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During the last decades, schizophrenia has been regarded as a developmental disorder.
The neurodevelopmental hypothesis proposes schizophrenia to be related to genetic
and environmental factors leading to abnormal brain development during the pre- or
postnatal period. First disease symptoms appear in early adulthood during the synaptic
pruning and myelination process. Meta-analyses of structural MRI studies revealing
hippocampal volume deficits in first-episode patients and in the longitudinal disease
course confirm this hypothesis. Apart from the influence of risk genes in severe
psychiatric disorders, environmental factors may also impact brain development during
the perinatal period. Several environmental factors such as antenatal maternal virus
infections, obstetric complications entailing hypoxia as common factor or stress during
neurodevelopment have been identified to play a role in schizophrenia and bipolar
disorder, possibly contributing to smaller hippocampal volumes. In major depression,
psychosocial stress during the perinatal period or in adulthood is an important trigger.
In animal studies, chronic stress or repeated administration of glucocorticoids have
been shown to induce degeneration of glucocorticoid-sensitive hippocampal neurons and
may contribute to the pathophysiology of affective disorders. Epigenetic mechanisms
altering the chromatin structure such as histone acetylation and DNA methylation
may mediate effects of environmental factors to transcriptional regulation of specific
genes and be a prominent factor in gene-environmental interaction. In animal models,
gene-environmental interaction should be investigated more intensely to unravel
pathophysiological mechanisms. These findings may lead to new therapeutic strategies
influencing epigenetic targets in severe psychiatric disorders.
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INTRODUCTION
Schizophrenia is a severe mental disorder starting at young adult-
hood (Kendler et al., 1996) with a prevalence of about 1%
(Jablensky, 1995; McGrath et al., 2008). Each patient suffers
from an individual combination of positive, negative, and affec-
tive symptoms as well as cognitive deficits, while the severity of
these symptoms can change over time depending on the disease
stage. Schizophrenia is characterized by prodromal phases with
rather unspecific negative and cognitive symptoms, followed by
the acute illness with prevailing positive symptoms (Falkai et al.,
2011). Remission of psychosis is often incomplete with negative
symptoms or even persisting positive symptoms being present in
30% of the sufferers (Hasan et al., 2012) and increasing to 60%
in consideration of functionality (Gaebel et al., 2006). Positive
symptoms consist of mainly acoustic hallucinations, delusions,
disorganized speech, and disorganized behavior as well as thought
disorder. The negative symptoms comprise blunted affect, avo-
lition, anhedonia, asociality, and alogia (Crow, 1980; Andreasen
et al., 1995). Apart from affective symptoms (e.g., anxiety, depres-
sive mood, and suicidality), another domain refers to cognitive
deficits with diminished episodic memory, executive function,
and attention (Hoff et al., 1996, 2005; Heinrichs and Zakzanis,

1998; Albus et al., 2002, 2006), which represent a core feature of
the disease and are main predictors for poor social-functioning
outcome (Green, 1996).

Affective disorders, including major depressive disorder and
bipolar disorder with manic episodes, belong to the most preva-
lent psychiatric diseases. Being among the severe psychiatric
diseases (Alsuwaidan et al., 2009), Major depressive disorder has
a lifetime prevalence between 16 and 20% (Williams et al., 2007)
while lifetime prevalence of bipolar disorder is around 3% in the
general population (Merikangas et al., 2007). According to DSM-
IV (American Psychiatric Association, 1994) symptoms include
loss of energy, social withdrawal, and melancholia in depres-
sive episodes of both major depression and bipolar disorder, and
elation, irritability, increased energy with hyperactivity, racing
thoughts, pressured rapid speech, decreased need for sleep and an
increased involvement of pleasured activities in manic episodes of
bipolar disorder. In bipolar disorder, instability of mood is one
of the core symptoms, whereas melancholia is the most com-
mon sign of depressive episodes (Meyer and Hautzinger, 2003).
Furthermore, apart from affective symptoms, both types of affec-
tive disorders display impaired cognitive performance, mainly
in attention, memory, and executive tasks (Torres et al., 2007).
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However, because of the individuality of patient’s symptoms,
current psychiatric diagnostic manuals are not always valid and
major psychiatric disorders like schizophrenia, bipolar disorder,
and depression are considered as a continuum with different
severity of cognitive deficits as common trait (Hill et al., 2013).

