilize localized attractor
patterns in neural networks. These stable attractors organize the
dynamics of the neural system in a macroscopical way and enable
the coupling of the network to sensors and motors despite noise,
fluctuations, and neural mismatch. WTA connectivity therefore
introduces macroscopic neural dynamic states which may persist
long enough to interact with other parts of the neural-dynamic
architecture, thus moving neuromorphic systems beyond mere
reactive behavior.

However, there are still open questions on the way toward
cognitive processing with hardware WTAs. The first question con-
cerns representational power: How can we add contents to the
state in a WTA network and link this network state to perceptual
or motor variables? How can the system represent associations
and concepts such as “a red ball on the table” or “a hand mov-
ing toward an object” in this framework? The second line of
open questions concerns movement generation and the motor
behavior: How should the system represent and control move-
ments in this framework? How should it decide when to initiate
or terminate a movement? Finally, questions regarding learn-
ing also arise: How may a system learn WTA connectivity of
its neural network? How may the system learn the connections
between WTA networks in a complex architecture? Such ques-
tions are often addressed in the fields of psychophysics, cognitive
science, and artificial intelligence, but the proposed models and
solutions are often not compatible with neural implementations.
Here, I propose that Dynamic Field Theory (DFT) is a frame-
work which may make such cognitive models feasible for neu-
romorphic implementation because it formulates the principles
of cognitive representations and processes in a language com-
patible with neuromorphic soft WTA architectures. Identifying
the computational and architectural principles underlying these
cognitive models may facilitate the development of large-scale
neuromorphic cognitive systems.

DFT is a mathematical and conceptual framework which was
developed to model embodied human cognition (Schoner, 2008).
DFT is an established framework in modeling many aspects of
human cognition and development including visual and spa-
tial working memory, object and scene representation, sequence
generation, and spatial language (Johnson et al., 2008). DFT cog-
nitive models have been used to control robots and demonstrate
that the developed architectures can function autonomously in
the real-world (Erlhagen and Bicho, 2006; Sandamirskaya et al.,
2013). DFT builds on Dynamic Neural Fields (DNFs), which,
as I will discuss in the Methods section, are analogous to soft
WTAs in their dynamics and lateral connectivity within networks
(Neftci et al., 2010). Accordingly, their dynamical and structural
principles may be applied to the design of neuromorphic WTA
architectures.

In this paper, I discuss computational and architectural prin-
ciples recently developed in DFT that may be applied to WTA
neuromorphic networks. These principles can increase the repre-
sentational power and autonomy of such networks, and thus con-
tribute to the greater scalability and robustness of neuromorphic

architectures. In particular, these principles enable the coupling
of DNFs of differing dimensionality, the coupling of the archi-
tectures to sensors and motors, cognitive control over behavior,
and autonomous learning. On a simple exemplar architecture, I
demonstrate how these principles enable autonomous behavior
and learning in a neural-dynamic system coupled to real-world
sensors and motors. I also discuss the possibility of implementing
DNF architectures in neuromorphic hardware.

2. MATERIALS AND METHODS
2.1. DYNAMIC NEURAL FIELDS: BASIC DYNAMICS AND INSTABILITIES
A DNF is a mathematical description of activation dynamics
of a neuronal population in response to certain parameters of
the agent’s behavioral state. The behavioral parameters, such as
a perceptual feature, location, or motor control variable, span
dimension(s), over which the DNFs are defined (Schoner, 2008).
The dynamics of DNF may be mathematically formalized as a
differential equation, Equations (1–3), which was first analyzed
by Amari (1977), and used to model neuronal dynamics on a
population level (Wilson and Cowan, 1973; Grossberg, 1988;
Ermentrout, 1998).

τu̇(x, t) = −u(x, t) + h +
∫

f
(
u(x′, t)

)
ω(x − x′)dx′ + S(x, t), (1)

ω(x − x′) = cexc exp

[
− (x − x′)2

2σ2
exc

]
− cinh exp

[
− (x − x′)2

2σ2
inh

]
, (2)

f
(
u(x, t)

) = 1

1 + exp[−βu(x, t)] . (3)

In Equation (1), u(x, t) is the activation of the DNF over dimen-
sion x, to which the underlying neuronal population is responsive.
h is a negative resting level and S(x, t) is an external input driv-
ing the DNF. The lateral interactions in DFT are shaped by
a symmetrical homogeneous interaction kernel, Equation (2),
with a short-range excitation and a long-range inhibition (Ellias
and Grossberg, 1975); σexc, σinh, cexc, and cinh are the width
and the amplitude of the excitatory and the inhibitory parts of
the interaction kernel respectively. The sigmoidal non-linearity,
Equation (3), shapes the output of the DNF in such a way, that
only sufficiently activated field locations contribute to neural
interactions; β determines the slope of the sigmoid.

An example of how a DNF may be linked to the activity of
a neuronal population is shown in Figure 1: First, each neu-
ron in the population contributes its tuning curve in respect
to the behavioral parameter of interest as a (virtual) input to
the DNF. The tuning curve is determined as a dependence of
the mean firing rate or the action potential of the neuron on
the value of the behavioral parameter (Figure 1A). Second, the
tuning curves of the neurons in the population are summed,
each weighted by the current activation level (e.g., mean fir-
ing rate) of the respective neuron. The resulting Distribution of
Population Activity [DPA, introduced by Bastian et al. (2003)
to derive a DNF description of neuronal data on movement
preparation in studies of reaching movements in monkeys] rep-
resents the overall activity of the selected neuronal population
in response to a given stimulus or state of the behaving neural
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FIGURE 1 | Illustration of the relationship between neuronal activity

and a DNF. (A) Five exemplar “neurons” (neuronal populations) and their
tuning curves in the color dimension. (B) The tuning curves are scaled
by the mean firing rate (activation) of the neurons. (C) By summing the
scaled tuning curves, the Dynamic Population Activity [DPA, Bastian et al.

