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It is advantageous to study a wide range of vocal abilities in order to fully understand
how vocal control measures vary across the full spectrum. Individuals with absolute
pitch (AP) are able to assign a verbal label to musical notes and have enhanced abilities
in pitch identification without reliance on an external referent. In this study we used
dynamic causal modeling (DCM) to model effective connectivity of ERP responses to
pitch perturbation in voice auditory feedback in musicians with relative pitch (RP), AR and
non-musician controls. We identified a network compromising left and right hemisphere
superior temporal gyrus (STG), primary motor cortex (M1), and premotor cortex (PM). We
specified nine models and compared two main factors examining various combinations of
STG involvement in feedback pitch error detection/correction process. Our results suggest
that modulation of left to right STG connections are important in the identification of
self-voice error and sensory motor integration in AP musicians. We also identify reduced
connectivity of left hemisphere PM to STG connections in AP and RP groups during
the error detection and corrections process relative to non-musicians. We suggest that
this suppression may allow for enhanced connectivity relating to pitch identification in
the right hemisphere in those with more precise pitch matching abilities. Musicians with
enhanced pitch identification abilities likely have an improved auditory error detection and
correction system involving connectivity of STG regions. Our findings here also suggest
that individuals with AP are more adept at using feedback related to pitch from the right

hemisphere.
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INTRODUCTION

Understanding the neural mechanisms underlying human vocal-
ization provides insight into sensory motor control that can
inform voice production in health and disease. A critical need is
the development of neurbiologically plausible models of vocaliza-
tion that apply to a wide range of perceptual abilities (disordered-
average-professional) in order to fully understand how vocal
control varies across the full spectrum of abilities. From a system
level perspective, understanding the regions involved in vocaliza-
tion cannot provide information about the neural networks that
govern the wide range of sensory motor interactions that lead
to vocal output. Rather, it is necessary to study how regions of
the brain are functionally connected within the voice production
system. Prior studies (Bengtsson et al., 2005; Han et al., 2009;
Loui and Schlaug, 2009; Kleber et al., 2010; Halwani et al., 2011)
have shown differences between musicians and non-musicians
while performing motor, auditory or somatosensory tasks. It is
also known that voluntary responses to shifts in vocal pitch are
more accurate and stable in experienced singers compared to
non-musicians (Zarate and Zatorre, 2008), suggesting enhanced
sensory control over the voice. A rare but interesting ability is

perfect or absolute pitch (AP), which is the ability to perceive
and identify exact musical notes. Individuals with AP have an
enhanced ability to accurately relate a note to a musical scale with-
out an acoustical reference pitch (Takeuchi and Hulse, 1993). The
behavioral characteristics of AP have been examined extensively
although the etiology is still unknown. Importantly, differences
in both structural and functional characteristics of the brains of
individuals with AP when compared to controls who do not pos-
sess AP have also been identified (Schlaug et al., 1995; Schlaug,
2001; Bermudez et al., 2009; Loui et al., 2011; Dohn et al., 2013).
Specifically structural imaging studies have identified a stronger
leftward asymmetry of the planum temporale when compar-
ing AP musicians with non-AP musicians (Schlaug et al., 1995).
Functional imaging studies have also identified differences in AP,
specifically inferior frontal (Zatorre et al., 1998) and superior
temporal regions as being increasingly activated in AP musicians
during tone perception and pitch memory tasks (Schulze et al.,
2009, 2012).

Given the unique ability of AP, we expect that such enhance-
ment of the functional mechanisms underlying sensory con-
trol of the voice in trained singers may lead to adaptations
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in the functional connectivity of brain regions and networks
specifically related to audio-vocal integration and voice control.
To date, there is one study that has examined functional con-
nectivity networks in people with AP (Loui et al., 2012). Loui
et al. (2012) used graph theory analysis of fMRI data to exam-
ine networks of functional activation during music listening.
Results identified increased clustering in the left superior tem-
poral regions in AP subjects compared to controls. However,
to provide data on sensory control mechanisms of vocalization
across the spectrum of abilities we have used a pitch pertur-
bation approach in which a pitch-shift is introduced during
vocalization (Larson, 1998). This approach has provided excep-
tionally robust data allowing for detailed insight into human
vocalization.