In schizophrenia, twin studies show a heritability of about 60–
80% (Sullivan et al., 2003), whereas in bipolar disorder and major
depression heritability has been estimated to be 6–80 and 32%,
respectively (Wray and Gottesman, 2012). Genome-wide associa-
tion studies (GWAS) revealed a multitude of genetic risk variants
(single nucleotide polymorphisms, SNP) with low effect (Schwab
and Wildenauer, 2013). New risk SNPs with high significance
are located in genes for Zinc finger protein (ZNF804a), tran-
scription factor 4 (TCF4), micro-RNA 137 (Mir137), the L-type
voltage-gated calcium channel (CACNA1C), and CACNB2, Inter-
alpha globulin inhibitor H3 and H5 (ITIH3-ITIH4) as well as
ankyrin3 (Ank3) with mostly unknown neurobiological conse-
quences (Schwab and Wildenauer, 2013). Ank3 and CACNA1C
are also relevant for bipolar disorder (Ferreira et al., 2008) and
CACNB2 has been found to be associated with schizophrenia,
bipolar disorder and major depression (Cross-Disorder Group
of the Psychiatric Genomics Consortium et al., 2013). In a new
GWAS study, Ripke et al. (2013) estimated that in schizophrenia
about 8.300 SNPs contribute to a common risk of 32%, sug-
gesting that environmental factors interacting with the genetic
background contribute to the pathophysiology (Manolio et al.,
2009). In schizophrenia, environmental factors are proposed to
play a role up to 60% (Benros et al., 2011) (Figure 1).

NEURODEVELOPMENT AND PSYCHIATRIC DISORDERS
During the last decades, schizophrenia has been regarded as a
neurodevelopmental disorder. Defective genes and environmental

factors may interact to induce symptoms of the disease. The so-
called “neurodevelopmental hypothesis” proposes schizophrenia
to be related to adverse conditions leading to abnormal brain
development during the perinatal period, whereas symptoms of
the disease appear in early adulthood after the synaptic pruning
process (Weinberger, 1996). In the “two-hit” model, early peri-
natal insults (genetic background and/or environmental factors)
may lead to dysfunction of neuronal circuits and vulnerabil-
ity to the disease, while a second “hit” during a critical brain
development period in adolescence may induce the onset of the
disease (Keshavan and Hogarty, 1999). The early perinatal period
has been shown to be critical for proper brain development
and more specifically the late first and second trimester have
been implicated in the pathophysiology of the disease (Fatemi
and Folsom, 2009). During adolescence, a synaptic pruning pro-
cess with excessive elimination of synapses and loss of synaptic
plasticity may lead to exacerbation of symptoms in the predis-
posed brain (Keshavan and Hogarty, 1999; Schmitt et al., 2011a).
Additionally, myelination of the heteromodal association cor-
tex like the prefrontal cortex occur during this period (Peters
et al., 2012) and decreased fractional anisotropy which corre-
sponds to deficits in myelination has consistently been reported in
schizophrenia, suggesting disturbances in fronto-limbic connec-
tions (Yao et al., 2013). The prefrontal cortex is highly connected
with the hippocampus and this neuronal network has been shown
to be disturbed in schizophrenia, mainly due to neurodevelop-
mental disturbances (Bullmore et al., 1997; Peters et al., 2012;
Rapoport et al., 2012). Accordingly, in animal models, perina-
tal hippocampal lesions induced dysfunction of the prefrontal
cortex in adulthood (Lipska, 2004). The disconnection of the
hippocampus during brain development alters prefrontal cor-
tical circuitry, function and neurocognition such as prepulse

FIGURE 1 | Interacting risk genes and environmental factors contribute

to increase the risk of schizophrenia. The figure shows the estimated
heritability risk to develop schizophrenia as a factor of grade of next of kin.

The right side illustrates the contribution of different environmental factors
such as infections, obstetric complications, stress periods, and cannabis
abuse.
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inhibition of acoustic startle response and represents a potent
neurodevelopmental animal model for schizophrenia.

