
ORIGINAL RESEARCH ARTICLE
published: 04 February 2014

doi: 10.3389/fnins.2014.00010

An efficient automated parameter tuning framework for
spiking neural networks
Kristofor D. Carlson1, Jayram Moorkanikara Nageswaran2, Nikil Dutt3 and Jeffrey L. Krichmar1,3*

1 Department of Cognitive Sciences, University of California Irvine, Irvine, CA, USA
2 Brain Corporation, San Diego, CA, USA
3 Department of Computer Science, University of California Irvine, Irvine, CA, USA

Edited by:

Tobi Delbruck, ETH Zurich and
University of Zurich, Switzerland

Reviewed by:

Michael Schmuker, Freie Universität
Berlin, Germany
Siddharth Joshi, University of
California, San Diego, USA

*Correspondence:

Jeffrey L. Krichmar, Department of
Cognitive Sciences, University of
California Irvine, 2328 Social and
Behavioral Sciences Gateway,
Irvine, CA 92697-5100, USA
e-mail: jkrichma@uci.edu

As the desire for biologically realistic spiking neural networks (SNNs) increases, tuning
the enormous number of open parameters in these models becomes a difficult challenge.
SNNs have been used to successfully model complex neural circuits that explore various
neural phenomena such as neural plasticity, vision systems, auditory systems, neural
oscillations, and many other important topics of neural function. Additionally, SNNs are
particularly well-adapted to run on neuromorphic hardware that will support biological
brain-scale architectures. Although the inclusion of realistic plasticity equations, neural
dynamics, and recurrent topologies has increased the descriptive power of SNNs, it
has also made the task of tuning these biologically realistic SNNs difficult. To meet
this challenge, we present an automated parameter tuning framework capable of tuning
SNNs quickly and efficiently using evolutionary algorithms (EA) and inexpensive, readily
accessible graphics processing units (GPUs). A sample SNN with 4104 neurons was tuned
to give V1 simple cell-like tuning curve responses and produce self-organizing receptive
fields (SORFs) when presented with a random sequence of counterphase sinusoidal
grating stimuli. A performance analysis comparing the GPU-accelerated implementation
to a single-threaded central processing unit (CPU) implementation was carried out and
showed a speedup of 65× of the GPU implementation over the CPU implementation,
or 0.35 h per generation for GPU vs. 23.5 h per generation for CPU. Additionally, the
parameter value solutions found in the tuned SNN were studied and found to be stable
and repeatable. The automated parameter tuning framework presented here will be of
use to both the computational neuroscience and neuromorphic engineering communities,
making the process of constructing and tuning large-scale SNNs much quicker and easier.

Keywords: spiking neural networks, parameter tuning, evolutionary algorithms, GPU programming,

self-organizing receptive fields, STDP

INTRODUCTION
Although much progress has been made in simulating large-scale
spiking neural networks (SNNs), there are still many challenges to
overcome before these neurobiologically inspired algorithms can
be used in practical applications that can be deployed on neuro-
morphic hardware (Boahen, 2005; Markram, 2006; Nageswaran
et al., 2010; Indiveri et al., 2011). Moreover, it has been difficult
to construct SNNs large enough to describe the complex func-
tionality and dynamics found in real nervous systems (Izhikevich
and Edelman, 2008; Krichmar et al., 2011; Eliasmith et al., 2012).
Foremost among these challenges are the tuning and stabiliza-
tion of large-scale dynamical systems, which are characterized by
many state values and open parameters (Djurfeldt et al., 2008).
The task of tuning SNNs is becoming more difficult as neurosci-
entists move away from simpler models toward more realistic, but
complex models to describe the properties of network elements
(van Geit et al., 2008). For example, many modelers have moved
away from simple “integrate and fire” neuron models to models
which capture a wider range of neuronal dynamics, but have more
open parameters (Izhikevich, 2003; Brette and Gerstner, 2005).

A similar shift in complexity is occurring when simulating synap-
tic plasticity (Abbott and Nelson, 2000), as new types of plasticity
models such as homeostatic synaptic scaling (Watt and Desai,
2010; Carlson et al., 2013), short-term plasticity (Mongillo et al.,
2008), and spike-timing dependent plasticity (STDP) (Song et al.,
2000; van Rossum et al., 2000) are being incorporated into SNNs.
In addition, network topologies are shifting from conventional
feed-forward connectivity to recurrent connectivity, which have
more complex dynamics and require precise tuning of synaptic
feedback for stable activity (Seung et al., 2000).

For these reasons, the process of hand-tuning SNNs is often
extremely time-consuming and inefficient which has led to inter-
est among researchers in automating this process. To address these
challenges, we present an automated tuning framework that uti-
lizes the parallel nature of graphics processing units (GPUs) and
the optimization capabilities of evolutionary algorithms (EAs) to
tune open parameters of SNNs in a fast and efficient manner.

The present article describes a means to automate param-
eter tuning of spiking neural networks which are compatible
with present and future neuromorphic hardware. However, it is

www.frontiersin.org February 2014 | Volume 8 | Article 10 | 1

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2014.00010/abstract
http://www.frontiersin.org/people/u/106283
http://www.frontiersin.org/people/u/113899
http://www.frontiersin.org/people/u/32914
http://www.frontiersin.org/people/u/473
mailto:jkrichma@uci.edu
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

important to first examine the role SNN models play in the devel-
opment of neuromorphic hardware. Recent neuromorphic sci-
ence funding initiatives, such as the SyNAPSE project in the USA
and the FACETS/BrainScaleS projects in Europe, have resulted
in the construction of neuromorphic chips. Not surprisingly,
the research groups involved in producing these neuromorphic
hardware devices have also spent a great deal of time build-
ing software simulation and interface frameworks (Amir et al.,
2013; Thibeault and Srinivasa, 2013). This is because the novel
hardware requires new software environments and methodolo-
gies to run applications (Brüderle et al., 2011). There are two main
software development tasks required to run neuromorphic appli-
cations on a hardware device. First, the neuromorphic application
must be designed and tuned to perform a particular cognitive or
computational function. This is the focus of our present study.
Second, the model description of the neuromorphic application
must be mapped onto the neuromorphic hardware device com-
puting elements. There have been a number of recent studies that
have applied various optimization techniques to solve this map-
ping problem with some success (Ehrlich et al., 2010; Sheik et al.,
2011; Gao et al., 2012; Neftci et al., 2013). Although both tasks are
integral to developing neuromorphic hardware applications, the
latter is outside the scope of present study.

There has been a great deal of work in the computational
neuroscience community on automating the process of parame-
ter tuning neuronal models. A variety of different methodologies
have been used to automate parameter tuning in neural mod-
els, many of which are summarized in the review by van Geit
et al. (2008). Svensson et al. (2012) fit a nine-parameter model
of a filter-based visual neuron to experimental data using both
gradient following (GF) methods and EAs. Some groups have
used optimization techniques to tune ion channels kinetics for
compartmental neurons (Hendrickson et al., 2011; Ben-Shalom
et al., 2012) while other groups have used quantum optimiza-
tion techniques and EAs to tune more abstract networks of
neurons (Schliebs et al., 2009, 2010). Additionally, brute force
methods of searching the parameter space were used to exam-
ine a three-neuron model of a lobster stomatogastric circuit by
creating large databases of compartmental neurons with varying
membrane conductance values and testing the resulting func-
tional behavior of this circuit (Prinz et al., 2003, 2004). Some
automated parameter-search tools have been developed as inter-
faces between neural simulators and the optimization meth-
ods used to tune them such as Neurofitter (van Geit et al.,
2008). Other tools allow for the automatic compilation of very
large sets of simulation runs across a wide range of parameter
values and experimental conditions (Calin-Jageman and Katz,
2006).

Unlike these parameter tuning methodologies, which have
been applied to small neural circuits, single neurons or net-
works of hundreds of neurons, our focus is the automated tuning
of much larger neural systems (on the scale of 103–106 neu-
rons). Neural networks at these scales become more useful for the
description of cognitive models and closer to the scale of SNNs
currently being designed to run on neuromorphic hardware
(Esser et al., 2013; Thibeault and Srinivasa, 2013). Recent work
by Rossant et al. (2011) and Eliasmith et al. (2012) has focused on

tuning large-scale SNNs; we compare these approaches with our
tuning framework in the discussion section.

A parallel line of research in automated parameter tuning has
taken place where larger, more abstract artificial neural networks
(ANNs) are constructed using EAs (Fogel et al., 1990). The build-
ing of ANNs using EAs can be broken into two basic method-
ologies: direct encoding and indirect encoding. Much work has
been done using the direct encoding approach, where the genetic
description of the individual, or the genotype, is directly mapped
to the actual traits of the individual, or the phenotype (Hancock,
1992; Gomez and Miikkulainen, 1997; Stanley and Miikkulainen,
2002). An EA is said to use direct encoding when there is a one-
to-one correspondence between parameter values, like synaptic
weight values and genotype values. Drawbacks of this approach
include poor genotype scaling for large network encodings and
very large parameter spaces due to the lack of geometrical con-
straints of the networks. Alternatively, indirect encoding allows
the genotype to specify a rule or method for growing the ANN
instead of specifying the parameter values directly (Husbands
et al., 1998; Beer, 2000; Floreano and Urzelai, 2001; Stanley and
Miikkulainen, 2003). NeuroEvolution of Augmented Topologies
(NEAT) and HyperNEAT use indirect encoding to evolve net-
work topologies, beginning with a small network and adding
complexity to that network as evolution progresses (Stanley and
Miikkulainen, 2002; Stanley et al., 2009; Clune et al., 2011; Risi
and Stanley, 2012). HyperNEAT has been used to encode net-
works with as many as 8 million connections and networks
evolved using NEAT have been used in food-gathering tasks
(Stanley et al., 2009), in a checkers-playing ANN that exhibits
topographic mappings (Gauci and Stanley, 2010), and in evolv-
ing robot gaits in hardware (Yosinski et al., 2011). The present
study utilizes the indirect encoding approach, in which the learn-
ing parameters are evolved, as opposed to the direct encoding
approach where the synaptic weights are evolved. This allows for a
large reduction in the parameter space. Although EAs are an effec-
tive tool for constructing ANNs, they often require long execution
times to produce well-tuned networks. A number of parallel com-
puting techniques can be used to reduce the execution time of
EAs, however, this paper focuses mainly on parallelization via
GPU computing.

