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Reliable and fast sensing of the environment is a fundamental requirement for
autonomous mobile robotic platforms. Unfortunately, the frame-based acquisition
paradigm at the basis of main stream artificial perceptive systems is limited by low
temporal dynamics and redundant data flow, leading to high computational costs. Hence,
conventional sensing and relative computation are obviously incompatible with the design
of high speed sensorbased reactive control for mobile applications, that pose strict limits
on energy consumption and computational load. This paper introduces a fast obstacle
avoidance method based on the output of an asynchronous event-based time encoded
imaging sensor. The proposed method relies on an event-based Time To Contact (TTC)
computation based on visual event-based motion flows. The approach is event-based in
the sense that every incoming event adds to the computation process thus allowing fast
avoidance responses. The method is validated indoor on a mobile robot, comparing the
event-based TTC with a laser range finder TTC, showing that event-based sensing offers
new perspectives for mobile robotics sensing.
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1. INTRODUCTION
A fundamental navigation task for autonomous mobile robots is
to detect and avoid obstacles in their path. This paper introduces
a full methodology for the event-based computation of Time To
Contact (TTC) for obstacle avoidance, using an asynchronous
event-based sensor.

Sensors such as ultrasonic sensors, laser range finders or
infrared sensors are often mounted on-board of robotic platforms
in order to provide distance to obstacles. Such active devices are
used to measure signals transmitted by the sensor and reflected
by the obstacle(s). Their performance is essentially dependent on
how the transmitted energy (ultrasonic waves, light,...) interacts
with the environment Everett (1995); Ge (2010).

These sensors have limitations. In the case of ultrasonic sen-
sors, corners and oblique surfaces, or even temperature variations
can provide artifacts in the measurements. Infrared-based sensors
(including recently emerged Time-Of-Light or RGB-D cameras)
are sensitive to sunlight and can fail if the obstacle absorbs the sig-
nal. Laser range finder readings may also be erroneous because of
specular reflections; additionally, the potential problems of eye-
safety limit the use of many laser sensors to environments where
humans are not present. In addition, most of the sensors have
restrictions in terms of field-of-view and/or spatial resolution,
requiring a mechanical scanning system or a network of several
sensors. This leads to severe restrictions in terms of temporal
responsiveness and computational load.

Vision can potentially overcome many of these restrictions;
visual sensors often provide better resolution, wider range at
faster rates than active scanning sensors. Their capacity to detect
the natural light reflected by the objects or the surrounding areas
paves the way to biological-inspired approaches.

Several navigation strategies using vision have been proposed,
the most common consist of extracting depth information from
visual information. Stereo-vision techniques can also produce
accurate depth maps if the stability of the calibration parame-
ters and a relative sufficient inter-camera distance can be ensured.
However, these are strong requirements for high-speed and small
robots. Another class of algorithms (Lorigo et al., 1997; Ulrich
and Nourbakhsh, 2000), is based on color or texture segmenta-
tion of the ground plane. Even if this approach works on a single
image, it requires the assumption that the robot is operating on
a flat and uni-colored/textured surface and all objects have their
bases on the ground.

Another extensively studied strategy is based on the evalu-
ation of the TTC, noted t. This measure, introduced by Lee
(1976), corresponds to the time that would elapse before the robot
reaches an obstacle if the current relative motion between the
robot and the obstacle itself were to continue without change.
As the robot can navigate through the environment following a
trajectory decomposed into straight lines (which is a classic and
efficient strategy for autonomous robots in most environments),
a general definition of TTC can be expressed as follows:

1= —é (1)
dt

where Z is the distance between the camera and the obstacle, and
‘% corresponds to the relative speed.