Meta-analyses of structural magnetic resonance imaging stud-
ies revealed decreased hippocampal volumes and increased ven-
tricles in first-episode schizophrenia patients, confirming the
presence of neuropathology before diagnosis is possible (Steen
et al., 2006; Vita et al., 2006; Adriano et al., 2012). Even in
patients with ultrahigh risk to develop schizophrenia, dimin-
ished gray matter of prefrontal and hippocampal regions has
been detected compared to healthy controls and in patients expe-
riencing later transition to schizophrenia these volume deficits
were yet more pronounced (Witthaus et al., 2009, 2010; Wood
et al., 2010). In a comparative analysis, both schizophrenia
patients and patients with treatment-resistant major depressive
disorder exhibited reduced hippocampal volumes (Maller et al.,
2012). Reduced hippocampal volume has also been confirmed
in patients with recurrent and chronic depression (Cole et al.,
2011). Shape analysis revealed deformations in subfields in the
tail of the right hippocampus as well as bilateral volume reduc-
tions in patients with first-episode depression (Cole et al., 2010;
Meisenzahl et al., 2010), while during the course of the disease
further reductions have only been detected in schizophrenia. The
presence of alterations in first-episode depression is consistent
with a neurodevelopmental hypothesis of early stress experience,
especially since the hippocampus plays a major role in inhibit-
ing stress response (McEwen and Magarinos, 2001), providing
inhibitory feedback to the hypothalamic-pituitary-adrenal (HPA)
axis (Fanselow, 2000).

STRESS DURING NEURODEVELOPMENT
Potential stress-inducing factors are migration and urbanicity,
which both have been related to schizophrenia. Meta-analyses
show an association with urban environment after controlling for
minority status (van Os et al., 2010). Individuals living in a higher
degree of urbanization had a higher risk to develop schizophrenia
than people living in rural areas with a dose-dependent relation-
ship (Pedersen and Mortensen, 2001). In healthy controls, city
living was associated with increased amygdala activity, whereas
urban upbringing affected the anterior cingulate cortex, affec-
tive, and stress response (Lederbogen et al., 2011). In first- and
second-generation migrants as well as in minority groups across
all cultures, psychotic symptoms have been shown to be increased
(Rapoport et al., 2012). According to the “social defeat hypoth-
esis” it has been assumed that social status and degree, e.g.,
occupying a minority position or experiencing social exclusion,
promotes the development of schizophrenia (van Os et al., 2010).

Maltreated children suffer more likely from severe psychi-
atric disorders such as major depression, bipolar disorder, post-
traumatic stress disorder, anxiety disorders, substance abuse and
schizophrenia. Childhood maltreatment has been associated with
reduced hippocampal volume and amygdala hyperreactivity and
also predicts poor treatment outcome (Teicher and Samson,
2013). To date, apart from a genetic vulnerability, stress is widely
accepted as risk factor for depression. The stress sensitization
hypothesis describes that the first episode of depression sensi-
tizes an individual to stress for which reason subsequent episodes
require less stress to be triggered (Shapero et al., 2014). In

extension of this hypothesis, early adverse childhood experiences
including emotional abuse, physical, and sexual abuse or neglect
have been shown to predict depressive symptoms in adulthood
(Shapero et al., 2014). Indicating a gene-environment interaction,
genetic factors such as polymorphisms in the serotonin trans-
porter or methylenetetrahydrofolate reductase have been reported
to interact with developmental stress to increase the risk for
depression (Karg et al., 2011; Lok et al., 2013). However, indi-
vidual genetic background influences the incidence of depression
in response to stress and only a part of the persons experiencing
stressors develops depression (Keers and Uher, 2012). Moreover,
childhood abuse is known to induce psychotic symptoms and
suicidal behavior in patients with major depression and bipo-
lar disorder (Arseneault et al., 2011; Tunnard et al., 2014). Early
psychotic symptoms represent a risk for developing schizophre-
nia. In a meta-analysis of 18 case-control studies, Varese et al.
(2012) filtered adverse experiences in childhood to significantly
increase the risk to develop psychosis and schizophrenia. The
neurobiological consequence of stress sensitization involves dys-
regulation of the hypothalamus-pituitary-adrenal (HPA) axis,
contributing to dopamine sensitization in mesolimbic areas and
increased stress-induced striatal dopamine release (van Winkel
et al., 2008).