With the development of mature GPU parallel computing
platforms like CUDA (Nickolls et al., 2008) and OpenCL (Stone
et al., 2010), GPU accelerated algorithms have been applied to
a variety of tasks in scientific computing. GPU acceleration has
been used to increase the throughput of EAs (Maitre et al.,
2009), simulate neural field models of the primary visual cor-
tex V1 (Baladron et al., 2012), and search parameter spaces in
bio-inspired object-recognition models (Pinto et al., 2009). In
addition to these applications, a number of research groups in the
computational neuroscience community (Brette and Goodman,
2012) have developed and implemented parallel implementa-
tions of SNNs on GPUs (Bernhard and Keriven, 2006; Fidjeland
et al., 2009; Nageswaran et al., 2009b; Bhuiyan et al., 2010; Han
and Taha, 2010; Hoffmann et al., 2010; Yudanov et al., 2010;
Ahmadi and Soleimani, 2011; Nowotny, 2011; Thibeault et al.,
2011; de Ladurantaye et al., 2012; Mirsu et al., 2012; Pallipuram
et al., 2012). GPU-driven SNN simulators have already been used

Frontiers in Neuroscience | Neuromorphic Engineering February 2014 | Volume 8 | Article 10 | 2

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

in SNN models of the basal forebrain (Avery et al., 2012), the
basal ganglia (Igarashi et al., 2011), the cerebellum (Yamazaki and
Igarashi, 2013), and the olfactory system (Nowotny, 2010).

Our present study drastically decreases the time it takes to tune
SNN models by combining a freely available EA library with our
previous work (Nageswaran et al., 2009b; Richert et al., 2011),
which consisted of a parallelized GPU implementation of an SNN
simulator. Although other research groups have used EAs and
GPUs to tune SNNs (Rossant et al., 2011), our approach is more
general as it tunes a variety of SNN parameters and utilizes fitness
functions that can be broadly applied to the behavior of the entire
SNN. As a proof of concept, we introduce a parameter tuning
framework to evolve SNNs capable of producing self-organized
receptive fields similar to those found in V1 simple cells in
response to patterned inputs. An indirect encoding approach was
utilized as the parameters tuned in the SNN governed Hebbian
learning, homeostasis, maximum input stimulus firing rates, and
synaptic weight ranges. A performance analysis compared the
parallelized GPU implementation of the tuning framework with
the equivalent central processing unit (CPU) implementation and
found a speedup of 65× (i.e., 0.35 h per generation vs. 23.5 h
per generation) when SNNs were run concurrently on the GPU.
Using affordable, widely-accessible GPU-powered video cards,
the software package presented here is capable of tuning complex
SNNs in a fast and efficient manner. The automated parameter
tuning framework is publicly available and could be very use-
ful for the implementation of large-scale SNNs on neuromorphic
hardware or for the development of large-scale SNN simulations
that describe complex brain functions.

METHODS
GPU ACCELERATED SNNs IN CARLsim
An important feature of the automated parameter tuning frame-
work is the ability to run multiple SNNs in parallel on the GPU,
allowing significant acceleration of the EA evaluation phase. We

first briefly review the approaches CARLsim uses to run SNNs
in parallel before describing the general layout of the automated
parameter tuning framework and describe how a researcher
would use the tool to tune SNNs. Figure 1 shows the basic CUDA
GPU architecture, which consists of a multiple streaming mul-
tiprocessors (SMs) and a global memory, accessible to all SMs.
Each SM is comprised of multiple floating-point scalar processors
(SPs), at least one special function unit (SFU), and a cache/shared
memory. CUDA code is distributed and executed in groups of 32
threads called warps. Each SM has at least one warp scheduler that
ensures maximum thread concurrency by switching from slower
to faster executing warps. Our simulations utilized an NVIDIA
Tesla M2090 GPU with 6 GB of global memory, 512 cores (each
operating at 1.30 GHz) grouped into 16 SMs (32 SPs per SM), and
a single precision compute power of 1331.2 GFLOPS.

The CARLsim parallel GPU implementation was written to
optimize four main performance metrics: parallelism, memory
bandwidth, memory usage, and thread divergence which are
discussed in greater detail in (Nageswaran et al., 2009a). The
term parallelism refers to both the degree to which the appli-
cation data is mapped to parallel threads and the structure of
the mapping itself. CARLsim utilizes both neuronal parallelism
(N-parallelism), where individual neurons are mapped to
processing elements and simulated in parallel, and synaptic par-
allelism (S-parallelism), where synaptic data are mapped to pro-
cessing elements and simulated in parallel. Anytime a neuronal
state variable is updated, N-parallelism is used, and anytime a
weight update is necessary, S-parallelism is used. Sparse repre-
sentation techniques such as the storage of SNN data structures
using the reduced Address Event Representation (AER) format
and the use of a circular queue to represent firing event data
decrease both memory and memory bandwidth usage. GPUs exe-
cute many threads concurrently (1536 threads per SM in the Tesla
M2090) and manage these threads by providing a thread sched-
uler for each SM which organizes groups of threads into warps.

FIGURE 1 | A simplified diagram of NVIDIA CUDA GPU architecture (adapted from Nageswaran et al., 2009a,b). Our simulations used an NVIDIA Tesla
2090 GPU that had 16 streaming multiprocessors (SM) made up of 32 scalar processors (SPs) and 6 GB of global memory.

www.frontiersin.org February 2014 | Volume 8 | Article 10 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

Thread/warp divergence occurs when threads in a single warp
execute different operations, forcing the faster executing threads
to wait until the slower threads have completed. In CARLsim,
thread/warp divergence is minimized during diverging loop exe-
cutions by buffering the data until all threads can execute the
diverging loop simultaneously.

AUTOMATED PARAMETER TUNING FRAMEWORK DESCRIPTION
To test the feasibility of an automated parameter tuning frame-
work, our group used EAs to tune open parameters in SNNs
running concurrently on a GPU. As a proof of concept, the
SNNs were evolved to produce orientation-dependent stimulus
responses similar to those found in simple cells of the primary
visual cortex (V1) through the formation self-organizing recep-
tive fields (SORFs). The general evolutionary approach was as
follows: (1) A population of neural networks was created, each
with a unique set of neural parameter values that defined over-
all behavior. (2) Each SNN was then ranked based on a fitness
value assigned by the objective function. (3) The highest ranked
individuals were selected, recombined, and mutated to form the
offspring for the next generation. (4) This process continued
until a desired fitness was reached or until other termination
conditions were met (Figure 2A).

The automated parameter tuning framework consisted of
three software packages and is shown in Figure 2B. The frame-
work includes: (1) the CARLsim SNN simulator (Richert et al.,
2011), (2) the Evolving Objects (EO) computational framework,

a publically available evolutionary computation toolkit (Keijzer
et al., 2002), and (3) a Parameter Tuning Interface (PTI),
developed by our group, to provide an interface between
CARLsim and EO. Evolving Objects is available at http://eodev.
sourceforge.net/ and both CARLsim and the PTI are available at
http://www.socsci.uci.edu/∼jkrichma/CARLsim/. The EO com-
putational framework runs the evolutionary algorithm on the
user-designated parameters of SNNs in CARLsim. The PTI allows
the objective function to be calculated independent of the EO
computation framework. Parameter values are passed from the
EO computation framework through the PTI to the SNN in
CARLsim where the objective function is calculated. After the
objective function is executed, the results are passed from the
SNN in CARLsim through the PTI back to the EO computa-
tion framework for processing by the EA. With this approach, the
fitness function calculation, which involves running each SNN
in the population, can be run in parallel on the GPU while the
remainder of EA calculations can be performed using the CPU
(Figure 2B).

USING THE PARAMETER TUNING INTERFACE
In addition to providing a means for CARLsim and EO to
exchange data, the PTI hides the low level description and con-
figuration of EO from the user by providing a simple application
programming interface (API). Before using the PTI, the user
must have a properly configured EO parameter file, which is a
plain text file that provides the user with control over an EO

FIGURE 2 | (A) Flow chart for the execution of an Evolutionary
Algorithm (EA). A population of individuals (μ) is first initialized and
then evaluated. After evaluation, the most successful individuals are
selected to reproduce via recombination and mutation to create an
offspring generation (λ). The offspring then become parents for a new
generation of the EA. This continues until a termination condition is
reached. The light blue boxes denote operations that are carried out
serially on the CPU while the light brown box denotes operations

carried out in parallel on the GPU. The operations inside the dotted
gray box are described in greater detail in (B). (B) Description of the
automated parameter tuning framework consists of the CARLsim SNN
simulator (light brown), the EO computational framework (light blue),
and the Parameter Tuning Interface (PTI) (light green). The PTI passes
tuning parameters (PN) to CARLsim for evaluation in parallel on the
GPU. After evaluation, fitness values (FN) are passed from CARLsim
back to EO via the PTI.

Frontiers in Neuroscience | Neuromorphic Engineering February 2014 | Volume 8 | Article 10 | 4

http://eodev.sourceforge.net/
http://eodev.sourceforge.net/
http://www.socsci.uci.edu/~jkrichma/CARLsim/
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

configuration. An example of an EO parameter file is shown in
Supplementary 1 of the supplementary materials. At execution,
EO reads the parameter file to configure all aspects of the EA,
including selection, recombination, mutation, population size,
termination conditions, and many other EA properties. Beginners
to EO can use the example EO parameter files included with the
EO source code for the automated parameter tuning framework
presented here. A sample program overview of the PTI and a sum-
mary of the PTI-API are included in Supplementary materials
sections 2 and 3. Additional EO examples and documentation can
be found online at http://eodev.sourceforge.net/eo/tutorial/html/
eoTutorial.html. After creating a valid EO parameter file, the user
is ready to use the PTI and CARLsim to tune SNNs.