(2003)] curve in response to a given color stimulus is constructed. (D)

The DNF dynamics adds lateral interactions between neurons according
to Equation (1). The activation of the DNF is shown as a blue line, the
red line shows the output (sigmoided activation) of the DNF, the green
line is the DPA [same as in (C)].

system (Figures 1B,C). Finally, the neurons in the population
are assumed to be interconnected so that the nearby (in the
behavioral space) locations exert excitatory influence on each
other, and the far-off locations inhibit each other (“on-center, off-
surround” connectivity Ellias and Grossberg, 1975). The resulting
activation function u(x, t), is activation of the DNF. A sig-
moidal non-linearity f (u(x, t)), shapes the output of the DNF,
which impacts on the DNF itself through the lateral connections
and on the other parts of the neural architecture connected to
this DNF.

The pattern of lateral connectivity of DNFs results in
existence of a localized-bump solution in their dynamics
(Figure 1D), which is at the core of the properties of DNFs
to exert elementary cognitive functions, discussed further. In
the realm of modeling human cognition, activity peaks bridge
the low-level, graded sensory-motor representations to cate-
gorical, symbol-like representations. The localized (and sta-
bilized, i.e., sustainable over macroscopical time intervals)
representation facilitates perception, action generation, and
learning.

The connectivity pattern within DNF also makes it a soft WTA
architecture. Indeed, a WTA-connected network may be formal-
ized in terms of two neuronal populations, an excitatory and an
inhibitory one (Rutishauser and Douglas, 2009):

τẋi = −xi + f
(
Ii + αxi − β1xN − Ti

)
(4)

τ ˙xN = −xN + f
(
β2

N − 1∑
j = 1

xj − TN
)
. (5)

In Equations (4, 5), the excitatory population of nodes (neurons)
xi has an attractor dynamics driven by the external input, Ii, the
resting level potential, Ti, the self-excitatory term with strength α,
and the inhibitory term with strength β1. The inhibition is shared
by all excitatory nodes and is provided by the inhibitory neuron,
xN , which also follows an attractor dynamics, driven by activity in
the excitatory population and the resting level TN .

In these equations, the excitation constant, α, is analogous to
the excitatory part of the interaction kernel of a DNF, cexc in
Equation (2), and the strength of the coupling of the inhibitory
population onto the excitatory population, β1, corresponds to the
inhibitory part of the interaction kernel with the strength cinh.
In the DNF equation, the inhibition is coupled into the field’s
dynamics without delay, which is present in the WTA network
of Equations (4, 5).

In several studies on development of working memory and
spatial cognition in infants and toddlers, a more general DNF
equation is used, in which a separate inhibitory layer is intro-
duced [e.g., Johnson et al. (2006, 2008)]. Separate inhibitory layer
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leads to a delay in the inhibitory interaction among neural field’s
locations, which allows to model fine-grained effects in competi-
tion among items in the working memory depending on timing
of their presentation. The separate inhibitory layer is also used to
create a shared inhibition among perceptual and working mem-
ory neural fields, which plays a critical role in a change detection
process.

When DNF architectures are created to generate behavior in
an embodied agent, the DFT postulates that only attractor states
impact on the behavior of the controlled agent and thus the
dynamics of DNFs is typically tuned to relax as fast as possible
to the attractor state. Since this holds for the separate inhibitory
layer, the presence of the delay in the inhibitory dynamics is neg-
ligible in robotic DNF architectures. For this reason, when DNFs
are used to control robots, only single-layer dynamics are used,
where inhibition and excitation are integrated in a single equa-
tion. Since WTA dynamics in Equations (4,5) is a more general
formulation than DNFs, discussed in this paper, the equivalence
between these two mathematical structures requires a constraint
on the timing constant of the inhibitory population, which needs
to be faster than the timing constant of the excitatory population,
which in its turn is faster than the dynamics of sensor inputs to
the field.

The stable localized activity peak solution of the DNF dynam-
ics is the DNF variant of soft-WTA behavior. Intuitively, the
short-range excitatory interactions stabilize the peak solution
against decay and the long-range inhibitory interactions stabilize
peaks against spread by diffusion. The sites of the DNF, which
have above zero activity, are the “winners” of the DNF dynam-
ics. The sigmoidal non-linearity increases stability of the localized
peak. The important contribution of DFT to understanding the
dynamics of soft WTA networks is the characterization of sta-
ble states and instabilities between them based on the analysis of
Equation (1) (Amari, 1977; Schoner, 2008; Sandamirskaya et al.,
2013):

• The detection instability separates a quiescent state of the DNF
from an active state. In the quiescent state, the inputs are not
strong enough to collectively drive the DNF over the activa-
tion threshold. The DNF produces no output in this state,
it is invisible for the down-stream structures, driven by the
DNF. To the contrary, when inputs are strong enough to
drive the field over the activation threshold in one or sev-
eral locations, an activity peak emerges in the field, which
provides input to the down-stream structures, or the motor
system.

• The DNF’s inputs may drive the field over the threshold at sev-
eral locations. In this case, the field may build several activation
peaks or it may select and amplify activity at one location only,
depending on the spread of the lateral inhibition. In the latter
case, a selection instability separates an inactive state from an
activated state of the DNF dynamics.

• If the lateral interactions are strong enough, a peak in the DNF
may be sustained even if the input, which initiated the peak,
ceases. This working memory instability separates the state of
the field with no activation from the state, in which an external
inhibiting input is needed to deactivate the field.