The Time-to-contact can be computed considering only visual
information, without extracting relative depth information and
speed, as demonstrated by Camus (1995) (see Section 3.2). Its
computation has the advantage to work with a single camera,
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without camera calibration or binding assumptions about the
environment. Several techniques for the measure of TTC have
been proposed. In Negre et al. (2006); Alyena et al. (2009), it is
approximated measuring the local scale change of the obstacle,
under the assumption that the obstacle is planar and parallel to
the image plane. This approach requires either to precisely seg-
ment the obstacle in the image or to compute complex features in
multi-scales representation of the image. Most studied methods
of TTC rely on the estimation of optical flow. Optical flow conveys
all necessary information from the environment Gibson (1978),
but its estimation on natural scenes is well-known to be a difficult
problem. Existing techniques are computationally expensive and
are mostly used off line (Negahdaripour and Ganesan, 1992; Horn
et al., 2007). Real-time implementations, using gradient-based,
feature matching-based (Tomasi and Shi, 1994) or differential
ones, do not deal with large displacements. Multi-scale process,
as proposed by Weber and Malik (1995), can manage with this
limitation, at the cost of computing time and hardware memory
to store and process frames at different scales and timings.

Rind and Simmons (1999) proposed a bio-inspired neural net-
work modeling the lobula giant movement detector (LGMD), a
visual part of the optic lobe of the locust that responds most
strongly to approaching objects. In order to process the frames
provided by a conventional camera, existing implementations
proposed by Blanchard et al. (2000) and Yue and Rind (2006)
required a distributed computing environment (three PCs con-
nected via ethernet). Another promising approach consists in
VLSI architecture implementing functional models of similar
neural networks, but it will require huge investments to go beyond
the single proof of concept, such as the 1-D architecture of 25
pixels proposed by Indiveri (1998) modeling locust descending
contralateral movement detector (DCMD) neurons. The hard-
ware systems constructed in Manchester and Heidelberg, and
described respectively by Bruderle et al. (2011) and Furber et al.
(2012), could be an answer to this issue.

Globally, most of these approaches suffer from the limita-
tions imposed by frame-based acquisition of visual information
in the conventional cameras, that output large and redundant
data flow, at a relative low temporal frequency. Most of the cal-
culations are operated on uninformative parts of the images, or
are dedicated to compensate for the lack of temporal precision.
Existing implementations are often a trade off between accuracy
and efficiency and are restricted to mobile robots moving rela-
tively slowly. For example, Low and Wyeth (2005) and Guzel and
Bicker (2010) present experiments on the navigation of a wheeled
mobile robotic platform using optical flow based TTC compu-
tation applied with an embedded conventional camera. Their
softwares run at approximatively 5 Hz and the maximal speed of
the mobile robot is limited to 0.2 m/s.

In this perspective, free-frame acquisition of the neuromor-
phic cameras (Guo et al., 2007; Lichtsteiner et al., 2008; Lenero-
Bardallo et al., 2011; Posch et al., 2011), can introduce significant
improvements in robotic applications. The operation of such sen-
sors is based on independent pixels that asynchronously collect
and send their own data, when the processed signal exceeds a
tunable threshold. The resulting compressed stream of events
includes the spatial location of active pixels and an accurate

time stamping at which a given signal change occurs. Events
can be processed locally while encoding the additional temporal
dynamics of the scene.

This article presents an event-based methodology to measure
the TTC from the events stream provided by a neuromorphic
vision sensor mounted on a wheeled robotic platform. The TTC
is computed and then updated for each incoming event, mini-
mizing the computational load of the robot. The performance
of the developed event-based TTC is compared with a laser
range finder, showing that event-driven sensing and computation,
with their sub-microsecond temporal resolution and the inherent
redundancy suppression, are a promising solution to vision-based
technology for high-speed robots.

In the following we briefly introduce the used neuromorphic
vision sensor (Section 2), describe the event-based approach pro-
posed to compute the TTC (Section 3) and present experimental
results validating the accuracy and the robustness of the proposed
technique on a mobile robots moving in an indoor environment
(Section 4).

2. TIME ENCODED IMAGING

Biomimetic, event-based cameras are a novel type of vision
devices that—Ilike their biological counterparts—are driven by
“events” happening within the scene, and not by artificially
created timing and control signals (i.e., frame clock of con-
ventional image sensors) that have no relation whatsoever
with the source of the visual information. Over the past
few years, a variety of these event-based devices, reviewed
in Delbruck et al. (2010), have been implemented, including
temporal contrast vision sensors that are sensitive to relative
light intensity change, gradient-based sensors sensitive to static
edges, edge-orientation sensitive devices and optical-flow sen-
sors. Most of these vision sensors encode visual information
about the scene in the form of asynchronous address events
(AER) Boahen (2000)using time rather than voltage, charge or
current.