In the present experiment we studied effective connectivity
in musicians with AP compared to musicians with relative pitch
(RP) and subjects with no musical ability (NM) using dynamic
causal modeling (DCM) to model effective connectivity of ERP
responses to pitch shifted auditory feedback. We have previously
identified bilateral STG regions as playing a key role in sensory
control of the voice. Using both fMRI and DCM methods we have
identified the importance of STG in sensory motor control during
pitch-shifted stimuli in healthy young subjects (Parkinson et al.,
2012, 2013). Here we compared families of models examining
STG involvement in the error detection/correction process. Based
on the work discussed above, our a priori hypothesis was that
DCM modeling would identify different connectivity patterns in
individuals with AP when compared to RP and NM individuals.
Based on previous literature of structural and functional differ-
ences in the AP brain (Schlaug et al., 1995; Bengtsson et al., 2005;
Han et al., 2009; Loui and Schlaug, 2009; Kleber et al., 2010;
Halwani et al., 2011; Loui et al., 2012). We expected to see dif-
ferences specifically in the left hemisphere connections between
STG and IFG/PM, during vocalization with pitch-shifted feed-
back. We also expected to see a difference in the modulation of
connections between the left and right hemisphere STG regions
based on our previous work (Zarate and Zatorre, 2008; Parkinson
etal., 2012, 2013; Behroozmand et al., 2014). This work will pro-
vide additional understanding of the brain networks related to a
range of sensory motor perceptual skills and an insight into the
neural mechanisms driving differences in pitch perception across
a spectrum of ability.

MATERIALS AND METHODS

PARTICIPANTS

Thirty-three speakers of American English (18 females and 15
males, ages 18-25 years) with no history of neurological disor-
der participated in the study. Absolute and relative pitch subjects
were recruited from the Bienen School of Music and the untrained
non-musicians were recruited from the general Northwestern
University student population. There were 11 subjects recruited
to each of the AP, RP, and untrained non-musician (NM) groups.
All musicians had a minimum of 4 years musical training [AP =
12.23 years (mean), range 7—16 years, RP = 11.64 years (mean),
range 4—17 years]. Within the musician groups the instruments
played included guitar, piano, violin, cello, clarinet, saxophone,
trombone, trumpet, tuba, bassoon, French horn, oboe, and flute.

A bilateral pure-tone hearing-screening test at 20dB SPL
(octave frequencies between 250 and 8000 Hz) was conducted
to screen for normal hearing. A test of musical proficiency was
conducted on the participants to evaluate their degree of pitch
perception, identification, discrimination, and production abili-
ties. The test included evaluation of chromatic pitch identifica-
tion, chromatic sight singing, atonal sight singing, and microtonal
pitch identification (for detailed description of the tests please see
Behroozmand et al., 2014). Each subject’s performance across all
tests was evaluated and each subject was given an objective rat-
ing score between 0 and 100%. Classification into groups was
based on score, with individuals classified as NM scoring below
50%, individuals classified as RP musicians scoring between 50
and 90% and individuals classified as AP scoring over 90%.

The Northwestern University institutional review board
approved all study procedures including recruitment, data acqui-
sition and informed consent, and subjects were monetarily com-
pensated for their participation. Written informed consent was
received from all participants.

EXPERIMENTAL DESIGN

During the experimental session, subjects were seated in a sound-
treated room and were instructed to sustain the vowel sound /a/
for approximately 2s. Subjects were asked to vocalize at their
conversational pitch and loudness levels whenever they felt com-
fortable, i.e., without a cue. Subjects were informed that their
voice would be played back to them through headphones during
their vocalizations. Subjects were instructed to ignore any pitch-
shifts they heard in the feedback of their voice. There was a pause
of around 1-2s between vocalizations, which allowed subjects
to take a breath. During each vocalization a pitch-shift stimu-
lus (£100 cents, 200 ms duration) was presented (Figure 1) in
the auditory feedback occurring between 500 and 1000 ms after
voice onset. All pitch-shift stimuli were randomly varied between
type and pitch-shift onset from trial to trial. The unit, “cents” is
a logarithmic value related to the 12-tone musical scale, where
100 cents equals one semitone. The rise time of the pitch shift
was 10-15ms. In each block of trials there were 120 vocaliza-
tions taking approximately 15-20 min. The experiment consisted
of two blocks of trials for a total experiment duration of approx-
imately 30—40 min. Subjects were asked to keep their eyes open
throughout the recording session.