• A negative external input or a decrease of the excitatory
input may lead to an extinction of the activity peak. This
causes a reverse detection instability, or forgetting insta-
bility, which separates an active state from the quiescent
state.

The localized-peak stable states and instabilities between them
form the basis for more complex DNF architectures, just as WTA
networks form the basis for state-based spiking network archi-
tectures. In the following, I present additional components in
the DFT, which may be translated into VLSI WTA networks and
enhance their scalability and autonomy.

2.2. COUPLING DYNAMIC NEURAL FIELDS TO SENSORY SYSTEMS
Figure 2 shows a small DNF architecture, which exemplifies the
coupling structures in DFT: coupling the DNFs to each other,
to sensors, and to motors. Here, I will introduce the principles
behind these coupling structures, while referring to the figure for
a concrete example. Overall, the simple system in the Figure 2
performs saliency computations based on color- or spatial cues
by means of neuronal dynamics (DNF or WTA computation)
and will be a building block, used in the example, presented in
Section 3.

In Figure 2, a two-dimensional perceptual color-space DNF
receives input from the robotic camera. Camera input to this
DNF is constructed in the following way. The raw hue value
of every pixel corresponds to the vertical location in the DNF,
the location of the pixel on the horizontal axis of the image
to the horizontal location in DNF, and the saturation value
of the pixel to the intensity value of the sensory input. Thus,
the input to the perceptual DNF is an unsegmented stream of
color-space associations. If the input is strong enough to pass
the activation threshold and is localized in space, a peak of
suprathreshold activity evolves, which represents the perceived
object. In Figure 2A, the camera input is not sufficient to activate
the perceptual DNF—only subthreshold hills of activity repre-
sent the four salient objects in the visual scene. However, when
the perceptual DNF receives an additional input, which speci-
fies the color of the target object and which overlaps with one
of the subthreshold hills, an activity peak evolves in the per-
ceptual DNF and signals the selection of an object of interest
(Figure 2B). The additional input arrives from another—color—
DNF, which is coupled to the perceptual DNF, as described in
Section 2.3.

Another example of coupling a sensor to the DNF is shown
in Figure 3. Here, a neuromorphic embedded Dynamic Vision
Sensor [eDVS, Conradt et al. (2009)] drives the perceptual DNF.
In the eDVS, each pixel sends an event when it sensed lumi-
nance changes. Consequently, the sensor naturally detects moving
objects. If the object of interest is not moving too fast relative to
the motor capabilities of the agent, the perceptual DNF may be
used to stabilize the representation of the instantaneous position
of the moving object in order to use this position to parametrize
the motor action (e.g., to direct the agent’s gaze toward the
object). If the object is moving too fast for the behaving system, a
predictive mechanism needs to be built into the DNF’s dynamics
(Erlhagen and Bicho, 2006).
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FIGURE 2 | A small DNF architecture, which consists of a

two-dimensional color-space DNF (center), one-dimensional color- and

space- DNFs, coupled to the perceptual DNF, a camera input (top), and

an attractor motor dynamics (bottom). (A) The camera input alone is not
sufficient to activate the perceptual DNF, the system is quiescent and
produces neither output nor behavior. (B) A color cue creates an activity peak

in the color DNF over the hue value of the named color. This activity peak is
projected onto the 2D perceptual DNF as a subthreshold activity ridge, which
overlaps with the camera input for the green object. The resulting activity
peak in the 2D DNF provides input to the spatial DNF, which, in its turn, sets
an attractor for the motor dynamics. The latter drives the motor system of the
agent, initiating an overt action.

FIGURE 3 | The neuromorphic Dynamic Vision Sensor [eDVS, Conradt

et al. (2009)] on a pan-tilt unit, the output of the eDVS, integrated over a

time window of 100 ms, and the instantaneous output of the perceptual

DNF. The perceptual DNF enhances the perceptual input in a selected region
(which reached the activation threshold first), and inhibits all other locations in
the visual array, performing an elementary object segregation operation.

2.3. DYNAMIC NEURAL FIELDS OF HIGHER DIMENSIONALITY AND
COUPLINGS

A single DNF describes activation of a neuronal popula-
tion, which is sensitive to a particular behavioral parameter.
Activity of any behaving agent, however, is characterized by
many such parameters from different sensory-motor modal-
ities. In DFT, there are two ways to represent such multi-
modality of a system: multidimensional DNFs and coupled
DNFs.

The multidimensional DNFs are sensitive to combinations
of two or several behavioral parameters. The perceptual color-
space field in Figure 2 is an example of a two-dimensional DNF,
which may be activated by combinations of color and locations

in space. Such multidimensional DNFs have typically low
dimensionality.

Two DNFs of the same or different dimensionality may be
coupled with weighted connections, according to Equation (7)
(Zibner et al., 2011).

τu̇1(x, t) = −u1(x, t) + h +
∫

f
(
u1(x′, t)

)
ω(x − x′)dx′

+ S(x, t), (6)

τu̇2(y, t) = −u2(y, t) + h +
∫

f
(
u2(y′, t)

)
ω(y − y′)dy′

+ W(x, y) × f (u1(x, t)). (7)
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Here, u1(x, t) and u2(y, t) are two DNFs, defined over two differ-
ent behavioral spaces, x and y. The first DNF provides an additive
input to the second DNF through the (adaptable) connection
weights matrix, W(x, y), which maps the dimensions of the space
x onto dimensions of the space y.