The major stress system of the body is the HPA axis, a neu-
roendocrine system involved in the production of the stress
hormone cortisol by adrenal glands. In a subset of patients with
major depression, but also in patients with severe psychiatric
disorder across phenotypic diagnosis, a dysfunction of the HPA
axis has been detected (MacKenzie et al., 2007; Kapur et al.,
2012). Depressed patients with a history of childhood abuse
have enhanced HPA axis response to psychosocial stress and
attenuated cortisol response to application of the synthetic cor-
ticosteroid dexamethasone (Heim et al., 2000). In animal models,
acute or chronic stress decreased BDNF levels in the hippocam-
pus inclusive the dentate gyrus (Neto et al., 2011). Along with
this hypothesis, stress is known to reduce hippocampal dendrites
(Magarinos et al., 2011). It additionally increases plasma and
adrenal corticosterone levels and application of this hormone
reduced hippocampal BDNF levels, mimicking stress reaction
(Neto et al., 2011). Chronic stress or repeated administration
of glucocorticoids results in degeneration of hippocampal neu-
rons with decreased soma size and atrophy of dendrites (Sapolsky
et al., 1990; Watanabe et al., 1992). Thus, volume loss in vulnera-
ble brain regions like the hippocampus as reported for affective
disorders may indeed be mediated by stress-induced glucocor-
ticoid neurotoxicity (Arango et al., 2001; Frodl and O’Keane,
2013). In an animal model of depression, the learned help-
lessness paradigm, inescapable stress induces downregulation of
stem cell proliferation (neurogenesis) in the dentate gyrus of
the hippocampus (Malberg and Duman, 2003). Stress is addi-
tionally known to influence synaptic plasticity in the prefrontal
cortex (Rajkowska, 2000). Mediating gene-environmental inter-
actions, epigenetic mechanisms altering chromatin structure such
as histone acetylation and DNA methylation may link effects of
environmental factors such as stress to transcriptional regulation
of specific genes. Depression-like behavior and antidepressant
action have been found to be regulated by epigenetic mechanisms
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(Sun et al., 2013). For example, stress is known to increase histone
methylation at the corresponding promoters of the BDNF gene.

Maternal stress during the prenatal period has been related to
schizophrenia, depression, and anxiety (Markham and Koenig,
2011), which also applies to autism spectrum disorder and atten-
tion deficit hyperactivity disorder (Class et al., 2014). It includes
maternal psychological stress exposure e.g., due to bereavement,
unwantedness of a pregnancy, natural disaster or war experience
(Brown, 2002; Spauwen et al., 2004; Sullivan, 2005; Meli et al.,
2012). Children of mothers who experienced e.g., death of
relatives or other serious life events developed schizophrenia to a
higher degree (Khashan et al., 2008). War experience e.g., during
world war II or Israel’s Six-Day-War has also been regarded as a
critical factor (van Os and Selten, 1998; Malaspina et al., 2008).
Especially during the first or second trimester of pregnancy,
a vulnerable brain development period may exist for those
stress factors. Beside schizophrenia, depression, and anxiety are
consequences of exposure to gestational stress (Torrey et al.,
1996; Watson et al., 1999; Brown et al., 2000). Prenatal stress
is known to influence function of the HPA axis and secretion
of glucocorticoid hormones as well protective capacity of the
placenta (Owen et al., 2005; Weinstock, 2005, 2008). In addition
to effects on stress hormones, prenatal stress influences the fetal
transcriptome through microRNA (miRNA) regulation as an
epigenetic mechanism, which links environmental factors to
altered gene expression in the pathophysiology of schizophrenia
and bipolar disorder (Zucchi et al., 2013). Among 435 miRNAs,
19% exhibited reduced expression in the prefrontal cortex in
schizophrenia, or more pronounced in bipolar disorder (Moreau
et al., 2011). While 18 miRNAs have been found to be differ-
entially expressed, the miRNA miR-497 and miR-29c have been
validated to be overexpressed in exosomes of the prefrontal cor-
tex of patients with schizophrenia or bipolar disorder (Banigan
et al., 2013). Moreover, methylation or hydroxymethylation of
specific genes or promotors regulates gene expression (Akbarian,
2010). Hypermethylation of sex-determining region Y-box 10
(SOX10) has been reported in schizophrenia, whereas in bipolar
disorder hypomethylation of HLA complex group 9 (HCG9),
ST6 (alpha-N-acetyl-neuranminyl-2,3-beta-galactosyl-1,3)-N-
acetylgalactosaminide alpha-2,6-sialyltransferase (ST6GALNAC),
and hypermethylation of the serotonin transporter SLCA4 and
proline rich membrane anchor 1 (PRIMA1) has been observed
(Kato and Iwamoto, 2014). In the frontal cortex of schizophrenia
patients, genome-wide methylation analysis revealed differential
methylation of 817 genes in promotor regions, among them
genes which previously have been associated with schizophrenia
(Wockner et al., 2014). Histone modification of chromatin is
another epigenetic mechanism to influence gene expression
(Peter and Akbarian, 2011). In schizophrenia, altered histone
methyltransferases have been detected in the parietal cortex and
represent potential future targets for novel treatment strategies
(Chase et al., 2013). After prenatal stress in mice, abnormalities
in DNA methylation have been described in GABAergic neurons
and been related to a schizophrenia-like behavioral phenotype
(Matrisciano et al., 2013).