The ATIS (“Asynchronous Time-based Image Sensor”) used in
this work is a time-domain encoding image sensor with QVGA
resolution Posch et al. (2011). It contains an array of fully
autonomous pixels that combine an illuminance change detector
circuit and a conditional exposure measurement block.

As shown in the functional diagram of the ATIS pixel in
Figure 1, the change detector individually and asynchronously
initiates the measurement of an exposure/gray scale value only if
a brightness change of a certain magnitude has been detected in
the field-of-view of the respective pixel. The exposure measure-
ment circuit encodes the absolute instantaneous pixel illuminance
into the timing of asynchronous event pulses, more precisely into
inter-event intervals.

Since the ATIS is not clocked, the timing of events can be
conveyed with a very accurate temporal resolution in the order
of microseconds. The time-domain encoding of the intensity
information automatically optimizes the exposure time sepa-
rately for each pixel instead of imposing a fixed integration time
for the entire array, resulting in an exceptionally high dynamic
range and an improved signal to noise ratio. The pixel-individual
change detector driven operation yields almost ideal temporal
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redundancy suppression, resulting in a sparse encoding of the
image data.

Figure 2 shows the general principle of asynchronous imag-
ing in a spatio-temporal representation. Frames are absent from
this acquisition process. They can however be reconstructed,
when needed, at frequencies limited only by the temporal res-
olution of the pixel circuits (up to hundreds of kiloframes per
second) (Figure 2 top). Static objects and background informa-
tion, if required, can be recorded as a snapshot at the start of
an acquisition. And henceforward moving objects in the visual
scene describe a spatio-temporal surface at very high temporal
resolution (Figure 2 bottom).

3. EVENT-BASED TTC COMPUTATION

3.1. EVENT-BASED VISUAL MOTION FLOW

The stream of events from the silicon retina can be mathemat-
ically defined as follows: let e(p, t) = (p, t)T a triplet giving the
position p = (x, )T and the time ¢ of an event. We can then
define locally the function X, that maps to each p, the time #:

N2 5> R

P> Te(p) = t @

Time being an increasing function, X, is a monotonically increas-
ing surface in the direction of the motion.

ATIS Pixel

change detector

________ Magno(v) ey |
trigger
11\ E J\_l\l> U
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}exposure measurement!
' Parvo (X) i

generated and transmitted individually by each pixel in the imaging array.

Log pixel illuminance
A

change events (ON/OFF)

" PWM grayscale events

- gray level ~ 1/t

FIGURE 1 | Functional diagram of an ATIS pixel Posch (2010). Two types of asynchronous events, encoding change and brightness information, are
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FIGURE 2 | Lower part The spatio-temporal space of imaging events:
static objects and scene background are acquired first. Then, dynamic
objects trigger pixel-individual, asynchronous gray-level events after each

.asynchronous
".“gray-level
‘events

static
background

change. Frames are absent from this acquisition process. Samples of
generated images from the presented spatio-temporal space are shown in
the upper part of the figure.
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We then set the first partial derivatives with respect to the

parameters as: X, = 33)3; and Eey = ). We can
then write X, as:
Se(p + Ap) = Te(p) + VEL Ap + o(||Apl)) (3)
T, 0%,
with VX, ( i

The partial functions of X, are functions of a single variable,
whether x or y. Time being a strictly increasing function, ¥, is
a nonzero derivatives surface at any point. It is then possible
to use the inverse function theorem to write around a location

p= (x,y)T:

(5

T rdz,|, - dZelv=x
(xw)) =< C'ly 0 (), 92l ())
X dy

1 1 '
= , (4)
Vax(X, ¥0)* Vny(x0, ¥)

Yelx=x0> Zely=y, being X, restricted respectively to x = xo and
y =y, and v, (x, ¥) = (Vny, v,,y)T represents the normal compo-
nent of the visual motion flow; it is perpendicular to the object
boundary (describing the local surface X,).