For example, the one-dimensional color DNF in Figure 2 rep-
resents distributions in the color (hue) dimension. This DNF
projects its activation onto the two-dimensional color-space DNF.
In particular, since the two DNFs share one dimension (color),
the output of the one-dimensional DNF is copied along the not
shared dimension (space) of the two-dimensional DNF. This typi-
cally results in a ridge-shaped input to the two-dimensional DNF
(stamming from the Gaussian shape of the activity peak in the
one-dimensional DNF). If this ridge overlaps with a localized sub-
threshold input in the two-dimensional DNF, an activity peak
evolves over the cued (in this case, by color) location (Zibner
et al., 2011).

Further, the localized output of the two-dimensional percep-
tual DNF in Figure 2 is in its turn projected on a one-dimensional
spatial DNF, which represents locations on the horizontal axis of
the image plane. This projection may be either a sum or a maxi-
mum of the DNF’s output in the dimension, not shared between
the two DNFs (here, color). An example of an adaptive cou-
pling between DNFs of the same dimensionality is presented in
Section 2.6.2.

In terms of WTA network, coupling between two DNFs is
equivalent (under constraints, stated in Section 2.1) to two WTA
networks, one of which receives output from the other one as an
external input, which is mapped through synaptic connections.

2.4. COUPLING THE DNF TO ATTRACTOR MOTOR DYNAMICS
In order to close the behavioral loop, DNF architectures have to
be coupled to the motor system of a behaving agent. The control
of motor actions may be expressed mathematically as an attractor
dynamics, where the neural system sets attractors for motor vari-
ables, such as position, velocity, or force of the effector. Deviations
from the attractor due to an external or an internal perturba-
tion are then actively corrected by the neural controller in the
motor system. Such motor attractor dynamics have been probed
in control of mobile robots (Bicho and Schoner, 1997) and multi
degrees of freedom actuators (Schaal et al., 2003; Iossifidis and
Schöner, 2004; Reimann et al., 2011), and also used to model
human motor control (Latash et al., 2007).

In order to couple the DNF dynamics to the attractor dynam-
ics for motor control, the space-code representation of the DNF
(in terms of locations of activity peaks) has to be mapped onto
the rate-code representation of the motor dynamics (in terms
of the value of the control variable). Figure 2 (bottom) and
Equation (8–9) show how the space-code of a DNF may be trans-
lated into the rate-code of attractor dynamics through a weighted
projection to the rate-coding neural node. The weights (or gain
field, λ(x)) of this projection may be subject to learning (or
adaptation) (see Section 3).

τu̇(x, t) = −u(x, t) + h +
∫

f
(
u(x′, t)

)
ω(x − x′)dx′ + S(x, t), (8)

τφ̇(t) = −φ

∫
f (u(x, t))dx +

∫
λ(x)f (u(x, t))dx. (9)

Here, u(x, t) is a one-dimensional motor DNF, which represents
the target values of the motor variable using space coding. φ

is the motor variable, which controls movement of the robot
(e.g., velocity, position, force of a motor, or the target elonga-
tion of a muscle). This variable follows an attractor dynamics,
Equation (9) with an attractor defined by the position of the
activity peak in the DNF, u(x, t). This attractor is only turned on
when an activity peak is present in the motor DNF. The typical
choice for λ(x) is λ(x) = cx, but generally, this factor is subject to
a learning (gain adaptation) process (see Section 2.6.3).

In a WTA architecture, the motor variable φ [Equation (9)]
may be implemented as a neural population without lateral con-
nections, which receives input from the a motor WTA [that is
analogous to the motor DNF in Equation(8)] through a set of
synaptic connections, λ(x). This input is summed by the motor
variable population. The critical difference of this dynamics to the
DNF (or WTA) dynamics is that the motor command is defined
by the activity of the population rather than the location of an
activity peak in the population (Bicho et al., 2000).

2.5. AUTONOMY AND COGNITIVE CONTROL IN DFT
Critically, in order to close the behavioral loop, the cognitive con-
trol of the neural architecture is necessary. In particular, the agent
that has access to several perceptual and motor modalities has
to decide at each point in time, which perceptual input to use
to control the motor system and which effector of the motor
system to use to achieve a behavioral goal. This problem was
addressed recently in DFT in terms of modeling executive con-
trol in human cognition (Buss and Spencer, 2012) and in the
behavioral organization in robotics (Richter et al., 2012).

The crucial element that gives a neural architecture the desired
autonomy of executive control is based on the principle of inten-
tionality (Searle, 1983; Sandamirskaya and Schoner, 2010a). In
practice, this principle amounts to a structural extension of DNFs,
so that every behavioral state of the system has two components—
a representation of an intention, which eventually drives the
motor system of the agent, and a representation of the condition-
of-satisfaction (CoS), which is activated by the sensory input
when the action is finished and which inhibits the respective
intention. The CoS DNF is biased, or preshaped, by the intention
DNF to be sensitive to particular sensory input, characteristics for
the action outcome. This coupling from the intention to the CoS
DNF carries a predictive component of the intentional behav-
ior, which may be shaped in a learning process (Luciw et al.,
2013). Together, the intention and the CoS comprise an elemen-
tary behavior (EB, Richter et al., 2012), which generally has the
dynamics of Equations (10).