Subjects’ voices were picked up with an AKG boomset micro-
phone (model C420), and amplified with a Mackie mixer (model
1202-VLZ3). Pitch shifting of the voice was performed using an
Eventide Eclipse Harmonizer. MIDI software (Max/MSP v.5.0
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FIGURE 1 | Schematic illustration of the voice perturbation paradigm
adapted from Korzyukov et al. (2012).
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Cycling 74) was used to control the time delay of the shift
from vocal onset, the duration, direction, and magnitude of
pitch shifts. Voice and auditory feedback were sampled at 10 kHz
and recorded onto a laboratory computer utilizing Chart soft-
ware (AD Instruments) and a PowerLab A/D Converter (Model
ML880, AD Instruments). Subjects maintained their conversa-
tional FO levels and voice loudness (about 70-75 dB) throughout
the experiment, and the feedback signal (i.e., the subject’s pitch-
shifted voice) was delivered back to the subjects through Etymotic
earphones (model ER1-14A) at a loudness of about 80-85 dB. The
10 dB increase in loudness between voice and feedback channels
(controlled by a Crown amplifier D75) was used to partially mask
air-born and bone-conducted voice feedback.

EEG ACQUISITION

The electroencephalogram (EEG) signals were recorded from
32 sites on the subject’s scalp using an Ag-AgCl electrode
cap (EasyCap GmbH, Germany) in accordance with the
extended international 10-20 system (Takeuchi and Hulse, 1993;
Oostenveld and Praamstra, 2001) including left and right mas-
toids. Electrode impedances were kept below 5kS2 for all chan-
nels. EEG recordings were made using the average reference
montage in which outputs of all of the amplifier channels were
averaged. This averaged signal was used as the common ref-
erence for each channel. Signals were low-pass filtered with a
400-Hz cut-off frequency (anti-aliasing filter), digitized at 2 kHz,
and recorded using a BrainVision QuickAmp amplifier (Brain
Products GmbH, Germany). Electro-oculogram (EOG) signals
were recorded using two pairs of bipolar electrodes placed above
and below the right eye to monitor vertical eye movements and at
the canthus of each eye to monitor horizontal eye movements.

DATA ANALYSIS

ERP analysis

SPMS8 [http://www.fil.ion.ucl.ac.uk/spm; update number 4667,
(Schlaug et al., 1995; Schlaug, 2001; Bermudez et al., 2009; Litvak
et al., 2011; Loui et al.,, 2011; Dohn et al., 2013)] was used
for all ERP pre-processing and data analysis. The data were
first epoched into to single trials, with a peri-stimulus window
of —100 to 500 ms. The data were then down-sampled to 128 Hz
and band-pass filtered (Butterworth) between 0.5 and 30 Hz.
Artifact removal was implemented with robust averaging. A min-
imum number of 100 epochs were averaged for each condition.
The data were finally grand averaged over 11 AP musicians, 11 RP
musicians, and 11 non-musician subjects.

DCM analysis

SPMS8 was also used to perform DCM (Schlaug et al., 1995; David
et al., 2006) on the data. DCM was used to examine the connec-
tions between neural regions involved in the proposed model of
processing auditory feedback during vocalization. DCM in SPM
was originally created to analyze effective connectivity of fMRI
data, and subsequently this was extended to model ERPs (Zatorre
et al., 1998; David et al., 2006; Kiebel et al., 2006). The DCM
method uses neural mass models to describe neural activity and
estimate effective connectivity within a specified network model.
Source time courses are first generated by a neurobiologically real-
istic model of the network of interest. These are then projected

on the scalp using a spatial forward model (Boundary Element
Model in our case). The parameters of both the source model
and the neural model are optimized using a variational Bayesian
approach to match the observed EEG data as closely as possible.
Data were modeled within a time-window of 1-200 ms following
the pitch-shift stimulus with an onset of 60 ms. A Hanning win-
dow was applied to the data and a detrend parameter of 1 was
used with 8 modes. The evoked responses were modeled using
the IMG (imaging) option, which models each source as a patch
on the cortical surface (Daunizeau et al., 2009; Schulze et al., 2009,
2012). The data for each of the three subject groups were modeled
separately. For each pitch-shift direction (up and down) condi-
tions were modeled together allowing particular connections in
the model to vary to explain the difference between the two.