The gradient of X, or VX,, is then:

T
1 1
; (5)
Vi (%, ¥0) ~ Vny (X0, ¥)

VEe(p, 1) = (

The vector VX, measures the rate and the direction of change
of time with respect to the space, its components are also the
inverse of the components of the velocity vector estimated at p.

The flow definition given by Equation 5 is sensitive to noise
since it consists in estimating the partial derivatives of X, at each
individual event. One way to make the flow estimation robust
against noise is to add a regularization process to the estima-
tion. To achieve this, we assume a local velocity constancy. This
hypothesis is satisfied in practice for small clusters of events. It is
then equivalent to assume X, being locally planar since its par-
tial spatial derivatives are the inverse of the speed, hence constant
velocities produce constant spatial rate of change in ¥,. Finally,
the slope of the fitted plane with respect to the time axis is directly
proportional to the motion velocity. The regularization also com-
pensates for absent events in the neighborhood of active events
where motion is being computed. The plane fitting provides an
approximation of the timing of still non active spatial locations
due the non idealities and the asynchronous nature of the sensor.
The reader interested in the computation of motion flow can refer
to Benosman et al. (2014) for more details. A full characterization
of its computational cost is proposed; it shows that the event-
based calculation required much less computation time than the
frame-based one.

3.2. TIME-TO-CONTACT
Assuming parts of the environment are static, while the camera is
moving forward, the motion flow diverges around a point called

- X

FIGURE 3 | General principle of visual flow computation, the surface of
active events X, is derived to provide an estimation of orientation and
amplitude of motion.

the focus of expansion (FOE). The visual motion flow field and
the corresponding focus of expansion can be used to determine
the time-to-contact (TTC) or time-to-collision. If the camera
is embedded on an autonomous robot moving with a constant
velocity, the TTC can be determined without any knowledge of
the distance to be traveled or the velocity the robot is moving.

We assume the obstacle is at P = (X,, Y., Z)T in the cam-
era coordinate frame and p = (x, )7 is its projection into the
camera’s focal plane coordinate frame (see Figure 4). The velocity
vector V is also projected into the focal plane as v = (%, ).

By deriving the pinhole model’s equations, Camus (1995)
demonstrates that, if the coordinates pr = (xy, yf)T of the FOE
are known, the following relation is satisfied:

Z, - X —Xx
t:—.—czy,yf: , where
Ze y
. dz. . dx dy
Ze=—, X=—, y= —. 6
Ta T w7 T a (6)
With our notation, this is equivalent to:
up. Hv(p. 1) =p — Py (7)

The TTC is then obtained at pixel p according to the relation:

vip, H(p —pp)

8
Iv(p. H)I? ®

w(p, t) =

The TTC as defined is a signed real value because of the scalar
product. Its sign refers to the direction of the motion: when t
is positive, the robot is going toward the obstacle and, vicev-
ersa, for negative T it is getting away. This equality shows also
that t can be determined only if the velocity v at p is known or
can be estimated for any p at anytime t. There is unfortunately
no general technique for estimating densely the velocity v from
the visual information. However, optical flow techniques allow
to compute densely the vector field of velocities normal to the
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camera

FIGURE 4 | 3D obstacle velocity V projected into the camera focal plane as v. The dotted letters refer to temporal derivatives of each component.

____________________ [

E focal plane i

edges, noted as v;,. The visual flow technique presented in subsec-
tion 3.2 is the ideal technique to compute t, not only because of
its event-based formulation, but it is also showing that the nor-
mal to the edge component of v is sufficient for t determination.
From Equation 7, we apply the scalar product of both end sides
with VX,:

wp, V(P ' VE(p, ) = (p—pp) VEe(p, 1) (9)
Because v can be decomposed as the sum of a tangential vector v;,
and a normal vector vy, the left end side of Equation 9 simplifies

into:

(v, ) +va(p. 1) VEe(p, 1)
wl(p, HVEe(p, 1) = 21

wl(p, HVE(p, 1)

(10)

vl V¥, =0 since the tangential component is orthogonal to
VX,. Therefore t is given by:

w0 = 30— B VEelp. ) (
3.3. FOCUS OF EXPANSION

The FOE is the projection of the observer’s direction of transla-
tion (or heading) on the sensor’s image plane. The radial pattern
of flows depends only on the observer’s heading and is indepen-
dent of 3D structure, while the magnitude of flow depends on
both heading and depth. Thus, in principle, the FOE could be
obtained by triangulation of two vectors in a radial flow pattern.
However, such a method would be vulnerable to noise. To cal-
culate the FOE, we used the redundancy in the flow pattern to
reduce errors.