τu̇int(x, t) = −uint(x, t) + h +
∫

f
(
uint(x′, t)

)
ω(x − x′)dx′

+ S1(x, t) − c1

∫
f (uCoS(y, t))dy, (10)

τu̇CoS(y, t) = −uCoS(y, t) + h +
∫

f
(
uCoS(y′, t)

)
ω(y − y′)dy′

+ S2(y, t) + c2W(x, y)f (uint(x, t))

Here, uint(x, t) is a DNF which represents possible intentions of
the agent. These intentions may be motor or perceptual goals,

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 276 | 6

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Sandamirskaya DNFs and cognitive neuromorphic architectures

which the agent aims to achieve through contact with the envi-
ronment. For instance, “locate a red object” is a typical perceptual
intention, “turn 30 degrees to the left” is an example of a motor
intention. x is a perceptual or motor variable, which characterizes
the particular intention; S1(x, t) is an external input which acti-
vates the intention. This input may be sensory (condition of initi-
ation) or motivational (task input) (Sandamirskaya et al., 2011).
uCoS(y, t) is the condition-of-satisfaction DNF, which receives a
localized input from the intention DNF through a neuronal map-
ping W(x, y) (as introduced in Section 2.3). This input makes
the CoS DNF sensitive to a particular part of the sensory input,
S2(y, t), which is characteristic for the termination conditions of
the intended perceptual or motor act. The mapping W(x, y) may
be learned (Luciw et al., 2013). When the CoS DNF is activated,
it inhibits the intention DNF by shifting its resting level below the
threshold of the forgetting instability.

The DNF structure of an elementary behavior (EB) further
stabilizes the behavioral state of the neural system. Thus, the
intentional state of the system is kept active as long as needed to
achieve the behavioral goal. The CoS autonomously detects that
the intended action is successfully accomplished and inhibits the
intention of the EB. Extinction of the previously stabilized inten-
tion gives way to the next EB to be activated. With this dynamics,
the exact duration of an upcoming action does not need to be
represented in advance (and action durations may vary to a large
degree in real-world environments). The intentional state will
be kept active until the CoS signals that the motor action has
reached its goal. This neural-dynamic mechanism of intention-
ality enables autonomous activation and deactivation of different
modalities of a larger neuronal architecture.

Since the intention and the CoS are interconnected DNFs,
their WTA implementation may be achieved as described in
Section 2.3.

2.6. LEARNING IN DFT
The following learning mechanisms are available in the DFT
framework.

2.6.1. Memory trace of previous activity
The most basic learning mechanism in DFT is the memory trace
formation, also called preshape. The memory trace changes the
subsequent dynamics of a DNF and thus is considered an ele-
mentary form of learning. In neural terms, the memory trace
amounts to local increase in excitability of neurons, which may
be counterbalanced with homeostatic processes.

Formally, the preshape is an additional layer over the same
dimensions as the associated DNF. The preshape layer receives
input from the DNF, which is integrated into the preshape
dynamics as an attractor that is approached with a time-constant
τl/λbuild, Equation (11). This build-up constant is slower than the
time-constant of the DNF dynamics. When there is no activity in
the DNF, the preshape decays with an even slower time-constant,
τl/λdecay in Equation (11).

τlṖ(x, t) = λbuild

(
− P(x, t) + f

(
u(x, t)

))
f
(
u(x, t)

)
−λdecayP(x, t)

(
1 − f

(
u(x, t)

))
. (11)

Here, P(x, t) is the strength of the memory trace at site x of the
DNF with activity u(x, t) and output f

(
u(x, t)

)
, λbuild and λdecay

are the rates of build-up and decay of the memory trace. The
build-up of the memory trace is active on sites with a high pos-
itive output f

(
u(x, t)

)
, the decay is active on the sites with a low

output. The memory trace P(x, t) is an additive input to the DNF
dynamics.

The memory trace formation can be used to account for one-
shot learning of object categories (Faubel and Schöner, 2009),
representation of visual scenes (Zibner et al., 2011), or action
sequences (Sandamirskaya and Schoner, 2010b).

In a neuromorphic WTA implementation, the memory trace,
or preshape, may be interpreted as the strength of synaptic
connections from the DNF (or WTA), u(x, t), to a “memory”
population. This “memory” population activates the preshape
by transmitting its activation through the learned synaptic con-
nections, P(x, t). Learning of the synaptic connections amounts
to attractor dynamics [as in the first parenthesis of Equation
(11)], in which the pattern of synaptic connections approaches
the pattern of the DNF’s (WTA’s) output. This learning dynamics
may also be implemented as a simple Hebbian rule: the synap-
tic weights which connect active sites of the DNF (WTA) with
the memory population are strengthened. Another possible inter-
pretation of the preshape as a change in the resting levels of
individual nodes in the DNF (WTA) is harder to implement in
neuromorphic WTA networks.

2.6.2. Learning mappings and associations
When the memory trace dynamics is defined within a structure
with a higher dimensionality than the involved DNFs, the pre-
shape dynamics leads to learning of mappings and associations.
The dynamics of an associating map is similar to the memory
trace dynamics, Equation (12).

τẆ(x, y, t) = ε(t)
(

− W(x, y, t) + f (u1(x, t)) × f (u2(y, t))
)
. (12)

The weights function, W(x, y, t), which couples the DNFs u1(x, t)
and u2(y, t) in Equation (12), as well as in Equations (4, 5),
has an attractor at the intersection between positive outputs of
the DNFs u1 and u2. The intersection is computed as a sum
between the output of u1, expanded along the dimensions of the
u2, and the output of the u2, expanded in the dimensions of the
u1, augmented with a sigmoidal threshold function (this neural-
dynamic operation is denoted by the × symbol). The shunting
term ε(t) limits learning to time intervals when a reward-
ing situation is perceived, as exemplified in the architecture in
Section 3.

This learning mechanism is equivalent to a (reward-gated)
Hebbian learning rule: the cites of the DNFs u1 and u2 become
coupled more strongly if they happen to be active simulta-
neously when learning is facilitated by the (rewarding) sig-
nal ε(t). Through the DNF dynamics, which builds localized
activity peaks in the functionally relevant states, the learning
dynamics has the properties of the adaptive resonance net-
works (ART, Carpenter et al., 1991), which emphasize the
need for localization of the learning processes in time and in
space.
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2.6.3. Adaptation
Adaptation [Equation (13)] is considered a learning process,
which amounts to an unnormalized change of the coupling
weights (gains) in a desired direction. A typical example is learn-
ing in the transition from the DNF’s space-code to the rate-code
of motor dynamics.