Model identification and selection

In order to test our hypotheses with DCM we constructed models
with six regions and 18 connections. While there are many differ-
ent models that could have been examined, we chose our model
structure based on the literature and our initial work to address
questions regarding the role of the STG in the identification of
self voice error. Our model regions and network architecture for
this experiment was motivated by results from a previous fMRI
and ERP-DCM studies of pitch-shifted vocalization (Loui et al.,
2012; Parkinson et al., 2012, 2013). The peak MNI coordinates
reported in the literature for vocalization and those modeled in
our previous ERP-DCM study (Larson, 1998; Parkinson et al.,
2012, 2013) were used as coordinates for source regions for the
models examined here. Three regions were selected in both the
left and right hemispheres. The regions were superior temporal
gyrus (STG), inferior frontal gyrus (IFG), and premotor (PM)
cortex. MNI coordinates of the regions are displayed in Table 1.
The basic model selected for analysis included modulated con-
nections from STG to PM, PM to STG, and STG to IFG in both
hemispheres. Variations in modulations across hemisphere from
STG to STG and from STG to other cortical regions (PM and IFG)
were examined. We specified a bilateral driving input to STG as
the starting point to the model and nine different variations of
the model (Figure 2) were examined.

In the present study we proposed to examine differences in
connectivity across hemispheres between the left and right STG
regions. Reasoning behind examining lateral STG connectivity
was based on our previous study using DCM to model vocal
responses to pitch shifted voice feedback (Parkinson et al., 2012,
2013) and evidence of both structural and functional differences
in STG regions in AP musicians (Schulze et al., 2009; Loui et al.,

Table 1| Source location coordinates in MNI space.

Sources Coordinate (x, y, 2)
Left STG -59, —16, 6
Right STG 63, —11,6
Left PM —57 2,30
Right PM 60, 14, 34
Left IFG -32,31,3
Right IFG 56, 32, 24
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2011, 2012). Lateral STG connectivity was the first model charac-
teristic we chose to examine (factor 1). For this analysis we split
the nine models into three different families consisting of either
left to right STG (LtoR), right to left STG (RtoL) or bilateral
(Bilat) connections being modulated by the experimental effect
(shifted vocalization, upwards vs. downwards shifts). All other
model parameters were identical (Table 2, Figure 2).

The second characteristic we chose to model (factor 2) was
the effect of connectivity between regions within a hemisphere.

Reasoning behind this was again based on previous literature
identifying differences in the left hemisphere superior temporal
regions both functionally and structurally (Schulze et al., 2009;
Loui et al., 2011, 2012), in individuals with AP. The right hemi-
sphere is also known to be involved in pitch processing (Divenyi
and Robinson, 1989; Binder et al., 1997; Johnsrude et al., 2000;
Zatorre and Belin, 2001). Based on this literature we specified
connections between STG to PM, PM to STG, and STG to IFG as
being modulated by the experimental effect. We examined three

Left to Right Right to Left Bilateral
STG STG STG
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FIGURE 2 | Nine versions of the model were combined into connections being modulated or (i) bilateral, left, or right connections
families and analyzed for all three subject groups. The input to between STG, PM, and IFG being modulated. The basic model is
the model was set to the STG regions. Model families varied based represented by black arrows with blue arrows identifying modulated
on one of two factors; (i) differences in cross hemisphere STG connections.

Table 2 | Two separate analyses of model families were performed.

Analysis Family name and description Models included in family

Factor 1 LtoR—Models with left to right STG modulated 1,4,7

Effect of STG modulation across

hemispheres Rtol—Models with right to left STG modulated 2,5,8
Both—Models with left to right and right to Left STG modulated 3,6,9

Factor 2 Bilat—Bilateral connections between STG, PM, and IFG modulated 1,2,3

Effect of bilateral, left or right

connections Left—Only Left hemisphere connections between STG, PM, and IFG modulated 4,5, 6
Right—Only Right connections between STG, PM, and IFG modulated 78,9
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different families of models where we specified only left hemi-
sphere, only right hemisphere or both left and right hemispheres
(bilateral) connections as being modulated by the experimental
effect (Table 2, Figure 2).

Model comparison was performed for each of the three groups
separately with a Bayesian model selection (BMS) family level
inference procedure (Penny et al., 2010). Family level inference
identifies the “best family of models” which is the one with the
highest log-evidence for a given family over the other families
across subjects. We used BMS for random effects (Stephan et al.,
2009) to compare families across each of our two factors exam-
ined for each group (Table 2, Figure 2). Family model inference
removes uncertainty about certain aspects of model structure
other than the specific factor of interest. Family model inference
outputs a model exceedance probability for each family of mod-
els examined. The family of models with the highest exceedance
probability, i.e., the highest relative probability compared to any
other model tested, was identified as the family which best rep-
resented the data. We then used these identified models to make
inference about model structure across the groups.