The principle of the approach is described in Algorithm 1. We
consider a probability map of the visual field, where each point
represents the likelihood of the FOE to be located on the corre-
sponding point in the field. Every flow provides an estimation of
the location of the FOE in the visual field; indeed, because the
visual flow is diverging from the FOE, it belongs to the negative
semi-plane defined by the normal motion flow vector. So, for each
incoming event, all the corresponding potential locations of the
FOE are also computed (step 3 in Algorithm 1) and their likeli-
hood is increased (step 4). Finding the location of the probability
map with maximum value, the FOE is shifted toward this location
(step 5)). This principe is illustrated in Figure 5A. The area with
the maximum of probability is highlighted as the intersection of
the negative semi-planes defined by the normal motion flow vec-
tors. Finally, an exponential decreasing function is applied on the
probability map; it allows updating the location of the FOE, giv-
ing more importance to the contributions provided by the most
recent events and their associated flow.

Figures 5B,C show real results obtained viewing a densely tex-
tured pattern (the same as used in Experiment 1, see Figure 7).
Figure 5B shows the probability map defined as an accumulative
table and the resulting FOE. The corresponding motion flow is
given in Figure 5C; the normal motion vectors (with an ampli-
tude superior than a threshold) computed in a time interval
At = 10ms are represented as yellow arrows. Globally, the esti-
mated FOE is consistent with the motion flow. However, some
small groups of vectors (an example is surrounded by a white
dotted ellipse) that seems converging, instead of diverging, to the
FOE. Such flow events do not occur at the same time as the others;
they are most probably generated by a temporary micro-motion
(vibration, unexpected roll-, pitch- or yaw-motion). The cumula-
tive process allows to filter such noise motions and to keep a FOE
stable.

www.frontiersin.org

February 2014 | Volume 8 | Article 9 | 5


http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Clady et al.

Asynchronous visual event-based time-to-contact

For an incoming event e(p, t) with a velocity vector v,, we can
define the following algorithm to estimate the FOE:

Algorithm 1 | Computation of the Focus Of Expansion.

Require My € R” x R” and Myjme € R™ x R” (Mpop is the probability
map and holds the likelihood for each spatial location and M;jme the
last time when its likelihood has been increased).

1: Initiate the matrices Mp,op and Myjme to 0

2: for every incoming e(p, t) at velocity v, do

3: Determine all spatial locations p; such as (p — pi)”.vn > 0

4 forall p; Mprob(Pi) = Mprop(Pj) + 1 and Miime(Pi) = t;

5: ¥ p; € R” x R", update the probability map Mpron(Pi)= Mprob(Pi)

= Mime®)

e At

6: Find pr = (xs, y7) | the spatial location of the maximum value of
Mprob corresponding to the FOE location

7: end for

4. EXPERIMENTAL RESULTS

The method proposed in the previous sections is validated
in the experimental setup illustrated in Figure 6. The neuro-
morphic camera is mounted on a Pioneer 2 robotic platform,
equipped with a Hokuyo laser range finder (LRF) providing

the actual distance between the platform and the obstacles. In
experimental environment free of specular or transparent objects
(as in the first proposed experiment), the TTC based on the
LRF can be estimated using the Equation 1 and is used as
ground truth measure against which the event-based TTC is
benchmarked.

A Pioneer Robot B ATIS Camera

C Hokuyo LRF

FIGURE 6 | Experimental setup: (A) the Pioneer 2, (B) the asynchronous
event-based ATIS camera, (C) the Hokuyo laser range finder (LRF).