EVOLVING SNNs WITH V1 SIMPLE CELL RESPONSES AND SORF
FORMATION
As a proof of concept, the ability of the automated parameter tun-
ing network to construct an SNN capable of producing SORFs
and orientation-dependent stimulus responses was examined.
This set of simulations was presented with grayscale counterphase
gratings of varying orientations. The EO computation framework
evolved SNN parameters that characterized spike-timing depen-
dent plasticity (STDP), homeostasis, the maximum firing rates of
the neurons encoding the stimuli, and the range of weight values
for non-plastic connections. The network topology of the SNN,
shown in Figure 3, modeled the visual pathway from the lateral
geniculate nucleus (LGN) to the primary visual cortex (V1).

Each individual in the population participated in a train-
ing phase, where synaptic weights were modified according to
STDP and homeostatic learning rules, and a testing phase where

a multi-component objective function was used to evaluate an
individual’s ability to reproduce V1 simple-cell behavior. The
training phase consisted of the presentation of 40 grayscale sinu-
soidal grating patterns of varying orientation (from π/40 to π)
in random sequence to the SNN for approximately 100 min. Each
pattern was presented to the network for 2 s while 1 Hz Poisson
noise was applied to the network for 500 ms between pattern pre-
sentations. During the testing phase eight grating orientations
(from π/8 to π) were presented to the network and the fir-
ing rate responses of the four output neurons in the Exc group
were recorded. STDP and homeostasis were enabled during the
training phase but were disabled for the testing phase. The evo-
lutionary algorithm began with the random initialization of the
parent population, consisting of 10 SNNs, and produced 10 off-
spring per generation. Ten SNN configurations ran in parallel. To
evolve V1 simple cell responses, a real-valued optimization algo-
rithm called Evolution Strategies (De Jong, 2002) was used with
deterministic tournament selection, weak-elitism replacement,
40% Gaussian mutation and 50% crossover. Weak-elitism ensures
the overall fitness monotonically increases each generation by
replacing the worst fitness individual of the offspring population
with the best fitness individual of the parent population. Fourteen
parameters were evolved: four parameters associated with E→ E
STDP, four parameters associated with E→ I STDP, the homeo-
static target firing rates of the Exc and Inh groups, the strength of
the fixed uniformly random On(Off)Buffer→ Exc group connec-
tions, the strength of the plastic Exc→ Inh group connections,
the strength of the fixed uniformly random Inh→ Exc group
connections, and the maximum firing rate response to the input
stimuli. The range of allowable values for each parameter is shown

FIGURE 3 | Network architecture of the SNN tuned by the parameter

tuning framework to produce V1 simple cell response and SORFs. N
represents the number of neurons used in different groups. E→E and E→ I

STDP curves are included to describe plastic On(Off)Buffer→Exc and
Exc→ Inh connections. Tuned parameters are indicated with dashed arrows
and boxes.

www.frontiersin.org February 2014 | Volume 8 | Article 10 | 5

http://eodev.sourceforge.net/eo/tutorial/html/eoTutorial.html
http://eodev.sourceforge.net/eo/tutorial/html/eoTutorial.html
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

in Table 1. The parameter ranges for the STDP time windows
were constrained by experimental data (Caporale and Dan, 2008)
while the remaining parameter ranges were chosen to produce
SNNs with biologically realistic firing rates.

The multi-component objective function was constructed
by requiring output neurons to have desirable traits in neu-
ronal response activity, namely, decorrelation, sparseness, and
a description of the stimulus that employs the entire response
range. The total fitness function to be maximized, fitnesstotal, is
described by Equation (1) and required each fitness component in
the denominator to be minimized. Fitness values were normalized
by the highest fitness value and ranged from 0 to 1. The fit-
ness function consisted of three fitness components, fitnessdecorr,
fitnessGauss, fitnessmaxRate, and a scaling factor K which had a
value of 4.4 in all simulations discussed here.

fitnesstotal = 1

fitnessdecorr + fitnessGauss + Kscaling factor · fitnessmaxRate
(1)

Here fitnessdecorr, described in Equation (2), was minimized if
each output neuron responded uniquely and preferentially to
a grating orientation, causing the average firing rates of each
neuron to be decorrelated. The fitness component, fitnessGauss,
was minimized when each Exc group neuron had an idealized
Gaussian tuning curve response and is defined in Equation (4).
The fitness component, fitnessmaxRate, was minimized when the
maximum firing rate of the output neurons achieved a target fir-
ing rate, which helped neuronal activity remain stable and sparse,
and is defined in Equation (6). A scaling term, Kscaling factor = 4.4,
was used to correctly balance the maximum firing rate require-
ment against the decorrelation and Gaussian tuning curve curve
requirements. Taken together, both fitnessmaxRate and fitnessGauss

result in the assignment of high fitness values to neurons that
have a stimulus response that utilizes the entire neuronal response

Table 1 | Range of allowable values for parameters optimized by the

automated parameter tuning framework.

Parameters Range

Max. Poiss. Rate 10–40 Hz

Buff→Exc Wts 4.0e-3–1.6e-2

Exc→ Inh Wts 0.1–1.0

Inh→Exc Wts 0.1–0.5

Rtarget Exc 10–30 Hz

Rtarget Inh 40–100 Hz

A+ Exc 9.6e-6–4.8e-5

A− Exc 9.6e-6–4.8e-5

τ+ Exc 10–60 ms

τ− Exc 5–100 ms

A+ Inh 9.6e-6–4.8e-5

A− Inh 9.6e-6–4.8e-5

τ+ Inh 10–60 ms

τ− Inh 5–100 ms

Weight ranges and STDP A+ and A− parameters are dimensionless and their

relative magnitudes are important for creating a functional SNN.

range from approximately 0 to 60 Hz, which is an important
aspect of neuronal activity.

The fitnessdecorr component of the fitness function enforced
decorrelation in the Exc group neuronal firing rates so that each
neuron responded maximally to a different stimulus presenta-
tion angle. Equation (2) ensured the angles of maximum response
θi

max for each neuron, i, were as far from one another as possible
by minimizing the difference between the two closest maximum
angles (Di

min) and the maximum possible value of Di
min, called

Dtarget. Di
min is described in Equation (3) and Dtarget had a value

of π/4.

fitnessdecorr =
N = 4∑
i= 1

∣∣∣Di
min − Dtarget

∣∣∣ (2)

Di
min = min

(∣∣∣θi
max − θ

j
max

∣∣∣) ∀ j �= i (3)

The next fitness component fitnessGauss ensured that each Exc
group neuron had a Gaussian tuning curve response similar to
that found in V1 simple cells. The difference between the normal-
ized firing rate Ri

j and a normalized Gaussian Gi
j was calculated

for every presentation angle for each Exc group neuron and was
summed over all angles and neurons. This is shown in Equation
(4) while a description of the Gaussian is shown in Equation (5),
where ri

max is the maximum firing rate for the ith neuron, θi
max

is the angle of maximum response of the ith neuron, θj is the
jth stimulus angle, and σ was chosen to be 15π/180 to match
experimental observations (Henry et al., 1974).

fitnessGauss =
N = 4∑
i= i

M= 40∑
j= 1

∣∣∣Ri
j − Gi

j

∣∣∣ (4)

Gi
j = ri

max exp

⎡
⎣−1

2

(
θj − θi

max

σ

)2
⎤
⎦ (5)

The fitnessmaxRate component, in combination with the
Inh→ Exc group connections, helped to enforce the requirement
that the Exc group neurons had sparse firing rates by limiting the
firing rate of each neuron to a maximum target firing rate Rmax

target

of 60 Hz. The difference between the maximum firing rate Ri
max

of each Exc group neuron and the maximum target firing rate
was calculated and summed over all Exc group neurons as shown
in Equation (6).

fitnessmaxRate =
N = 4∑
i= 1

∣∣∣Ri
max − Rmax

target

∣∣∣ (6)

Each fitness component had a fitness constraint imposed on it
which caused the individual to be assigned a poor overall fitness
if it fell outside a particular range of values. Recall that the fitness
components are in the denominator of the total fitness equation
making lower fitness component values more fit than higher fit-
ness component values. The constraints are expressed as upper
limits. Those individuals with fitness components larger than the

Frontiers in Neuroscience | Neuromorphic Engineering February 2014 | Volume 8 | Article 10 | 6

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

upper limit were assigned poor overall fitness values by adding
240 to the denominator of Equation (1). The fitness component
fitnessdecorr had an upper limit constraint of 15, the fitness com-
ponent fitnessGauss had an upper limit of 1300, and the fitness
component fitnessmaxRate had an upper limit of 160.