τλ̇(x, t) = ε(t)f (u(x, t)) (13)

ε(t) = error × time window

Here, λ(x, t) is a matrix of weights, or gains, defined over the
dimension of the DNF, u(x, t), which is coupled to the motor
dynamics, as in Equation (9). The gain changes in proportion
to the output of the driving DNF, u(x, t), in a learning win-
dow, defined by the term ε(t). The learning window is non-zero
in a short time window when an intended action within EB, to
which the DNF u(x, t) belongs, is finished (the respective uCoS is
active), but activity in the intention DNF is not yet extinguished.
The error is determined in a DNF system, which compares the
outcome of an action with the intended value of the motor
variable and determines the direction of change of the weights
in λ(x, t).

Now that all neural-dynamic structures developed within DFT
are presented, which may be implemented in hardware neu-
ronal networks through the WTA architecture, I will introduce
an exemplar robotic architecture, which integrates these mecha-
nisms in a neural-dynamic system, which generates behavior and
learns autonomously.

3. AN EXAMPLE OF AN ADAPTIVE ARCHITECTURE IN DFT
3.1. THE SCENARIO AND SETUP
The simple, but functioning in a closed loop learning architecture
presented in this section employs several of the principles, pre-
sented above, such as categorization properties of DNFs, coupling
between DNFs of different dimensionality, coupling to sensors
and motors, autonomous action initiation and termination, as
well as learning.

The robot, used to demonstrate the closed-loop behavior
of a neuromorohic agent, consists of an eDVS camera and a
pan-tilt unit. The eDVS camera has 128x128 event-based pix-
els, each sending a signal when a luminance change is detected.
The pan-tilt unit consists of two servo motors, which take
position signals in the range 0–2000 and are controlled to
take the corresponding pose with a small latency. The task
for this robot is to direct its gaze at a small blinking cir-
cle, which is moved around on a computer screen in front of
the robot. A successful looking movement leads to the blink-
ing circle settled in the central portion of the robot’s camera
array.

In order to accomplish this task, the robot, similarly to an ani-
mal, needs to detect the target in the visual input and in particular,
estimate and represent its location relative to the center of the field
of view of the robot. Next, according to the current location of the
target, the system needs to select a motor command, which will
bring the target into the center of the field of view. Thus, the sys-
tem needs to select the desired values for pan and tilt, which will
be sent to the servo motors.

This simple task embraces the following fundamental prob-
lems. First, the mapping between the target location and the
required motor command is a priori unknown. The system needs
to calibrate itself autonomously. In particular, the system needs
to learn a mapping between the position of the input in the cam-
era array and the motor command, which will bring the target in
the center of the visual field. The second fundamental problem
revealed in this setting is that when the camera moves, the per-
ceived location of the target on the surface of the sensor changes,
and the system needs a mechanism to keep the initial location
of the target in memory in order to learn the mapping between
the visually perceived locations and the motor commands. The
third problem is the autonomy of the looking behavior: the sys-
tems needs a mechanism to update the target representation after
both successful and unsuccessful looking actions.

Figure 4 shows the scheme of the DNF architecture, which
demonstrates how all these problems may be addressed in a
closed-loop system. Next, I will present the dynamical structures,
which constitute the architecture.

3.2. THE NEURAL-DYNAMICS ARCHITECTURE
3.2.1. Perceptual DNF
The perceptual DNF is coupled to the eDVS, as described in
Section 2.2 and effectively performs a low-pass filter operation on
the camera input in time and in space. This DNF builds peaks of
activation at locations, where events are concentrated in time and
in space in the visual array of the robot.

3.2.2. Visual intention DNF
This DNF builds sustained activity peaks that represent the target
locations (Figure 5). The peaks are sustained even if the input,
which initiated them ceases or moves. Thus, even during or after
a gaze movement, the representation of the current target is stably
represented. This allows, on the one hand, the robust coupling to
the motor system (the attractor, set for the motor system, is guar-
anteed to be kept constant for the time of the movement). On the
other hand, this memory system enables learning, since the rep-
resentation of the previous target is still active when a rewarding
input is perceived after a successful gaze.

3.2.3. Motor intention DNF
The visual intention DNF represents the target of the current gaze
action in sensory, here visual, coordinates. The movement gener-
ation system takes attractors in the motor coordinates, however
(here, the desired pan and tilt). The motor intention DNF is

FIGURE 4 | The DFT architecture for looking. See main text for details.
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FIGURE 5 | The cascade from the visual input to perceptual DNF to the visual intention (target) DNF segregates and stabilizes the selected region in

the input stream.

defined over the motor coordinates and an activity peak in this
DNF creates an attractor for the motor dynamics and initiates a
gaze movement.

3.2.4. Condition of satisfaction node
The CoS DNF in this architecture is a zero-dimensional CoS node,
since it monitors directly the state of the motor system, which
is characterized by two single-valued variables, pan and tilt. The
CoS node is activated when the motor action is accomplished
[Equation (14)].

τv̇cos(t) = −vcos(t) + h + cexcf (vcos(t)) + c

∫
f (umot(y, t))dy

+ cafdiff , (14)

where vcos(t) is the activation of the CoS node for either the pan or
the tilt movement (the CoS of the overall movement is a thresh-
olded sum of the two CoSs). The CoS node is activated if (1) there
is activity in the motor intention DNF, umot , and (2) the detec-
tor fdiff = f (0.5 − |ξpan − ˙pan|) signals that the state variable for
the pan or the tilt dynamics reaches the respective attractor, ξ . c
and ca are scaling constants for these two contributions, cexc is the
strength of self-excitation of the CoS node.