Altered expressions of glucocorticoid receptors and
corticotropin-releasing hormone (CRH) in the hippocampus

and amygdala have been reported to result from prenatal stress
and may be related to increased anxiety and depression-related
behavior (Markham and Koenig, 2011). Cognitive deficits of
working memory, spatial memory and novel object recognition,
related to dysfunctions of the hippocampus and prefrontal
cortex, have repeatedly been associated with prenatal stress in
animal models and implicate its relationship to severe psychiatric
disorders (Markham and Koenig, 2011). Other behavioral conse-
quences are increased locomotor activity and deficits in prepulse
inhibition of acoustic startle response (PPI) (Koenig et al., 2005).
Increased subcortical and decreased prefrontal dopamine activity
after prenatal stress interestingly corresponds to neurotransmitter
hypotheses of schizophrenia (Carboni et al., 2010). As a correlate
of negative symptoms, social interaction has been reported to
be decreased in animals with experience of prenatal stress (Lee
et al., 2007). Investigating gene-environmental interaction, a
social deficit has been revealed in SNAP-25 knockout mice,
which represents a synaptic protein involved in neurotransmitter
release, combined with prenatal stress paradigm (Oliver and
Davies, 2009).

Some retrospective studies investigated consequences of pre-
natal food starvation during the “Dutch hunger winter 1944–
1945” (Susser et al., 1996; Hoek et al., 1998) and Chinese famine
during 1959–1961 (St Clair et al., 2005; Xu et al., 2009). In
these investigations, famine episodes of mothers were related to
increased risk for schizophrenia in the offspring. Exposure to
famine has also been associated with mood disorders and anti-
social behavior (Lumey et al., 2011) However, these data are
based on ecological inquiries and other factors such as pre-
natal stress, inflammation, obstetric complications, and toxic
substances are not controlled for. Despite these limitations, ani-
mal studies revealed effects for protein restriction, choline and
vitamin D deficiency on dopamine-related behavior such as loco-
motor activity and sensorimotor gating, cognition and anxiety, or
depression-related behaviors (Markham and Koenig, 2011).

BIRTH AND OBSTETRIC COMPLICATIONS
Several meta-analyses have shown an association between com-
plications of pregnancy and delivery and schizophrenia. This
applies to obstetric complications of preeclampsia, bleeding, rhe-
sus incompatibility and diabetes, asphyxia, uterine atony, emer-
gency Ceasarian section, and fetal abnormalities such as low
birth weight, congenital malformations, and small head circum-
ference. Effect sizes have been estimated between two and three
with the highest effect showing emergency Caesarian section, pla-
cental abruption, and low birth weight (Cannon et al., 2002a).
Schizophrenia has been associated with boys which were small
for gestational age at birth (odds ratio 3.2) (Hultman et al.,
1999). Children who experienced fetal hypoxia and later devel-
oped schizophrenia or affective disorders had basically lower birth
weights, indicating that birth weight is a general marker of via-
bility of the intrauterine environment (Fineberg et al., 2013). An
odds ratio of 2.0 has been detected by a meta-analysis of Geddes
and Lawrie (1995). The same group investigated another meta-
analysis of different obstetric complications and found associa-
tions between schizophrenia and use of incubator, prematurity
and premature rupture of membranes, while low birthweight
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and use of forceps during delivery were less consistently related
to the disorder (Geddes et al., 1999). Maternal bleeding during
pregnancy has been found to be associated with schizophrenia
with an odds ratio of 3.5 (Hultman et al., 1999). Interestingly,
in individuals at high risk for psychosis, those who de facto
converted into psychosis had more obstetric complications than
non-converting individuals (Mittal et al., 2009). A common fac-
tor of all these complications is perinatal hypoxia (Zornberg
et al., 2000), which in rats induced a deficit in prepulse inhibition
of acoustic startle response (PPI) in adulthood. This behavioral
correlate to schizophrenia responded to treatment with the atyp-
ical antipsychotic clozapine (Schmitt et al., 2007; Fendt et al.,
2008).