A B

cY

FIGURE 5 | Computation of the focus of expansion: (A) the focus of
expansion lies under the normal flow, we can then vote for an area of
the focal plane shown in (B) the FOE is the max of this area (C) Motion
flow vectors obtained during a time period of At = 10 ms and
superimposed over a corresponding snapshot (realized using the PWM
grayscale events; the viewed pattern is the same as used in Experiment

1, cf. Figure 7). Note that only the vectors with high amplitude are
represented in order to enhance the readability of the Figure. Most of the
motion flow vectors are diverging from the estimated FOE. The white ellipse
in the up left corner shows a group of inconsistent motion flow vectors: they
are probably due to a temporary noise micro-motion (vibration, unexpected
roll-, pitch-, or yaw-motion).
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In the first experiment, the robot is moving forward and back-
ward in the direction of a textured obstacle as shown in Figure 7,
the corresponding TTC estimated by both sensors (LRF and
ATIS) is shown in Figure 8A. The TTC is expressed in the coordi-
nate system of the obstacle: the vertical axis corresponds to time
and the horizontal axis to the size of the obstacle. The extremes
(and the white parts of the plots) correspond to the changes of
direction of the robot: when its speed tends to 0, the LRF based
TTC tends to infinity and the vision based TTC cannot be com-
puted because too few events are generated. In order to show
comparable results, only the TTC obtained with a robot speed
superior to 0.1 m/s are shown; under this value, the robot motion
is relatively unstable, the robot tilting during the acceleration
periods.

Figure 8B shows the relative error of the event-based TTC with
respect of the ground truth calculated with the LRF TTC. The
error is large during the phases of positive and negative accel-
erations of the robot. There are two potential explanations. The

estimation of the speed of the robot based on the LRF is rela-
tively inaccurate during the change of velocity. In addition, brutal
changes of velocity could generate fast pitch motions which pro-
duce unstable FOE. Globally, more than the 60% of the relative
errors are inferior to 20% showing that that the event-based
approach is robust and accurate when the motion of the robot
is stable.

In the second experiment, the robot moves along a corri-
dor. In this conditions, multiple objects reflect the light from
the LREF, that fails to detect obstacles, on the contrary the event-
based algorithm succeeds in estimating the TTC relative to the
obstacles. Figure 8 shows the robot’s trajectory: during the first
stage the robot navigates toward an obstacle (portion A-B of
the trajectory). An avoidance maneuver is performed during
portion B-C that leads the robot to continue its trajectory to
enter the warehouse (portion C-D). The estimated TTC to the
closest obstacle, is shown as red plots in Figure9 and com-
pared to the ground truth given by the odometer’s data (in

FIGURE 7 | First experiment: (A) setup and location of the coordinate
system (Xp, Yo, Zp) related to the obstacle; (B) distance between the
robot and the obstacle, velocity of the robot and the relative estimated

B time (s)

LS ¢
2.4 1.4 10 1 4 0 4

distance (m) velocity (m/s) ttc (s)
TTC over time are computed based on the odometer of the robot. Only
the TTC computed while the velocity of the robot is superior to 0.1 m/s is

given, because it tends to infinity when velocity tends to 0.

A time (s) time (s)

B time (s) I
relative
error (%)

80
60
40

ATIS based TTC

FIGURE 8 | Comparison of the results obtained while the robot is
moving forward and backward in the direction of an obstacle. Results
are expressed related to time and the coordinates system of the obstacle.

LRF based TTC

(A) TTC computed using the LRF (right) and the ATIS (left). (B) Relative errors
between bothTTC estimations. illustrated using a color map, blue to red for
increasing TTC.
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FIGURE 9 | Results of second experiment: the top Figure represents two time intervals during which the TTC is estimated; the red curves
the trajectory followed by the the robot, on a schematic view of the correspond to the TTC estimated from the neuromorphic camera’s
warehouse, both middle Figures represents data collected from the data, compared to an estimation of the ttc (blue curves) using the
odometer (the trajectory and the speed of the robot) and finally, the odometer’s data and the knowledge of the obstacles’ locations in
bottom Figures represent the time-to-contact estimated during the the map.