NETWORK MODEL
The input to the network consisted of a 32× 32 grid of grayscale
pixels, ranging from -1 to 1, which were connected to a pair of
32× 32 Poisson spiking neuron groups with one-to-one topol-
ogy to model the On/Off receptive fields found in the LGN.
One Poisson spiking neuron group, the OnPoiss group, had lin-
ear spiking responses corresponding to Equation (7) while the
OffPoiss group had responses corresponding to Equation (8).
Here, ri,On (ri,Off) represent the firing rate of neuron i, of the
On(Off)Poiss group in response to the value of the input p,
pixel i. The rates had maximum values of 1 and were scaled
with the Max. Poiss. Rate parameter. Each On(Off)Poiss group
had fixed excitatory synapses with one-to-one connectivity to
a pair of 32× 32 spiking neuron groups consisting of regular
spiking (RS) Izhikevich neurons (Izhikevich et al., 2004), called
the On(Off)Buffer groups. The On(Off)Buffer group neurons
have a refractory period and were included to produce more
realistic spike dynamics in response to the stimulus input. The
On(Off) Buffer groups were included because Poisson spiking
neurons with a built-in delay period were not part of the standard
NVIDIA CUDA Random Number Generation (cuRAND) library
and were therefore, more difficult to generate. On(Off)Buffer
neurons had plastic excitatory synapses with all-to-all connec-
tivity to an output group of RS neurons called the Exc group.
Finally, to induce competition and encourage sparse firing, the
Exc group made plastic excitatory all-to-all connections to a fast-
spiking (FS) inhibitory neuron group (Izhikevich et al., 2004),
which made fixed inhibitory all-to-all connections back to the Exc
group.

ri,On
(
pi
) =

{
pi, pi > 0

0, pi ≤ 0
(7)

ri,Off
(
p
) =

{
0, pi > 0∣∣pi

∣∣ , pi ≤ 0
(8)

The mathematical description of the Poisson spiking neurons
used in the simulation is shown in Equation (9).

ti+ 1 = ti − ln (xi) /r (9)

The spike times were generated iteratively by generating inter-
spike intervals (ISIs) from an exponential distribution (Dayan
and Abbott, 2001). Here ti is the spike time of the current spike,
ti+ 1 is the spike time of the next spike, r is the average firing
rate, and xi is the current random number (uniformly distributed
between 0 and 1) used to generate the next spike time.

The spiking neurons used in the simulation were Izhikevich-
type neurons and were chosen because they are computationally
efficient and able to produce neural dynamics with a high degree

of accuracy (Izhikevich, 2003). All excitatory neurons were mod-
eled as RS neurons while all inhibitory neurons were modeled
as FS neurons. The dynamics of Izhikevich neurons are shown
in Equations (10, 11) and consist of a 2D system of ordinary
differential equations.

dυ

dt
= 0.04υ2 + 5υ+ 140− u+ I (10)

du

dt
= a(bυ− u) (11)

Here, υ is the membrane potential of the neuron and u is the
recovery variable. The neuron dynamics for spiking are as follows:

If υ ≥ 30 mv, then

{
υ← c

u← u+ d
. The variables a, b, c, and d

are specific to the type of Izhikevich neuron being modeled. For
RS neurons, a = 0.02, b = 0.2, c = −65.0, and d = 8.0. For FS
neurons, a = 0.1, b = 0.2, c = −65.0, and d = 2.0. The synap-
tic input for the spiking neurons consisted of excitatory NMDA
and AMPA currents and inhibitory GABAA and GABAB cur-
rents (Izhikevich and Edelman, 2008) and has the form shown in
Equation (12). Each conductance has the general form of g(υ−
υ0) where g is the conductance, υ is the membrane potential, and
υ0 is the reversal potential.

I = gNMDA

[
υ+ 80

60

]2

1+ [υ+ 80
60

]2
(υ− 0)+ gAMPA (υ− 0)

+ gGABAA (υ+ 70)+ gGABAB (υ+ 90) (12)

The conductances obey the first order dynamics shown in
Equation (13).

dgi

dt
= − gi

τ i
(13)

Here i denotes a particular conductance (NMDA, AMPA, GABAA,
or GABAB) and τ denotes the decay constant for the conduc-
tance. The decay constants are τNMDA = 100 ms, τAMPA = 5 ms,
τGABAA = 6 ms, and τGABAB = 150 ms.

All plastic connections used a standard nearest-neighbor
STDP implementation (Izhikevich and Desai, 2003) but dis-
tinct STDP rules were used for STDP occurring between
excitatory-to-excitatory (E→ E) neurons and STDP occurring
between excitatory-to-inhibitory (E→ I) neurons. Excitatory-to-
excitatory plastic connections had traditional STDP curves as
detailed in (Bi and Poo, 1998) while excitatory-to-inhibitory plas-
tic connections used STDP curves where potentiation occurred
for pre-after-post pairings and depression occurred for pre-
before-post pairings as found in experiments (Bell et al., 1997). A
model for homeostatic synaptic scaling (Carlson et al., 2013) was
also included to prevent runaway synaptic dynamics that often
arise in STDP learning rules.

The STDP update rule used in our simulations is shown in
Equation (14).

dwi,j

dt
= δ+ β

(
LTPi,j + LTDi,j

)
(14)

www.frontiersin.org February 2014 | Volume 8 | Article 10 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

The synaptic weight from presynaptic neuron i to postsynaptic
neuron j is indicated by the variable wi,j. Additionally, δ is a bias
often set to zero or a positive number to push the network toward
positive weight increases for low synaptic input, while β is the
learning rate. The weight changes were updated every time step
(1 ms) but the weights themselves are modified once every 1 s.

To model homeostatic synaptic plasticity the STDP update
rule was modified as shown in Equation (15) where α = 0.1 and
β = 1.0.

dwi,j

dt
=
[
α · wi,j

(
1− R

Rtarget

)
+ β

(
LTPi,j + LTDi,j

)] · K (15)

Here, α is the homeostatic scaling factor while R and Rtarget are the
average and target firing rates, respectively, for the postsynaptic
neuron, j. A stability term denoted by K, damps oscillations in the
weight updates and speeds up learning. K is defined as:

K = R

T · (1+ ∣∣1− R/Rtarget
∣∣ · γ) (16)

In Equation (16), γ is a tuning factor and T is the time scale over
which the firing rate of the postsynaptic neuron is averaged. Here
γ = 50 and T = 10 s.

SIMULATION DETAILS
The SORF formation and performance analysis simulations were
developed and implemented on a publically available neural sim-
ulator (Nageswaran et al., 2009b; Richert et al., 2011) and the
forward Euler method (Giordano and Nakanishi, 2006) was used
to integrate the difference equations with a step size of 1 ms for
plasticity equations and 0.5 ms for neuronal activity equations.
The CPU version of CARLsim was run on a system with an
Intel Core i7 2.67 GHz quad-core processor with 6 GB of mem-
ory. The GPU version of CARLsim was run on a NVIDIA Tesla
GPU M2090 card, with 6 GB of total memory and 512 cores.
The GPU was capable of 665 GFLOPS of double precision, 1.33
TFLOPs of single precision, and had a memory bandwidth of
117 GB/s. The GPU was in a 12-core CPU cluster with 24 GB of
memory and 4 GPU cards. Simulations executed on the CPU were
single-threaded, while simulations executed on the GPU were
parallelized, but only on a single GPU.

RESULTS
An SNN capable of SORF formation and V1 simple cell like
responses to counterphase grating stimuli presentation was
constructed using the automated parameter tuning framework
described above. Using a configuration with 10 SNNs running
simultaneously on the GPU, each having 4104 neurons, the auto-
mated parameter tuning framework took 127.2 h to complete 287
generations of the EA and used a stopping criterion that halted
the EA after the completion of 100 generations without a change
in the fitness of the best individual or after the completion of 500
generations. The average and best fitness values for every gener-
ation are shown in red and blue, respectively, in Figure 4. The
automated parameter tuning framework constructed 128 SNNs
out of 2880 total SNNs (4.4%) that displayed SORF formation
and V1 simple cell like responses and produced the first of these

FIGURE 4 | Plot of best and average fitness vs. generation number for

entire simulation run (287 generations, 4104 neuron SNNs, 10 parallel

configurations). All values were normalized to the best fitness value. The
error bars denote the standard deviation for the average fitness at intervals
of once per 20 generations. Initially the standard deviation of the average
fitness is large as the EA explores the parameter space, but over time, the
standard deviation decreases as the EA finds better solutions.

Table 2 | Sorted fitness values (higher is better) for the initial and final

SNN populations.

Initial population fitness values Final population fitness values

0.1949 1.0000

0.1780 0.9807

0.1594 0.9481

0.1551 0.9454

0.1444 0.9384

0.1399 0.9294

0.1212 0.9146

0.1006 0.9107

0.0977 0.9105

0.0913 0.9040

Entries with a shaded background denote SNNs with V1 simple cell responses

and SORF formation for every Exc group neuron (4).

SNNs at generation 52. Table 2 shows the fitness values of the 10
initial SNNs and the fitness values after 287 generations. Shaded
table entries denote SNNs that produced SORFs and V1 sim-
ple cell-like tuning curves for all four Exc group neurons while
unshaded table entries indicate SNNs that failed to produce these
neural phenomena. All SNNs from the initial population had very
low fitness, produced no orientation selectivity, and had no SORF
formation. All SNNs from the final population except for the last
individual (fitness = 0.9040) had high fitness values, produced
V1 simple cell-like tuning curve responses, and produced SORFs.
The last individual in Table 2, had a high fitness, but only pro-
duced V1 simple-cell like tuning curve responses and SORFs in
three of the four Exc group neurons.

Frontiers in Neuroscience | Neuromorphic Engineering February 2014 | Volume 8 | Article 10 | 8

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

EVOLVING SNNs WITH V1 SIMPLE CELL RESPONSES AND SORF
FORMATION
A single set of parameter values from the highest fitness
individual (row 1, column 2 in Table 2) was used to gener-
ate Figures 5–7A, 10, these parameter values can be found in
Supplementary 4 of the supplementary materials. Figure 5 shows
the firing rates of four output neurons from the Exc group in
response to all 40 input stimulus grating orientations. Each plot
represents the firing rate of an individual Exc group neuron,
denoted by a blue line, along with an idealized Gaussian tuning
curve similar to those found in simple cell responses in visual cor-
tical area V1 of the visual cortex (Henry et al., 1974), denoted by

FIGURE 5 | Plot of the firing rate response of Exc group neurons vs.

grating presentation orientation angle. The blue lines indicate the firing
rate of a neuron in the simulation while the dotted red lines indicate
idealized Gaussian tuning curves. Together, the four excitatory neurons
cover the stimulus space of all the possible presentation angles.