RESULTS

BEHAVIORAL AND ERP RESULTS

ERP and vocal responses to pitch shifted stimuli are well
established in the literature (Behroozmand and Larson, 2011; Liu
et al., 2011; Korzyukov et al., 2012). Further detailed analysis of

vocal and ERP responses from this data set are already published
(Behroozmand et al., 2014). Figure 3 identifies scalp potential
distribution of responses for all three groups to the up and
down stimuli for the 1-200 ms post stimulus onset timeframe.
The spatial variation seen in this figure provides justification for
including the separate nodes in the DCM analysis. Grand aver-
age responses for all three groups for the 100 cent shift down
condition is shown in Figure 4 where differences in both N1
and P2 responses can be seen across the groups. Responses from
the left hemisphere C3 (Figure4A) and right hemisphere C4
(Figure 4B) channels are displayed. The variation in responses
between groups and across hemispheres again provides justifica-
tion for examining left and right hemispheres separately across
the three groups.

DCM RESULTS

Factor 1—effect of STG modulation across hemispheres

Although there were no significant winning families identified for
each group, BMS of the three families examining factor 1 identi-
fied that the AP group favored models with left to right STG con-
nections (LtoR, models 1, 4, and 7, as displayed in Figure 2) being
modulated (0.71 LtoR, 0.12 RtoL and 0.17 both random effects
model exceedance probability). The RP and NM groups both
favored the family with right to left STG connections (RtoL, mod-
els 2, 5, and 8, as displayed in Figure 2) modulated (Figure 5A)
(RP group: 0.12 LtoR, 0.55 RtoL and 0.32 both random effects
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and 0.18 both random effects model exceedance probability).

Factor 2—effect of hilateral, left, or right connections

The AP group clearly favored models with bilateral connections
to other cortical regions being modulated (bilateral, models 1, 2,
and 3, as displayed in Figure 2) (0.93 bilateral, 0.06 left and 0.01
right random effects model exceedance probability). In compari-
son the RP and NM groups did not significantly favor one family
of models over another (Figure 5B) (RP group: 0.09 bilateral, 0.56
left and 0.35 right random effects model exceedance probability;
NM group: 0.42 bilateral, 0.21 left and 0.37 right random effects
model exceedance probability).

Influence on coupling

Significance of coupling parameters were directly compared
across all groups for all modulated connections of the bilateral
family of models. Bayesian model averaging (BMA) was per-
formed to identify coupling parameters for all connections within
this family of models for every subject. Analysis of the cou-
pling parameters derived from BMA showed a group specific
modulation of the connections between left PM and left STG

nodes (Figure 6), with a negative coupling between these nodes
seen in the AP and RP groups and a positive coupling in the
NM group (p < 0.05, 2 sample ¢-test). No difference was seen in
coupling strength of the right hemisphere PM to STG connection.

DISCUSSION

The present study examined the effective connectivity of the neu-
ral networks associated with processing voice auditory feedback
in individuals with varying pitch processing and identification
abilities. Musicians have enhanced pitch identification mecha-
nisms used for evaluating both vocal or instrument output result-
ing from continued practice. This enhanced pitch processing
ability could be the result of stronger coupling between auditory-
vocal motor networks for enhanced integration of feedback to
update the predictive or feedforward internal model. The devel-
opment of an internal representation of pitch in AP musicians
may also be associated with their improved feedback-based mon-
itoring and control of voice through more precise predictions of
self-produced pitch provided by the efference copies of the motor
commands. Online integration of auditory feedback to update
the forward model must be essential for any musician and has
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FIGURE 6 | Difference in connection strengths for PM to STG
connections for all three groups.