blue). It corresponds to the TTC collected in a region of inter-
est of 60 x 60 pixels, matching with the closest obstacle. The
image plane is segmented into four regions of interest (ROI) of
60 x 60 pixels (4 squares represented in the Figure 10) around
the x-coordinate of the FOE. Only the normal flow vectors into

the lower ROI, in which the activity, expressed as the num-
ber of events per second, is superior to a threshold (>5000
events/s), are considered, assuming that the closest obstacle is
on the ground and so viewed in the bottom part of the vision

field.
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FOE

ROl used for TTC estimation

FIGURE 10 | TTC computation: the yellow arrows represent the motion
flow vectors obtained during a time period of 1 ms. These flow vectors
are superimposed over a corresponding image of the scene (realized using
the PWM grayscale events). In order to enhance the readability of the
Figure, only 10% vectors with high strengths and orientations close to
+7/2 have been draw. The red square corresponds to the ROl where the
measure of TTC is estimated.

The low shift between them can be explained by the drift
in odometer’s data (especially after the avoidance maneuver)
Everett (1995); Ge (2010); a difference of 0.5 m. has been observed
between the real position of the robot and the odometer-based
estimate of the ending location. This is an expected effect, as
odometer always drifts in the same measured proportions Ivanjko
et al. (2007). In addition, the estimations are slightly less precise
once the robot is in the warehouse, where the poor environment
with white walls without texture or objects produces less events
and the computation degrades. This shows the robustness of the
technique even in poorly textured.

All programs have been written in C++ under linux and
run in real time. We estimated the average time per event spent
to compute the Time-to-Contact: it is approximately 20 s per
event on the computer used in the experiments (Intel Core i7 at
2.40 GHz). When the robot is at its maximum speed, data stream
acquired during 1s is processed in 0.33 s . The estimation of the
visual flow is the most computationally expensive task (>99% of
the total computational cost), but could be easily run in parallel
to further accelerate it.

The most significant result of this work is that the TTC can be
processed at an unprecedented rate and with a low computational
cost. The output frequency of our method reaches over 16 kHz,
which is largely superior to the ones which can be expected from
any other conventional cameras, limited by their frame-based
acquisitions and processing load needed to process data.

5. CONCLUSIONS AND PERSPECTIVES

The use of vision based navigation using conventional frame-
based cameras is impractical for the limited available resources
usually embedded on autonomous robots. The corresponding
large amount of data to process is not compatible with fast
and reactive navigation commands, especially when parts of
the processing are allocated to extract the useful information.

Such computational requirements are out of the reach of most
small robots. Additionally, the temporal resolution of frame-
based cameras trades off with the quantity of data that need to
be processed, posing limits on the robot’s speed and computa-
tional demand. In this paper, we gave an example of a simple
collision avoidance technique based on the estimation of the TTC
by combining the use of an event-based vision sensor and a recent
previously developed event-based optical flow. We showed that
event-based techniques can solve vision tasks in a more efficient
way than traditional approaches that are used to do, by means of
complex and hungry algorithms.

One remarkable highlight of this work is how well the event-
based optical flow presented in Benosman et al. (2014) helped
in estimating the TTC. This is because we have ensured the
preservation of the high temporal dynamics of the signal from
its acquisition to its processing. The precise timing conveyed by
the neuromorphic camera allows to process locally around each
event for alow computational cost, whilst ensuring a precise com-
putation of the visual motion flow and thus, of the TTC. The
experiments carried out on a wheeled robotic platform support
this statement, as the results are as reliable as the ones obtained
with a laser range finder, at a much higher frequency. With
event-based vision, the motion behavior of a robot could be con-
trolled with a time delay far below the one that is inherent to the
frame-based acquisition in conventional cameras.

The method described in this work stands on the constant
velocity hypothesis since Equation 1 is a result derived from that
assumption. for this reason, the normal to the edges velocity is
sufficient for the TTC estimation. For more general motion, the
proposed method should be modified by for example assuming
the velocity to be constant only locally.

This work supports the observation that event-driven (bio-
inspired) asynchronous sensing and computing are opening
promising perspectives for autonomous robotic applications. The
event-based approaches would allow small robots to avoid obsta-
cles in natural environment with high speed that has never been
achieved until now. Extending our approach to more complex
scenarios than those exposed in this paper, and proposing a
complete navigation system able to deal with motion or uncon-
trolled environment, requires to combine the visual information
with other provided from top-down process and proprioceptive
sensing, as for humans or animals.
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