FIGURE 6 | Synaptic weights for the On(Off)Buffer → Exc connections

of a high fitness SNN individual. (A) Initial weight values before training.
(B) After training for approximately 100 simulated minutes with STDP and
homeostasis, the synaptic weight patterns resemble Gabor filters. (C) Four
example orientation grating patterns are shown.

a dashed red line. The firing rate responses from the Exc group
neurons qualitatively match the idealized V1 simple cell Gaussian
tuning curves. The maximum firing rate responses of Exc group
neurons were constrained by the sparsity requirement of the fit-
ness function and peaked at an average value of 67 Hz. The firing
rate responses were also decorrelated, another requirement of the
fitness function, which lead to different preferred orientations for
each of the Exc group neurons.

To examine the ability of the automated parameter tuning
framework to construct SNNs capable of SORF formation, the
synaptic weights between the On(Off)Buffer groups and the
Exc group were visualized in Figure 6 for the highest fitness
SNN. Each plot is a composite of the connections between the
On(Off)Buffer group and a single Exc group neuron, where
light regions represent strong synaptic connections and dark
regions represent weak synaptic connections. Figure 6A shows

FIGURE 7 | The responses of the Exc group neurons (identified by their

neuron id on the y-axis) were tested for all 40 grating orientations.

One orientation was presented per second and the test ran for 40 s (x-axis).
(A) Neuronal spike responses of 400 neurons trained with the highest
fitness SNN parameters found using the parameter tuning framework. (B)

Neuronal spike responses of 400 neurons trained using a single set of low
fitness parameters. The neurons were arranged such that those neurons
responding to similar orientations were grouped together for both (A,B).
This accounts for the strong diagonal pattern found in (A) and the very faint
diagonal pattern found in (B). Neuronal spike responses in (A) are sparse in
that relatively few neurons code for one orientation while neuronal spike
responses in (B) are not sparse. Additional, many of the neuronal spike
responses in part (A) employ a wide range of firing rates to describe a
subset of the orientation stimulus space while spike responses in (B) have
similar firing responses across all angles in all cases.

www.frontiersin.org February 2014 | Volume 8 | Article 10 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

the initial randomized synaptic weights while Figure 6B shows
the final synaptic weights after 100 min of simulation time dur-
ing the training period. The synaptic connections between the
On(Off)Buffer neurons and the Exc neurons in Figure 6B formed
receptive fields that resembled Gabor filters, which have been used
extensively to model V1 simple cell responses (Jones and Palmer,
1987). Figure 6C shows four example counterphase sinusoidal
grating orientations used as visual input into the SNN.

Figure 7 shows a raster plot of 400 Exc group neurons from
100 SNNs that were trained using the highest fitness parame-
ter values taken from row 2, column 1 of Table 2 and shown in
Figure 7A compared with a set of very low fitness parameters,
fitness = 0.0978, shown in Figure 7B. Neurons that have sim-
ilar preferred orientation angles have been placed close to one
another. The high fitness neurons in Figure 7A have responses
that are sparse (only a small subset of the neurons respond to
any particular stimulus angle) and orthogonal (different neu-
rons respond to different stimulus orientations) while neurons in
Figure 7B do not have these properties. Although each high fit-
ness neuron responds to a small subset of stimulus orientations,
taken together the high fitness neurons have responses that cover
all the possible stimulus orientations while low fitness neurons
do not have responses that carry meaningful information in this
respect.

Figure 8 compares the evolved parameters of “high fitness”
SNNs with “low fitness” SNNs. We judged an SNN to be high
fitness if its three fitness component values met the following cut-
offs: fitnessdecorr had a cutoff value of 15, fitnessGauss had a cutoff
value of 950, and fitnessmaxRate had a cutoff value of 50. We found
these cutoffs produced SNNs with SORFs in the receptive fields
of at least 3 out of 4 of the Exc group neurons. There were 128
high fitness SNNs and 2752 low fitness SNNs out of the 2880 total
SNNs constructed and tested by the parameter tuning framework.

Figure 8 shows a comparison between homeostatic target fir-
ing rate parameters for Exc and Inh groups for high fitness

FIGURE 8 | Plot of the target homeostatic firing rate parameters for

Exc group and Inh group for high fitness SNNs shown in (A) and low

fitness SNNs shown in (B). The Exc group homeostatic target firing rate is
significantly more constrained (between the ranges of 10–14 Hz) for the
high fitness SNNs as opposed to the corresponding parameters for the low
fitness SNNs. There were 128 high fitness SNNs and 2752 low fitness
SNNs out of a total of 2880 individuals. EAs allow parent individuals to pass
high value parameter values directly to their offspring, because of this,
there are many offspring with identical high fitness values. This explains
why there are not 128 distinct points distinguishable in (A).

SNNs (shown in Figure 8A) found using the parameter tuning
framework along with the remaining low fitness parameter values
(shown in Figure 8B). Each point represents a target Exc and Inh
firing rate pair for a given SNN. The homeostatic target firing rate
parameter for Exc groups in high fitness SNNs is clustered around
a relatively small region (10–14 Hz) when compared to the total
allowed target firing rate ranges of the Exc and Inh groups which
are 10–30 and 40–100 Hz, respectively. The low fitness SNNs have
Exc and Inh groups with target firing rates that have a much
wider range of values. It is interesting that successful SNNs clus-
ter around a low Exc group homeostatic firing rate (10–14 Hz).
This may be due to the interplay between STDP time windows or
the maximum input Poisson firing rate. In high fitness SNNs, Inh
groups with higher homeostatic target firing rates are rare, but the
distribution of firing rates is broader.

We next examined the relationship between STDP plastic-
ity parameters among high fitness SNNs individuals exclusively.
Figure 9A shows the LTD/LTP decay constant ratios, which dic-
tate the size of the LTP and LTD time windows, for Buffer to Exc
group connections and Exc to Inh group connections. Figure 9B
shows a comparison between LTD/LTP amplitude ratios for
Buffer to Exc group connections and Exc to Inh group connec-
tions. The overall parameter ranges can be found in Table 1. The
Buffer to Exc decay constant ratio in Figure 9A is within close
range of experimental observations by (Bi and Poo, 1998), that
show the LTD decay constant as being roughly twice as large at
the LTP decay constant. The Exc to Inh LTD/LTP decay constant
ratio in Figure 9A has a broader distribution of values that ranged
from approximately 1 to 4. These values also fall within the range
of experimental measurements of the LTD/LTP decay constant
ratio of approximately one (Bell et al., 1997). High fitness SNNs
in Figure 9B show a narrow distribution of LTD/LTP amplitude
ratios that favor an LTD/LTP ratio less than one for Buffer to Exc
group connections while Exc to Inh group connections show sig-
nificantly broader LTD/LTP amplitude ratios with values ranging
from approximately 1 to 4.

FIGURE 9 | The time windows in which STDP occurs are often

modeled as decaying exponentials and each of the LTP and LTD

windows can be characterized by single decay constant. The degree to
which the weight is increased during LTP or decreased during LTD is often
called the LTP/LTD amplitude or magnitude. (A) Ratio of the STDP LTD/LTP
decay constant for the Buffer to Exc group connections (blue) and the Exc
to Inh group connections (red) for high fitness SNNs. (B) The ratio of the
STDP LTD/LTP amplitude for the Buffer to Exc group connections (blue) and
the Exc to Inh group connections (blue) for high fitness SNNs.

Frontiers in Neuroscience | Neuromorphic Engineering February 2014 | Volume 8 | Article 10 | 10

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

STABILITY ANALYSIS
To ensure that the solutions found by the automated tuning
framework were stable, the parameter set from the highest fit-
ness SNN was used to train and test an SNN for an additional
100 trials, allowing the SORFs to be learned through STDP and
tested as described in the previous section. That is, a single set
of parameters was tested to ensure that the ability of a naïve
SNN to form SORFs was repeatable and independent of stimu-
lus presentation order. Thus, the order of stimulus presentations
was randomized between trials and each trial consisted of train-
ing and testing phases. Parameter values were deemed stable if
the SNNs consistently produced V1 simple cell-like responses and
SORFs for the majority of the trials. A robustness analysis on the
effect of small perturbations on the functional behavior of the
SNNs was not performed. To further analyze the stability of the
parameter values, firing rate responses from the Exc group over
all 100 trials were used to decode eight test angles presented to
the trained SNNs with a widely used population decoding algo-
rithm (Dayan and Abbott, 2001). At each presentation of the eight
orientation test angles, the neuronal firing rate and its preferred
stimulus orientation (i.e., the orientation for which the neuron
fired maximally) were used to create a population vector for all
the Exc neurons from the 100 trials (4 Exc neurons per trial× 100
trials = 400 neurons in total). The neuronal population vec-
tors were averaged and the resultant vector was compared to the
stimulus orientation angle.

The results of the 100 training and testing trials for the iden-
tical set of parameters were as follows. 76% of the trials had
SNNs with tuning curves that qualitatively matched V1 simple
cell responses and produced Gabor filter-like SORFs. The remain-
ing 24% of the trials had SNNs with three Exc group neurons that
produced good behavior and a single Exc group neuron with a
bimodal tuning curve and a SORF that resembled two overlap-
ping Gabor filters at different angles. A population code from the
firing rate responses of the 400 Exc group neurons was used to
decode the orientation of the presented test stimuli. Figure 10
shows the population decoding results for eight presented test
angles. The smaller black arrows are neuronal responses from the
400 neurons which sum to the population vector, shown with a
blue arrow. The lengths of the individual neural response vectors
(black arrows) were normalized by dividing the mean firing rate
by 2. The length of the population vector (blue arrow) was nor-
malized by dividing the sum of the individual responses by the
magnitude of the vector. The population vector was very close to
the presented test stimulus orientation for every case with a mean
error of 3.4◦ and a standard deviation of 2.3◦.

PERFORMANCE ANALYSIS
To test the computational performance of the automated param-
eter tuning framework, three different sized SNNs were run using
either a serial CPU implementation or a parallel GPU implemen-
tation of CARLsim. Each SNN had identical topology except for
the size of the On(Off)Poiss and On(Off)Buffer groups which
were either 16× 16, 24× 24, or 32× 32 giving rise to networks
with 1032, 2312, and 4104 neurons, respectively. The number of
configurations executed in parallel on the GPU was varied from 5
to 30 for all network sizes and execution times were recorded.