The PPI paradigm reflects function of a specific network of
brain regions, among them the hippocampus, prefrontal cor-
tex, striatum, and nucleus accumbens (Swerdlow et al., 2001).
Especially the hippocampus and basal ganglia are vulnerable to
hypoxia-ischemia in the neonate (Morales et al., 2011). Bilateral
hippocampal atrophy has been detected in adolescents with
a history of perinatal asphyxia diagnosed as hypoxic-ischemic
encephalopathy, along with worse verbal long-term memory
(Maneru et al., 2003). In schizophrenia, patients with obstet-
ric complications have shown reduced hippocampal volumes
(McNeil et al., 2000; Van Erp et al., 2002; Schulze et al., 2003;
Ebner et al., 2008), while no effects have been observed in vol-
umes of basal ganglia (Haukvik et al., 2010). However, effects
of antipsychotic medication have to be taken into considera-
tion when investigating brain regions (Lieberman et al., 2005).
In patients, fetal hypoxia has been related to increased ventric-
ular size and reduced cortical gray matter (McNeil et al., 2000;
Cannon et al., 2002b; Falkai et al., 2003), but results are not con-
sistent (Haukvik et al., 2009). Assessment of the two-dimensional
gyrification index (GI) revealed no relationship between obstet-
ric complications and cortical folding (Falkai et al., 2007), but
after application of a three-dimensional local GI calculation cor-
tical gyrification has been observed to be reduced in the Broca’s
area in patients and healthy controls with obstetric complica-
tion (Haukvik et al., 2012). Since early stages of gyrification take
place during gestational week 16 with a rapid increase in the
third trimester (Armstrong et al., 1995), this possibly reflects
neurodevelopmental disturbances.

In a meta-analysis of 22 studies, the pooled odds ratio for
exposure to obstetric complications and subsequent develop-
ment of bipolar disorder was 1.01 and for development of major
depression 0.61, not supporting the association with affective dis-
order (Scott et al., 2006). However, in a national register study of
1.3 million Swedes, preterm birth has been significantly associated
with affective disorders: those with less than 32 weeks gestation
had a 2.9-fold higher risk to develop major depression and 7.4%
more likely to have bipolar disorder (Nosarti et al., 2012). In a
structural MRI study of 79 patients with bipolar disorder and 140
healthy controls from a Norwegion registry, perinatal asphyxia
including a hypoxic state lead to smaller amygdala volumes in the
bipolar group with perinatal asphyxia, while the non-psychotic
group had an association with smaller hippocampal volumes
(Haukvik et al., 2013). This is important for the pathophysiol-
ogy of bipolar disorder, since meta-analyses have revealed smaller

amygdala and hippocampus volumes in lithium-naïve patients
with bipolar disorder (Hallahan et al., 2011; Hajek et al., 2012).

The consequences of fetal hypoxia comprise neuronal death,
white matter damage with impaired myelination and reduced
growth of dendrites with more profound effects at mid than
late gestation (Rees et al., 2008). Apart from axonal degenera-
tion, especially oligodendrocytes and periventricular white mat-
ter are sensible for the influence of oxygen restriction (Kaur
et al., 2006). Additionally, an excess of glutamate via hypofunc-
tion of the N-methyl-D-aspartate (NMDA) receptor, which has
been proposed to play a major role in the pathophysiology of
schizophrenia (Hashimoto et al., 2013; Weickert et al., 2013),
may damage oligodendroglia and myelin and influence oligo-
dendrocyte differentiation (Mitterauer and Kofler-Westergren,
2011; Cavaliere et al., 2013). Thereby, contributing to cogni-
tive deficits, increased glutamate levels may induce a synaptic
imbalance between axons and oligodendroglia, affecting the glial
network (syncytium) which is composed of oligodendrocytes
and astrocytes (Mitterauer, 2011). In schizophrenia, decreased
oligodendrocyte number has been detected in CA4 of the hip-
pocampus and prefrontal cortex (Hof et al., 2003; Schmitt et al.,
2009). Although no astrocytosis has been found in schizophrenia
(Schmitt et al., 2009), dysfunction of astrocytes may be present in
psychiatric disorders (Mitterauer, 2011). At the paranodal junc-
tions between axons and terminal loops of oligodendrocytes,
contactin-associated protein is expressed and has been reported
to be downregulated in schizophrenia, thus modulating glia-
neuronal interaction (Schmitt et al., 2012). In addition to these
glial networks, microglia is known to be activated by hypoxic peri-
ods and may mediate cell damage via production of nitric oxide
synthase, linking neonatal hypoxia to inflammatory processes
(Kaur et al., 2006). In the rat model of perinatal hypoxia, cDNA
microarray derived analysis revealed synaptic genes like com-
plexin 1, syntaxin 1A, SNAP 25, neuropeptide Y, and neurexin
1 to be deregulated in several cortical regions and striatum dur-
ing adulthood. In this study, clozapine treatment had effects on
gene expression (Sommer et al., 2010). These findings are rel-
evant to schizophrenia, which has been described as a disease
of dysconnectivity on the synaptic and systematic level (Schmitt
et al., 2011a, 2012).