The activated CoS node inhibits both the motor and the visual
intention DNFs below activation threshold. The otherwise self-
sustained activity peaks in these DNFs cease, which causes the
CoS node loose its activation as well. The intention DNFs are
released from inhibition and regain their initial resting levels,
allowing the sensory input to induce a stabilized representation
of the next target.

3.2.5. The transformation array
The transformation between the visual and the motor coordi-
nates, needed to achieve a particular behavioral goal, e.g., center
the target object in the visual field, is a priori unknown. In the
DFT architecture presented here, this transformation is repre-
sented by a randomly initialized coupling matrix, which imple-
ments a potential all-to-all connectivity between the two DNFs.
Thus, an active visual intention DNF initially induces a peak at a
random location in the motor DNF. The lateral interactions in the
motor DNF ensure that a peak may be built, although the con-
nection matrix is random (and sparse) in the beginning of the
learning process.

In the transformation array, a learning dynamics is imple-
mented [Equation (12)]. The learning window, λ(t) is defined
by the activity in the visual match DNF, which signals when the
visual input falls onto the central part of the camera array.

3.2.6. The visual match DNF
The visual match DNF receives a preshape in the center of the
field when the visual intention DNF is active. This preshaping
input is equivalent to an expectation to perceive the target in the
visual field, which biases the visual match DNF to be sensitive to
the respective sensory input. The connectivity which enables this
predicting coupling is assumed to be given here, but could poten-
tially emerge in a developmental process [e.g., similar to Luciw
et al. (2013)].

τu̇match(x, t) = −umatch(x, t) + h +
∫

f (umatch(x′, t))w(x − x′)dx′

+ f (uperc(x, t)) + cG(x, t)

∫
f (uvis(x, t))dx, (15)

In Equation (15), the visual match DNF, umatch(x, t) is defined
over the same (visual, 2D here) coordinates as the perceptual
DNF, uperc, and the visual intention DNF, uvis, and receives
a one-to-one input from the perceptual DNF, as well as a
Gaussian-shaped input, cG(x, t) if there’s activity in the visual
intention DNF. When the visual match DNF is active, it drives
learning in the transformation array, according to Equations
(16, 12).

ε(t) =
∫

f (umatch(x, t))dx. (16)

3.3. THE DYNAMICS OF THE ARCHITECTURE
Figure 6 show the DNF architecture for looking at work.

When salient visual input is perceived by the eDVS sensor, one
or several activity peaks emerge in the perceptual DNF (Figure 6,
left), the most salient of these peaks (i.e., the one that reached
the activation threshold first) drives the visual intention DNF
(Figure 6, middle) and induces a self-sustained activity peak in
this DNF. The peak in the visual intention DNF is sustained
even when the camera starts moving and the visual input shifts,
representing the instantaneous goal of the upcoming camera
movement.
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FIGURE 6 | The DFT architecture for autonomous looking and learning

the sensorimotor map. The robotic camera provides input to the perceptual
DNF, which performs initial segregation of object-like regions in the visual
stream. The visual intention DNF selects and stabilizes the spatial
representation (in visual coordinates) of a single target for the upcoming
looking action. Through adaptive weights, the visual intention DNF provides

input to the motor intention DNF, which generates attractors for the motor
dynamics. Motor dynamics signals completion of the looking act through the
CoS node, which inhibits the intention DNFs. If the looking action brings the
target object into the foveal (central) region of the field of view, the adaptive
weights are updated according to the current (decaying) activation in the
visual and motor intention DNFs.

The visual intention DNF induces an activity peak in the
motor intention DNF through the coupling weights, which are
random in the beginning of the learning process. A localized
activity peak emerges in the motor intention DNF, formed by the
lateral interactions in this field. The motor intention peak sets an
attractor for the dynamics of the pan and the tilt control variables,
which drive the robotic pan-tilt unit. When the control variables
are close to the attractor, the CoS node is activated and inhibits
the visual and the motor intention DNFs. Activity in the motor
intention DNF ceases in a forgetting instability, which leads to the
CoS node to loose its activation as well. The inhibitory influence
on the intention DNFs is released and the visual intention DNF
may build a new activity peak from the perceptual input.

When the camera movement is finished (event, detected by the
CoS node), if the input falls onto the central part of the visual
array, the visual match DNF is activated and triggers the learn-
ing process in the adaptive weights. In particular, the weights are
strengthened between the currently active positions in the visual
intention DNF and the currently active positions in the motor
intention DNF, which correspond to the just-been-active inten-
tions. When the CoS node inhibits the intention DNFs, learning
stops and a new gazing action is initiated.

Figure 7 shows the activity of the motor variables during the
gaze movements in the learning process and Figure 8 shows the
2D projections of the 4D transformation matrix, learned over

several hundred gaze movements to different target locations
(Sandamirskaya and Conradt, 2013).