FIGURE 10 | Population decoding of eight test presentation angles. The
test presentation angle θ, is shown above each population decoding figure.
100 simulation runs, each with identical parameter values but different
training presentation orders, were conducted and the firing rates of the Exc
group neurons were recorded. The individual responses of each of the 400
neurons (4 Exc neurons × 100 runs) are shown with solid black arrows.
These individuals were summed to give a population vector (shown with a
blue arrow) that was compared to the correct presentation angle (shown
with a red arrow). Both the population vectors and correct presentation
angle vectors were normalized while the component vectors were scaled
down by a factor of 2 for display purposes (see text for details).

www.frontiersin.org February 2014 | Volume 8 | Article 10 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

The parallelized GPU SNN implementation showed impres-
sive speedups over the CPU SNN implementation (Figure 11).
The largest speedup (65×) was found when 30 SNN configura-
tions, each with 4104 neurons, were run in parallel, which took
21.1 min to complete a single generation, whereas 10 SNN con-
figurations with 4104 neurons required 26.4 min to complete a
single generation. In contrast, the CPU took 23.5 h for a single
generation. It would be interesting to compare the GPU perfor-
mance with a multi-threaded CPU simulation and there may be
gains in such an approach. However, in our experience SNNs on
such systems do not optimize or scale as well as GPUs. Because
the calculation of SNN neuronal and synaptic states can be cast
as single instruction multiple data (SIMD), parallel computation
of SNNs is more suited to GPUs having thousands of simple
cores, rather than multithreaded CPUs having many less, but
more powerful cores.

As the number of concurrent SNN configurations grows, the
speedup increases slowly and nearly plateaus for 30 parallel SNN
configurations. These speedup plateaus are mostly likely due to
the limitations of the GPU core number and clock-frequency, and
not the GPU global memory size as 99% of the GPU was utilized
but less than 20% of the GPU memory was utilized for the largest
simulation configurations. It should be noted that although the
single SNN configuration was moderately sized, all 30 configu-
rations together comprised a large-scale network (i.e., 123,120
total neurons) that was running simultaneously. This parameter
tuning approach can be scaled to tune larger SNNs by running
fewer configurations in parallel or by spreading the computation
and memory usage across multiple GPUs with an MPI/CUDA
implementation.

DISCUSSION
With the growing interest in large-scale neuromorphic applica-
tions using spiking neural networks, the challenge of tuning the
vast number of open parameters is becoming increasingly impor-
tant. We introduced an automated parameter tuning framework

FIGURE 11 | Plot of GPU speedup over CPU vs. number of SNNs run in

parallel for different sized SNNs and different numbers of SNNs run in

parallel. Three different SNN sizes were used, the blue line denotes SNNs
with 1032 neurons, the green line denotes SNNs with 2312 neurons, and
the red line denotes SNNs with 4104 neurons.

that can quickly and efficiently tune SNNs by utilizing inex-
pensive, off-the-shelf GPU computing technology as a substitute
for more expensive alternatives such as supercomputing clusters.
The automated parameter tuning framework consists solely of
freely available open source software. As a proof of concept, the
framework was used to tune 14 neural parameters in an SNN
ranging from 1032 to 4104-neurons. The tuned SNNs evolved
STDP and homeostasis parameters that learned to produce V1
simple cell-like tuning curve responses and SORFs. We observed
speedups of 65× using the GPU for parallelization over a CPU.
Additionally, the solutions found by the automated parameter
tuning framework were shown to be stable.

There are a few research groups that have designed soft-
ware frameworks capable of tuning large-scale SNNs. Eliasmith
et al. (2012) constructed a 2.5 million neuron simulation that
demonstrated eight diverse behavioral tasks by taking a con-
trol theoretic approach called the Neural Engineering Framework
(NEF) to tune very large-scale models. The NEF is implemented
in a neural simulator called Nengo and can specify the connec-
tion weights between two neuronal populations given the input
population, the output population, and the desired computation
to be performed on those representations. Our parameter tun-
ing framework takes a different approach, allowing the user to
tune not only individual synaptic weights but also parameters
related to plasticity rules, connection topology, and other biolog-
ically relevant parameters. Our framework does not require the
user to specify the desired computations between two neuronal
populations but rather leaves it to the user to specify the exact
fitness function. The popular SNN simulator, Brian (Goodman
and Brette, 2009), also has support for parameter tuning in the
form of a parallelized CPU/GPU tuning toolkit. Their toolkit has
been used to match individual neuron models to electrophysi-
ological data and also to reduce complex biophysical models to
simple phenomenological ones (Rossant et al., 2011). Our tuning
framework is focused more on tuning the overall SNN behav-
ior as opposed to tuning a spiking model neuron that captures
electrophysiological data.

SNNs constructed and tuned with our framework could be
converted to run on any neuromorphic device that incorporates
the AER format for spike events and supports basic connection
topologies. This is the case for many neuromorphic hardware
devices (Furber et al., 2012; Cruz-Albrecht et al., 2013; Esser et al.,
2013; Pfeil et al., 2013). Although the framework presented here
was run on the CARLsim simulator, which utilizes the Izhikevich
neuron and STDP, the automated tuning framework presented
here could readily be extended to support any spiking model, such
as the leaky integrate-and-fire neuron or the adaptive exponential
integrate-and-fire neuron (Brette and Gerstner, 2005).

SNNs with thousands of neurons, multiple plasticity rules,
homeostatic mechanisms, and feedback connections, similar to
the SNN presented here, are notoriously difficult to construct and
tune. The automated parameter tuning framework presented here
can currently be applied to much larger SNNs (on the scale of
106 neurons) with more complex network topologies but GPU
memory constraints limit the tuning of larger SNNs. Currently,
CARLsim SNN simulations are limited to approximately 500 K
neurons and 100 M synapses on a single Tesla M2090 GPU, but a

Frontiers in Neuroscience | Neuromorphic Engineering February 2014 | Volume 8 | Article 10 | 12

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

version that allows SNN simulations to run across multiple GPUs
is in development and will increase the size of SNNs that can be
tuned using this framework. The combination of a multi-GPU
version of CARLsim and the implementation of more advanced
evolutionary computation principles, such as multi-objective fit-
ness functions and co-evolving populations, should allow the
framework to be scalable and capable of tuning large-scale SNNs
on the scale of millions of neurons. The highly efficient automated
parameter tuning framework presented here can reduce the time
researchers spend constructing and tuning large-scale SNNs and
could prove to be a valuable contribution to both the neuro-
morphic engineering and computational neuroscience research
communities.

ACKNOWLEDGMENTS
This work was supported by the Defense Advanced Research
Projects Agency (DARPA) subcontract 801888-BS and by NSF
Award IIS/RI-1302125. We thank Micah Richert for his work
developing the custom spiking neural network simulator and
homeostatic plasticity model. We also thank Michael Avery and
Michael Beyeler for valuable feedback and discussion on this
project. Finally, we thank the reviewers for their feedback which
greatly improved the accuracy and clarity of the manuscript.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fnins.2014.

00010/abstract

REFERENCES
Abbott, L. F., and Nelson, S. B. (2000). Synaptic plasticity: taming the beast. Nat.

Neurosci. 3, 1178–1183. doi: 10.1038/81453
Ahmadi, A., and Soleimani, H. (2011). “A GPU based simulation of multilayer spik-

ing neural networks,” in Proceedings of the 2011 Iranian Conference on Electrical
Engineering (ICEE) (Tehran), 1–5.

Amir, A., Datta, P., Risk, W. P., Cassidy, A. S., Kusnitz, J. A., Esser, S. K., et al.
(2013). “Cognitive computing programming paradigm: a corelet language
for composing networks of neurosynaptic cores,” in Proceedings of the 2013
International Joint Conference on Neural Networks (IJCNN) (Dallas, TX). doi:
10.1109/IJCNN.2013.6707078

Avery, M., Krichmar, J. L., and Dutt, N. (2012). “Spiking neuron model of
basal forebrain enhancement of visual attention,” in Proccedings of the 2012
International Joint Conference on Neural Networks (IJCNN) (Brisbane, QLD),
1–8. doi: 10.1109/IJCNN.2012.6252578

Baladron, J., Fasoli, D., and Faugeras, O. (2012). Three applications of
GPU computing in neuroscience. Comput. Sci. Eng. 14, 40–47. doi:
10.1109/MCSE.2011.119

Beer, R. D. (2000). Dynamical approaches to cognitive science. Trends Cogn. Sci. 4,
91–99. doi: 10.1016/S1364-6613(99)01440-0

Bell, C. C., Han, V. Z., Sugawara, Y., and Grant, K. (1997). Synaptic plasticity in a
cerebellum-like structure depends on temporal order. Nature 387, 278–281. doi:
10.1038/387278a0

Ben-Shalom, R., Aviv, A., Razon, B., and Korngreen, A. (2012). Optimizing ion
channel models using a parallel genetic algorithm on graphical processors.
J. Neurosci. Methods 206, 183–194. doi: 10.1016/j.jneumeth.2012.02.024

Bernhard, F., and Keriven, R. (2006). “Spiking neurons on GPUs,” in Computational
Science—ICCS 2006 Lecture Notes in Computer Science, eds V. Alexandrov, G.
Albada, P. A. Sloot, and J. Dongarra (Berlin; Heidelberg: Springer), 236–243.

Bhuiyan, M. A., Pallipuram, V. K., and Smith, M. C. (2010). “Acceleration
of spiking neural networks in emerging multi-core and GPU archi-
tectures,” in Parallel Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium on (Atlanta, GA), 1–8. doi:
10.1109/IPDPSW.2010.5470899

Bi, G. Q., and Poo, M. M. (1998). Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsynaptic cell
type. J. Neurosci. 18, 10464–10472.