INFLAMMATION DURING PREGNANCY
As to offspring of mothers exposed to influenza, several epi-
demiological studies have demonstrated an increased risk for
schizophrenia. However, infections with other viruses such as
measles, rubella, varicella-zoster, polio, and herpes as well as bac-
teria and parasites (Toxoplasma gondii) also confer an increased
risk of schizophrenia (Hagberg et al., 2012). Moreover, mater-
nal infections and subsequent inflammatory processes and brain
injury during pregnancy are known to be associated with preterm
labor, especially at <30 weeks of gestation (Dammann et al., 2002;
Goldenberg et al., 2008). These complications are known to affect
white matter structures such as corpus callosum or other major
white matter tracts and may be associated with neurodevelopmen-
tal injury of oligodendrocytes in schizophrenia (Chew et al., 2013).
In fact, decreased numbers of oligodendrocytes have been detected
in the hippocampus and prefrontal cortex in post-mortem brains
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of schizophrenia patients and may affect subsequent myelination
(Hof et al., 2002; Schmitt et al., 2009). Pro-inflammatory cytokine
release has been described as common mechanism of infectious
processes (Brown, 2012; Garbett et al., 2012). In the prefrontal
cortex of schizophrenia patients, gene expression analysis revealed
increased expression of inflammatory genes along with activa-
tion of microglia (Beumer et al., 2012; Fillman et al., 2013), but
results in the superior temporal cortex also point to the reduced
expression of immune-related genes (Schmitt et al., 2011b). In
which manner these post-mortem findings are related to perinatal
insults is not yet resolved. In animal studies, maternal infection
induced behavioral abnormalities in early adulthood comparable
to schizophrenia such as deficits in PPI, social interaction and
working memory (Meyer and Feldon, 2009).

CHALLENGING FUTURE INVESTIGATIONS:
GENE-ENVIRONMENTAL INTERACTION
Many efforts have been made to unravel the genetic background
of severe psychiatric disorders. Recent GWAS point toward a par-
tial overlap in susceptibility between schizophrenia and affective
disorders (Cross-Disorder Group of the Psychiatric Genomics
Consortium et al., 2013). For example, the risk variant of the
alpha 1C subunit of the L-type voltage-gated calcium channel
(CACNA1C) gene is associated with schizophrenia, bipolar disor-
der and major depression (Green et al., 2010). This genotype has
been shown to influence hippocampal activation during episodic
memory encoding and retrieval (Krug et al., 2013). However,
effect sizes for common genetic variants so far were small (Brown,
2011; Réthelyi et al., 2013). Environmental factors, especially
those affecting molecular and structural processes in relevant
brain regions during neurodevelopment, are supposed to inter-
act with genetic factors to induce severe psychiatric disorders
(Harrison and Weinberger, 2005). For example, a large num-
ber of schizophrenia candidate genes are known to be regulated
by hypoxia (Fatemi and Folsom, 2009; Schmidt-Kastner et al.,
2012). In transgenic animal models of schizophrenia, stressful
events have been induced to reinforce the behavioral phenotype
(Haque et al., 2012; Hida et al., 2013). Future animal studies
should combine risk variants of susceptibility genes with sev-
eral environmental factors such as perinatal infection, stress and
hypoxia to develop valid models of severe psychiatric disorders.
These models could be useful to understand pathophysiological
brain mechanisms and to develop new treatment strategies aim-
ing at risk-based therapy and prevention of symptoms of severe
psychiatric disorders.
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