4. DISCUSSION
4.1. GENERAL DISCUSSION
The principles of DFT presented in this paper set a possible
roadmap for the development of neuromorphic architectures
capable of cognitive behavior. As modeling framework, DFT
is remarkable in its capacity to address issues of embodiment,
autonomy, and learning using neural dynamics throughout. In
this paper, I have reviewed the DFT mechanisms that provide for
the creation of stabilized sensory representations, learned associa-
tions, coupled sensory-motor representations, intentionality, and
autonomous behavior and learning. In an exemplar architecture,
I demonstrated how the computational and architectural princi-
ples of DFT come together in a neural-dynamic architecture, that
coupled a neuromorphic sensor to motors and autonomously
generated looking behavior while learning in a closed behavioral
loop. The categorization properties of DNFs achieve the stabiliza-
tion of the visual input against sensory noise, while the memory
mechanisms allow the relevant representations to be kept active
long enough to parameterize and initiate motor actions and also
drive the learning process after a successful movement. Adaptive
couplings between DNFs together with a mechanism that
enables autonomous activation and deactivation of intentions
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FIGURE 7 | Top: Time-course of the activation of the motor variable (velocity of the pan joint) during four steps of the learning procedure. Middle: The value of
the pan variable. Bottom: Activation of the CoS node.

FIGURE 8 | Two exemplar projections of the learned 4D transformation

array between the visual and the motor intention DNFs of the agent.

(A) Weights’ strength at the given visual-intention DNF horizontal position
as function of motor intention field coordinates (overlayed projections along
ymot ). (B) Weights’ strength at the given visual-intention DNF vertical
position.

make for an architecture in which autonomous learning
accompanies behavior.

In order to “translate” the language of behavior-based attrac-
tor dynamics of DFT to spiking networks implemented in VLSI,
several possibilities have been reported recently. One solution

(Neftci et al., 2013) constitutes a method to set parameters of
the neuromorphic hardware in relation to parameters of a more
abstract WTA layer. By measuring the activity of hardware units,
the parameter mappings are calibrated in an automated proce-
dure. Another way to translate DNF dynamics to spiking net-
works is to use the vector-encoding of a dynamical system in the
neural-dynamic framework of Eliasmith (2005). This framework
allows one to implement the attractor dynamics of DNFs in terms
of a network of spiking units, which in its turn may define the
parametrization for a VLSI neuromorphic network.

These powerful tools allow one to translate between levels of
description and can be used to implement different models of
cognition in order to facilitate the development of behaving, neu-
romorphic cognitive systems. DFT is one of the frameworks that
defines the principles and constraints critical to this goal. There
are of course several other frameworks that may be used for this
purpose, each with its own advantages and limitations. Thus, the
probabilistic framework allows one to use noisy and incomplete
sensory information to infer hidden states of the environment and
weigh alternative actions, which may bring the agent closer to its
goals. Such a Bayesian framework has been applied both in the
field of modeling human cognition [e.g., Griffiths et al. (2008)]
and in robotics (Thrun et al., 2005). However, this framework has
two limitations with respect to modeling human cognition. First,
the probabilistic models focus on the functional or behavioral
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aspects of cognition and not the neuronal mechanisms underly-
ing cognitive processing. They often require normalization pro-
cedures which are not trivial to implement neurally. Second, the
probabilistic models often need an external mechanism to make
inferences on the probability distributions and do not account
for the process of decision making. Thus, the Bayesian archi-
tectures may achieve powerful performance and may be used to
account for empirical data on human cognition, but they do not
provide a process model of cognitive functions or offer a mecha-
nism of how these functions are achieved or realized neurally. On
the contrary, in neuronal modeling, the developed architectures
are anchored in neuronal data and focus on the mechanisms and
processes behind cognition. However, their functional implemen-
tations (i.e., embodiment) are typically limited and fail to address
important problems such as representational coupling, auton-
omy, and development. DFT aims at bridging the two approaches
to understanding cognitive processing—the functional (behav-
ioral) and the mechanistic (neuronal)—and thus naturally fits
the goal of providing for a tool to implement neuromorphic cog-
nition. The scaling of DFT toward higher cognitive functions,
such as concept representation, language, and complex action
sequencing is currently under way.

This paper aims to reveal the formalized DFT principles and
concepts developed in embodied cognition and autonomous
robotics in such a way that they may be integrated into the lan-
guage of spiking neural networks in VLSI hardware through the
structure of WTA networks. DNF may be considered a functional
description of the soft WTA networks. The successful implemen-
tation of soft WTA networks in VLSI devices to date opens the
way to employing the architectural elements of DFT in spiking
hardware architectures. These structural elements as summarized
here are (1) coupling between fields of different dimensional-
ity, (2) coupling to sensors through space-coding, (3) coupling
to rate-coded motor dynamics, (4) application of principles of
autonomy (intentionality), and (5) autonomous neural-dynamic
learning. Some of the DFT principles, such as categorization and
memory formation, are already probed in VLSI WTA networks,
resulting in a framework of state-based computing in spiking
networks. In addition, this paper formalizes mechanisms that
allow for autonomous transition between stable states through
the introduction of elementary behavior structures, namely the
intention and the conditions-of-satisfaction. This formalization
also enables autonomous learning and the robust coupling of
WTAs to each other, to sensors, and to motor dynamics.

The DFT approach considers cognitive systems from a
behavioral perspective while neuromorphic hardware system
development aims at understanding the neuronal mechanisms
underlying cognition. The fact that these two approaches con-
verge to a mathematically equivalent object—a DNF or a soft
WTA—as an elementary computational unit in the develop-
ment of cognitive neuromorphic systems is a strong argument
for the fundamental character of this computational element.
Here, I aimed at establishing a common ground for future col-
laborative projects that can facilitate progress in both fields. The
VLSI networks could scale up to produce cognitive autonomous
behavior and the DFT framework could gain access to a neural
implementation which is not only more efficient and biologically

grounded, but also open to empirical links between the behavioral
and neuronal dynamics. Bringing principles of DFT onto VLSI
chips will, on the one hand, allow one to model human cogni-
tion and make predictions under both neuronal and behavioral
constraints. On the other hand, the cooperation between the two
fields could foster the development of powerful technical cogni-
tive systems based on a parallel, low-power implementation with
VLSI.
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