likely been further enhanced and improved over years of practice
and evaluation of performance. We have previously identified the
STG as playing a key role in voice error detection and correction
(Parkinson et al., 2012, 2013) and STG has also been identified
as a critical region in AP (Loui et al., 2012; Schulze et al., 2012;
Dohn etal., 2013). Here we asked questions relating to lateral STG
connectivity and connectivity of STG to PM and IFG connec-
tions in each hemisphere during pitch shifted auditory feedback.
Our findings indicated that modulation of STG connections to
PM and IFG in both hemispheres is critical in the identifica-
tion of self-voice pitch error in musicians with AP but not in the
RP and NM groups. We also identified reduced connectivity of
left hemisphere PM to STG connections in AP and RP groups,
compared to a positive coupling in the NM group during the
error detection and corrections process. When examining lateral
STG connectivity we showed that individuals with AP favor mod-
els with modulations in left to right connectivity whereas both
RP and NM groups favored models with modulation in right to
left STG connectivity. Finally, we note that the cohort of musi-
cians in this study included those who played instruments and
expert voice users, thereby suggesting that the pitch-shift vocal-
ization paradigm has applications relative to the study of auditory
feedback across a variety of voice and non-voice areas.

The main finding of the current study identified the impor-
tance of left hemisphere connections from PM to STG in
musicians during auditory error detection and correction. A
considerable amount of evidence identifies the role of the left
hemisphere and superior temporal regions in AP. Specifically,
hemispheric differences in both brain structure and function
have been identified in individuals with AP compared to con-
trols (Bermudez and Zatorre, 2009; Loui et al., 2011; Schulze
et al., 2012). Diffusion tensor imaging (DTI) studies have shown
increases in white matter connectivity between the STG and
middle temporal gyrus especially in the left hemisphere in AP
individuals (Loui et al., 2011). The planum temporale has also
been identified in AP as a region showing increased volume in
individuals with AP (Zatorre et al., 1998) and altered left-right

asymmetry when comparing AP musicians with non-AP controls
(Schlaug et al., 1995; Zatorre et al., 1998; Keenan et al., 2001;
Dohn etal., 2013). Studies examining functional brain activations
in AP musicians have also identified left hemisphere differences in
AD, specifically inferior frontal (Zatorre et al., 1998) and superior
temporal regions as increasingly activated during tone percep-
tion and pitch memory tasks (Schulze et al., 2009, 2012). It is
likely that a predictive model of vocal output is created in the
left hemisphere. Auditory feedback related to spectral (pitch) and
temporal components of the voice is then compared with the pre-
dicted model. The motor output and forward model are then
corrected and updated should any error signals arise between
predicted and actual feedback. It is likely that musicians with
enhanced abilities to accurately relate a note to a musical scale
likely have an improved error detection and correction system.
This would result in more precise internal models through years
of practice and “fine-tuning” of the system and therefore these
individuals rely less upon integration of feedback from premotor
regions in the left hemisphere to update and maintain a current
representation in this model.

One key observation relates to the nature of the difference in
modulation of left hemisphere PM to STG connection between
the groups. Both musician groups (AP and RP) showed a nega-
tive coupling between these regions compared to non-musician
controls who showed a positive coupling, suggesting that this
connection is inhibitory in both musician groups (Figure6).
Thus, the role of the left hemisphere in error detection/correction
mechanisms may be functionally different in musicians than in
non-musicians. The inhibitory connection seen here between left
PM and STG regions in musicians, suggests that STG activity is
regulated by a frontal control system that assists in fine-tuning
sensory motor integration. We have previously shown that left
to right STG connections are key in pitch error detection and
correction (Parkinson et al., 2013) and here that this connection
is carefully tuned by inhibition from PM. Furthermore we also
found evidence of bilateral connectivity of STG to both PM and
IFG in AP only, suggesting a need for greater interhemispheric
interplay in this subject group.

The right hemisphere auditory areas have long been shown to
be responsible for the processing of pitch. Examination of the
specialization of the auditory cortex and STG to both spectral
and temporal information has shown that damage to the right
hemisphere STG affects a variety of pitch related processing tasks
(Zatorre, 1985; Divenyi and Robinson, 1989; Robin et al., 1990).
Specifically lesions to the right but not left primary auditory cor-
tical areas impaired processing of pitch change (Johnsrude et al.,
2000). The role of the right hemisphere in voice control in indi-
viduals with enhanced pitch processing abilities is unclear but it
is likely linked to exquisite pitch discrimination and providing
feedback to update and correct predictive models. Improved pitch
error detection in the AP brain could reflect the development of
stronger neural representations of pitch, facilitated by efference
copies of the vocal motor system. Our findings here may suggest
that individuals with AP are more adept at integrating feedback
related to pitch from the right hemisphere.