Boahen, K. (2005). Neuromorphic microchips. Sci. Am. 292, 56–63. doi:
10.1038/scientificamerican0505-56

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model
as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.
doi: 10.1152/jn.00686.2005

Brette, R., and Goodman, D. F. M. (2012). Simulating spiking neural networks on
GPU. Network 23, 167–182. doi: 10.3109/0954898X.2012.730170

Brüderle, D., Petrovici, M. A., Vogginger, B., Ehrlich, M., Pfeil, T., Millner, S.,
et al. (2011). A comprehensive workflow for general-purpose neural modeling
with highly configurable neuromorphic hardware systems. Biol. Cybern. 104,
263–296. doi: 10.1007/s00422-011-0435-9

Calin-Jageman, R. J., and Katz, P. S. (2006). A distributed computing tool for
generating neural simulation databases. Neural Comput. 18, 2923–2927. doi:
10.1162/neco.2006.18.12.2923

Caporale, N., and Dan, Y. (2008). Spike timing-dependent plastic-
ity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46. doi:
10.1146/annurev.neuro.31.060407.125639

Carlson, K. D., Richert, M., Dutt, N., and Krichmar, J. L. (2013). “Biologically plau-
sible models of homeostasis and STDP: stability and learning in spiking neural
networks,” in Proceedings of the 2013 International Joint Conference on Neural
Networks (IJCNN) (Dallas, TX). doi: 10.1109/IJCNN.2013.6706961

Clune, J., Stanley, K. O., Pennock, R. T., and Ofria, C. (2011). On the perfor-
mance of indirect encoding across the continuum of regularity. IEEE Trans. Evol.
Comput. 15, 346–367. doi: 10.1109/TEVC.2010.2104157

Cruz-Albrecht, J. M., Derosier, T., and Srinivasa, N. (2013). A scalable neural chip
with synaptic electronics using CMOS integrated memristors. Nanotechnology
24, 384011. doi: 10.1088/0957-4484/24/38/384011

Dayan, P., and Abbott, L. F. (2001). Theoretical Neuroscience. Cambridge: MIT
press.

De Jong, K. A. (2002). Evolutionary Computation: A Unified Approach. Cambridge:
The MIT Press.

de Ladurantaye, V., Lavoie, J., Bergeron, J., Parenteau, M., Lu, H., Pichevar, R., et al.
(2012). A parallel supercomputer implementation of a biological inspired neu-
ral network and its use for pattern recognition. J. Phys. Conf. Ser. 341, 012024.
doi: 10.1088/1742-6596/341/1/012024

Djurfeldt, M., Ekeberg, O., and Lansner, A. (2008). Large-scale modeling—a tool
for conquering the complexity of the brain. Front. Neuroinformatics 2:1. doi:
10.3389/neuro.11.001.2008

Ehrlich, M., Wendt, K., Zühl, L., Schüffny, R., Brüderle, D., Müller, E., et al. (2010).
“A software framework for mapping neural networks to a wafer-scale neu-
romorphic hardware system,” in Proceedings of ANNIIP (Funchal, Madeira),
43–52.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., et al.
(2012). A large-scale model of the functioning brain. Science 338, 1202–1205.
doi: 10.1126/science.1225266

Esser, S. K., Andreopoulus, A., Appuswamy, R., Datta, P., Barch, D., Amir,
A., et al. (2013). “Cognitive computing systems: algorithms and appli-
cations for networks of neurosynaptic cores,” in Proceedings of the 2013
International Joint Conference on Neural Networks (IJCNN) (Dallas, TX). doi:
10.1109/IJCNN.2013.6706746

Fidjeland, A. K., Roesch, E. B., Shanahan, M. P., and Luk, W. (2009). “NeMo: a
platform for neural modelling of spiking neurons using GPUs,” in Application-
specific Systems, Architectures and Processors, 2009 ASAP 2009. 20th IEEE
International Conference on, (Boston, MA), 137–144.

Floreano, D., and Urzelai, J. (2001). Neural morphogenesis, synaptic plas-
ticity, and evolution. Theory Biosci. 120, 225–240. doi: 10.1007/s12064-
001-0020-1

Fogel, D. B., Fogel, L. J., and Porto, V. W. (1990). Evolving neural networks. Biol.
Cybern. 63, 487–493. doi: 10.1007/BF00199581

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al.
(2012). Overview of the SpiNNaker system architecture. IEEE Trans. Comput.
62, 2454. doi: 10.1109/TC.2012.142

Gao, P., Benjamin, B. V., and Boahen, K. (2012). Dynamical system guided
mapping of quantitative neuronal models onto neuromorphic hardware.
IEEE Trans. Circuits Syst. Regul. Pap. 59, 2383–2394. doi: 10.1109/TCSI.
2012.2188956

www.frontiersin.org February 2014 | Volume 8 | Article 10 | 13

http://www.frontiersin.org/journal/10.3389/fnins.2014.00010/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2014.00010/abstract
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

Gauci, J., and Stanley, K. O. (2010). Autonomous evolution of topographic reg-
ularities in artificial neural networks. Neural Comput. 22, 1860–1898. doi:
10.1162/neco.2010.06-09-1042

Giordano, N. J., and Nakanishi, H. (2006). Computational Physics. 2nd Edn. Upper
Saddle River, NJ: Pearson Prentice Hall.

Gomez, F., and Miikkulainen, R. (1997). Incremental evolution of complex general
behavior. Adapt. Behav. 5, 317–342. doi: 10.1177/105971239700500305

Goodman, D. F. M., and Brette, R. (2009). The brian simulator. Front. Neurosci.
3:192–197. doi: 10.3389/neuro.01.026.2009

Han, B., and Taha, T. M. (2010). “Neuromorphic models on a GPGPU cluster,”
in Proceedings of the 2010 International Joint Conference on Neural Networks
(IJCNN) (Barcelona), 1–8. doi: 10.1109/IJCNN.2010.5596803

Hancock, P. J. B. (1992). “Genetic algorithms and permutation problems: a
comparison of recombination operators for neural net structure specifi-
cation,” in International Workshop on Combinations of Genetic Algorithms
and Neural Networks, 1992, COGANN-92, (Baltimore, MD), 108–122. doi:
10.1109/COGANN.1992.273944

Hendrickson, E. B., Edgerton, J. R., and Jaeger, D. (2011). The use of auto-
mated parameter searches to improve ion channel kinetics for neural modeling.
J. Comput. Neurosci. 31, 329–346. doi: 10.1007/s10827-010-0312-x

Henry, G., Dreher, B., and Bishop, P. (1974). Orientation specificity of cells in cat
striate cortex. J. Neurophysiol. 37, 1394–1409.

Hoffmann, J., El-Laithy, K., Güttler, F., and Bogdan, M. (2010). “Simulating
biological-inspired spiking neural networks with OpenCL,” in Artificial
Neural Networks—ICANN 2010 Lecture Notes in Computer Science, eds
K. Diamantaras, W. Duch, and L. Iliadis (Berlin; Heidelberg: Springer),
184–187.

Husbands, P., Smith, T., Jakobi, N., and O’Shea, M. (1998). Better living through
chemistry: evolving GasNets for robot control. Connect. Sci. 10, 185–210. doi:
10.1080/095400998116404

Igarashi, J., Shouno, O., Fukai, T., and Tsujino, H. (2011). Real-time simulation
of a spiking neural network model of the basal ganglia circuitry using general
purpose computing on graphics processing units. Neural Netw. 24, 950–960.
doi: 10.1016/j.neunet.2011.06.008

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., van Schaik, A., Etienne-
Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron
circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.00073

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural
Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Izhikevich, E. M., and Desai, N. S. (2003). Relating STDP to BCM. Neural Comput.
15, 1511–1523. doi: 10.1162/089976603321891783

Izhikevich, E. M., and Edelman, G. M. (2008). Large-scale model of mammalian
thalamocortical systems. Proc. Natl. Acad. Sci. U.S.A. 105, 3593–3598. doi:
10.1073/pnas.0712231105

Izhikevich, E. M., Gally, J. A., and Edelman, G. M. (2004). Spike-timing dynamics
of neuronal groups. Cereb. Cortex 14, 933–944. doi: 10.1093/cercor/bhh053

Jones, J., and Palmer, L. (1987). An evaluation of the two-dimensional gabor fil-
ter model of simple receptive-fields in cat striate cortex. J. Neurophysiol. 58,
1233–1258.

Keijzer, M., Merelo, J. J., Romero, G., and Schoenauer, M. (2002). “Evolving objects:
a general purpose evolutionary computation library,” in Artficial Evolution, eds
P. Collet, C. Fonlupt, J. K. Hao, E. Lutton, and M. Schoenauer (Berlin: Springer-
Verlag), 231–242.

Krichmar, J. L., Dutt, N., Nageswaran, J. M., and Richert, M. (2011).
“Neuromorphic modeling abstractions and simulation of large-scale
cortical networks,” in Proceedings of the 2011 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD) (San Jose, CA), 334–338. doi:
10.1109/ICCAD.2011.6105350

Maitre, O., Baumes, L. A., Lachiche, N., Corma, A., and Collet, P. (2009). “Coarse
grain parallelization of evolutionary algorithms on GPGPU cards with EASEA,”
in Proceedings of the 11th Annual conference on Genetic and evolutionary compu-
tation (Montreal, QC), 1403–1410.

Markram, H. (2006). The blue brain project. Nat. Rev. Neurosci. 7, 153–160. doi:
10.1038/nrn1848

Mirsu, R., Micut, S., Caleanu, C., and Mirsu, D. B. (2012). Optimized simulation
framework for spiking neural networks using GPU’s. Adv. Electr. Comp. Eng. 12,
61–68. doi: 10.4316/aece.2012.02011

Mongillo, G., Barak, O., and Tsodyks, M. (2008). Synaptic theory of working
memory. Science 319, 1543–1546. doi: 10.1126/science.1150769

Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., and Veidenbaum,
A. (2009a). “Efficient simulation of large-scale spiking neural networks
using CUDA graphics processors,” in Proceedings of the 2009 International
Joint Conference on Neural Networks (IJCNN). (Piscataway, NJ: IEEE Press),
3201–3208.

Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., and Veidenbaum, A. V.
(2009b). A configurable simulation environment for the efficient simulation of
large-scale spiking neural networks on graphics processors. Neural Netw. 22,
791–800. doi: 10.1016/j.neunet.2009.06.028

Nageswaran, J. M., Richert, M., Dutt, N., and Krichmar, J. L. (2010). “Towards
reverse engineering the brain: modeling abstractions and simulation frame-
works,” in VLSI System on Chip Conference (VLSI-SoC), 2010 18th IEEE/IFIP,
(Madrid), 1–6. doi: 10.1109/VLSISOC.2010.5642630

Neftci, E., Binas, J., Rutishauser, U., Chicca, E., Indiveri, G., and Douglas, R. J.
(2013). Synthesizing cognition in neuromorphic electronic systems. Proc. Natl.
Acad. Sci. U.S.A. 110:E3468–E3476. doi: 10.1073/pnas.1212083110. Available
online at: http://www.pnas.org/content/early/2013/07/17/1212083110

Nickolls, J., Buck, I., Garland, M., and Skadron, K. (2008). Scalable parallel
programming with CUDA. Queue 6, 40–53. doi: 10.1145/1365490.1365500

Nowotny, T. (2010). “Parallel implementation of a spiking neuronal network model
of unsupervised olfactory learning on NVidia CUDA,” in The Proceedings of the
2010 International Joint Conference on Neural Networks (IJCNN) (Barcelona),
1–8. doi: 10.1109/IJCNN.2010.5596358

Nowotny, T. (2011). Flexible neuronal network simulation framework using
code generation for NVidia(R) CUDATM. BMC Neurosci. 12:P239. doi:
10.1186/1471-2202-12-S1-P239

Pallipuram, V. K., Smith, M. C., Raut, N., and Ren, X. (2012). “Exploring
multi-level parallelism for large-scale spiking neural networks,” in Proceedings
of the International Conference on Parallel and Distributed Techniques and
Applications (PDPTA 2012) held in conjunction with WORLDCOMP 2012,
(Las Vegas, NV), 773–779.

Pfeil, T., Grübl, A., Jeltsch, S., Müller, E., Müller, P., Schmuker, M., et al. (2013). Six
networks on a universal neuromorphic computing substrate. Front. Neurosci.
7:11. doi: 10.3389/fnins.2013.00011

Pinto, N., Doukhan, D., DiCarlo, J. J., and Cox, D. D. (2009). A high-throughput
screening approach to discovering good forms of biologically inspired
visual representation. PLoS Comput. Biol. 5:e1000579. doi: 10.1371/jour-
nal.pcbi.1000579

Prinz, A. A., Billimoria, C. P., and Marder, E. (2003). Alternative to hand-tuning
conductance-based models: construction and analysis of databases of model
neurons. J. Neurophysiol. 90, 3998–4015. doi: 10.1152/jn.00641.2003

Prinz, A. A., Bucher, D., and Marder, E. (2004). Similar network activity from
disparate circuit parameters. Nat. Neurosci. 7, 1345–1352. doi: 10.1038/nn1352

Richert, M., Nageswaran, J. M., Dutt, N., and Krichmar, J. L. (2011). An efficient
simulation environment for modeling large-scale cortical processing. Front.
Neuroinform. 5:19. doi: 10.3389/fninf.2011.00019

Risi, S., and Stanley, K. O. (2012). An enhanced hypercube-based encoding for
evolving the placement, density, and connectivity of neurons. Artif. Life 18,
331–363. doi: 10.1162/ARTL_a_00071

Rossant, C., Goodman, D. F., Fontaine, B., Platkiewicz, J., Magnusson, A. K., and
Brette, R. (2011). Fitting neuron models to spike trains. Front. Neurosci. 5:9. doi:
10.3389/fnins.2011.00009

Schliebs, S., Defoin-Platel, M., Worner, S., and Kasabov, N. (2009). Integrated
feature and parameter optimization for an evolving spiking neural network:
exploring heterogeneous probabilistic models. Neural Netw. 22, 623–632. doi:
10.1016/j.neunet.2009.06.038

Schliebs, S., Kasabov, N., and Defoin-Platel, M. (2010). On the probabilistic opti-
mization of spiking neural networks. Int. J. Neural Syst. 20, 481–500. doi:
10.1142/S0129065710002565

Seung, H. S., Lee, D. D., Reis, B. Y., and Tank, D. W. (2000). Stability of the memory
of eye position in a recurrent network of conductance-based model neurons.
Neuron 26, 259–271. doi: 10.1016/S0896-6273(00)81155-1

Sheik, S., Stefanini, F., Neftci, E., Chicca, E., and Indiveri, G. (2011). “Systematic
configuration and automatic tuning of neuromorphic systems,” in Circuits and
Systems (ISCAS), 2011 IEEE International Symposium on, (Rio de Janeiro),
873–876. doi: 10.1109/ISCAS.2011.5937705

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive hebbian learning
through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926.
doi: 10.1038/78829

Frontiers in Neuroscience | Neuromorphic Engineering February 2014 | Volume 8 | Article 10 | 14

http://www.pnas.org/content/early/2013/07/17/1212083110
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

Stanley, K. O., D’Ambrosio, D. B., and Gauci, J. (2009). A hypercube-based
encoding for evolving large-scale neural networks. Artif. Life 15, 185–212. doi:
10.1162/artl.2009.15.2.15202

Stanley, K. O., and Miikkulainen, R. (2002). “Efficient evolution of neural network
topologies,” in The Proceedings of the Genetic and Evolutionary Computation
Conference, eds W. B. Langdon, E. Cantu-Paz, K. E. Mathias, R. Roy, D. Davis, R.
Poli, et al. (Piscataway, NJ; San Francisco, CA: Morgan Kaufmann), 1757–1762.

Stanley, K. O., and Miikkulainen, R. (2003). A taxonomy for artificial embryogeny.
Artif. Life 9, 93–130. doi: 10.1162/106454603322221487

Stone, J. E., Gohara, D., and Shi, G. (2010). OpenCL: a parallel programming stan-
dard for heterogeneous computing systems. Comput. Sci. Eng. 12, 66–73. doi:
10.1109/MCSE.2010.69

Svensson, C. M., Coombes, S., and Peirce, J. W. (2012). Using evolutionary algo-
rithms for fitting high-dimensional models to neuronal data. Neuroinformatics
10, 199–218. doi: 10.1007/s12021-012-9140-7

Thibeault, C. M., Hoang, R. V., and Harris, F. C. (2011). “A novel multi-GPU neural
simulator,” in Proceedings of the 2011 International Conference on Bioinformatics
and Computational Biology (BICoB) (New Orleans, LA), 146–151.

Thibeault, C. M., and Srinivasa, N. (2013). Using a hybrid neuron in physiologi-
cally inspired models of the basal ganglia. Front. Comput. Neurosci. 7:88. doi:
10.3389/fncom.2013.00088

van Geit, W., de Schutter, E., and Achard, P. (2008). Automated neuron model opti-
mization techniques: a review. Biol. Cybern. 99, 241–251. doi: 10.1007/s00422-
008-0257-6

van Rossum, M. C. W., Bi, G. Q., and Turrigiano, G. G. (2000). Stable hebbian
learning from spike timing-dependent plasticity. J. Neurosci. 20, 8812–8821.

Watt, A. J., and Desai, N. S. (2010). Homeostatic plasticity and STDP: keep-
ing a neuron’s cool in a fluctuating world. Front. Synaptic Neurosci. 2:5. doi:
10.3389/fnsyn.2010.00005

Yamazaki, T., and Igarashi, J. (2013). Realtime cerebellum: a large-scale spiking net-
work model of the cerebellum that runs in realtime using a graphics processing
unit. Neural Netw. 47, 103–111. doi: 10.1016/j.neunet.2013.01.019

Yosinski, J., Clune, J., Hidalgo, D., Nguyen, S., Zagal, J. C., and Lipson, H. (2011).
“Evolving robot gaits in hardware: the HyperNEAT generative encoding vs.
parameter optimization,” in Proceedings of the 20th European Conference on
Artificial Life (Paris).

Yudanov, D., Shaaban, M., Melton, R., and Reznik, L. (2010). “GPU-based
simulation of spiking neural networks with real-time performance and high
accuracy,” in Proceedings of the 2010 International Joint Conference on Neural
Networks (IJCNN) (Barcelona), 1–8. doi: 10.1109/IJCNN.2010.5596334

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 26 August 2013; accepted: 17 January 2014; published online: 04 February
2014.
Citation: Carlson KD, Nageswaran JM, Dutt N and Krichmar JL (2014) An efficient
automated parameter tuning framework for spiking neural networks. Front. Neurosci.
8:10. doi: 10.3389/fnins.2014.00010
This article was submitted to Neuromorphic Engineering, a section of the journal
Frontiers in Neuroscience.
Copyright © 2014 Carlson, Nageswaran, Dutt and Krichmar. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

www.frontiersin.org February 2014 | Volume 8 | Article 10 | 15

http://dx.doi.org/10.3389/fnins.2014.00010
http://dx.doi.org/10.3389/fnins.2014.00010
http://dx.doi.org/10.3389/fnins.2014.00010
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

	An efficient automated parameter tuning framework for spiking neural networks
	Introduction
	Methods
	GPU Accelerated SNNs in CARLsim
	Automated Parameter Tuning Framework Description
	Using the Parameter Tuning Interface
	Evolving SNNs with V1 Simple Cell Responses and SORF Formation
	Network Model
	Simulation Details

	Results
	Evolving SNNs with V1 Simple Cell Responses and SORF Formation
	Stability Analysis
	Performance Analysis

	Discussion
	Acknowledgments
	Supplementary Material
	References