While it is clear that both the left and right hemispheres are
involved in vocal pitch error detection and correction processes

www.frontiersin.org

March 2014 | Volume 8 | Article 46 | 7


http://www.frontiersin.org
http://www.frontiersin.org/Auditory_Cognitive_Neuroscience/archive

Parkinson et al.

Effective connectivity in musicians with absolute pitch

as identified here, different processing demands between individ-
uals with varying pitch matching ability result in causal network
coupling differences across groups. Another observation from our
results relates to differences in lateral STG connectivity between
groups. While not significant, it is clear that the groups favored
different models. The AP group favors models with left to right
lateral STG coupling compared to RP and NM groups who
favored models with right to left STG coupling. This provides
further evidence that individuals with AP have enhanced pitch
memory and representation of the fundamental features of the
pitch leading to a more accurate prediction, which facilitates their
use of the left hemisphere more in the corrective process. Because
the AP brain is so highly analytic there is less need for integration
of information from the right hemisphere to update predictive
models in the left hemisphere. Thus, the integration of feedback
into the forward model might be through lateral STG connec-
tivity, updating information based on pitch feedback (from the
right hemisphere) and temporal components (from the left hemi-
sphere) and with fine-tuning from an inhibitory left PM to STG
connection.

The existing literature on network connectivity in AP has
been performed using graph theory analysis to examine func-
tional and structural network properties (Jincke et al., 2012; Loui
et al.,, 2012). Loui et al. (2012) identified increased functional
activation, network clustering and efficiency of connections in
the left STG region in AP. The present study is the first to use
DCM of event related potentials (ERP’s) in musicians to take
advantage of the exceptional temporal resolution of electrophysi-
ological signals for more precise modeling of temporal dynamics
within a network of specified brain regions. Our findings sup-
port the notion of experienced musicians being highly skilled at
monitoring auditory feedback in order to regulate vocal or instru-
ment output during performance. Individuals with AP have an
enhanced pitch mismatch detection system, which is sensitive to
the very smallest changes in pitch. It could also be the case that
individuals with AP are able to retain information relating to the
pitch of a note in their long-term memory and therefore have
a more accurate internal representation of the pitch used in the
comparison of actual and predicted auditory feedback when iden-
tifying an unknown pitch. On the opposite end of the spectrum
to individuals with enhanced pitch processing skills is the disor-
der of congenital amusia where individuals affected are unable
to detect out-of-key tones and are aware when others (or them-
selves) sing out of tune. Behavioral investigation of the disorder
has linked the impairment to a deficit in pitch processing (Foxton
et al., 2004; Hyde and Peretz, 2004). DCM of IFG and auditory
cortex during melody encoding revealed increased lateral audi-
tory cortex connectivity and a reduction in coupling in the right
hemisphere IFG to auditory cortex in aumsics relative to control
subjects (Albouy et al., 2013). This result of a reduction in cou-
pling the right hemisphere in individuals at the opposite end of
the pitch perception skill spectrum provides further support for
our hypothesis of increased involvement of the right hemisphere
for pitch detection in AP yet reduced need for lateral connectivity
to integrate information due to a more precise initial model.

Finally, we observe limitations in the current study. We rec-
ognize that more optimal network models involving additional

brain regions (e.g., supplementary and primary motor regions)
may exist in regard to vocal error detection and correction mech-
anisms in musicians. We based the current models on a priori
hypotheses and only tested connections specific to these. It may
be the case that experienced musicians recruit additional or alter-
native brain regions that we did not test. Due to the limitation
in number of regions included in a DCM it is not possible
to perform a direct comparison of many regions across both
hemispheres. Also, the analysis we performed examined a time-
window of 1-200 ms-post onset of the pitch shift. This time
window chosen for analysis may not be the optimal timeframe to
reflect pitch processing. An additional analysis with an extended
time window (1-400ms) could be performed to examine the
effect of later components.

In using DCM of ERP data we have shown reduced con-
nectivity between left PM and STG regions in individuals with
enhanced pitch processing abilities compared to non-musician
controls. We also identified differing lateral STG connectivity and
hemispheric involvement related to pitch matching ability. These
results provide further support for the involvement of STG in
vocal pitch error detection and correction and also provide insight
into the network and hemisphere differences in individuals with
highly enhanced error discrimination abilities. That our subjects
were not necessarily singers strongly suggests that the pitch-shift
vocalization paradigm can be used to understand auditory motor
integration in general rather than for vocalization or speech only.
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