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There is widespread interest in identifying computational and neurobiological mechanisms
that influence the ability to choose long-term benefits over more proximal and readily
available rewards in domains such as dietary and economic choice. \We present the results
of a human fMRI study that examines how neural activity relates to observed individual
differences in the discounting of future rewards during an intertemporal monetary choice
task. We found that a region of left dorsolateral prefrontal cortex (dIPFC) BA-46 was
more active in trials where subjects chose delayed rewards, after controlling for the
subjective value of those rewards. We also found that the connectivity from dIPFC
BA-46 to a region of ventromedial prefrontal cortex (vmPFC) widely associated with the
computation of stimulus values, increased at the time of choice, and especially during trials
in which subjects chose delayed rewards. Finally, we found that estimates of effective
connectivity between these two regions played a critical role in predicting out-of-sample,
between-subject differences in discount rates. Together with previous findings in dietary
choice, these results suggest that a common set of computational and neurobiological

equally to this work.

mechanisms facilitate choices in favor of long-term reward in both settings.
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INTRODUCTION

Impaired ability to delay gratification is thought to play a criti-
cal role in sub-optimal decision-making, and in conditions like
addiction and obesity (Chambers et al., 2007; Monterosso and
Ainslie, 2007; Peters and Buchel, 2011). As a result, there is a
widespread, on-going effort to characterize the computational
and neurobiological mechanisms underlying this form of self-
control. Two types of paradigms have been widely used in behav-
ioral neuroscience to examine these mechanisms. First, are tasks
involving intertemporal decisions between rewards, often money,
in which subjects choose between sooner-smaller amounts and
later-larger ones (Rachlin, 2000; Ainslie, 2001; McClure et al.,
2004; Kable and Glimcher, 2007; McClure et al., 2007; Ballard and
Knutson, 2009; Gregorios-Pippas et al., 2009; Carter et al., 2010;
Monterosso and Luo, 2010; Peters and Buchel, 2010, 2011; Luo
etal., 2012). Second, are tasks involving dietary choices, in which
subjects make choices between foods that vary in their tastiness
and healthiness (Hare et al., 2009, 2011a; Volkow et al., 2011).

In previous work investigating dietary self-control, we found
important commonalities and differences between successful and
unsuccessful dieters (Hare et al., 2009). Behaviorally, the two
groups differed on the relative weight that they placed on the
health and taste attributes of foods in making their decisions
(with successful dieters weighting both health and taste, and
unsuccessful dieters weighting only taste). Neurally, the ventro-
medial prefrontal cortex (vmPFC) encoded the value of foods
at the time of choice equally for both groups. The critical

difference had to do with the role of left dorsolateral prefrontal
cortex (dIPFC). In successful dieters, dIPFC came on-line and
exhibited increased effective connectivity with vmPFC during
choices that required self-control (e.g., refusing to eat tasty, but
unhealthy candy). In contrast, unsuccessful dieters did not exhibit
this pattern of connectivity. Furthermore, in a subsequent study
we found that non-dieting participants behaved like successful
dieters if they were given an exogenous reminder to pay attention
to health information, and that the reminder activated the same
dIPFC-vmPFC networks that successful dieters activated on their
own (Hare et al., 2011a).

These findings led us to propose the following model of the
computational and neurobiological processes at work in self-
control (Hare et al., 2009, 2011a,b; Rangel and Hare, 2010; Harris
et al., 2013). In the model, the vmPFC computes the value of
options at the time of decision, by first assessing their vari-
ous attributes, and then integrating them into a net value for
the option as a whole. Importantly, “basic” attributes like tasti-
ness might always be represented in the final value. However,
more abstract attributes like healthiness are only represented,
or are represented more strongly, if the dIPFC comes online
and modulates activity in vmPFC so that its value computa-
tions incorporate them. This modulation is critical for optimal
decision-making because, if some of the attributes are not rep-
resented or weighted properly, the vmPFC will assign values to
options that are not consistent with the long-term, goal-relevant
(e.g., proper nutrition) rewards that they generate.
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An important open question is whether this model is also at
work in other decision domains, such as those involving intertem-
poral monetary tradeoffs. This question is important because
comparing the mechanisms at work in different decision contexts
is a critical step in identifying common mechanisms that facilitate
self-control. Theoretically, these circuits should also influence the
degree of discounting for delayed rewards in the case of intertem-
poral choice, as long as dIPFC modulation of vmPFC can lead to
an increased (or decreased) weighting for delayed rewards.

Here we address this open question by testing the following
three hypotheses. First, we hypothesized that regions of left dIPFC
similar to those that are more active during self-control in dietary
choice would also be more active in intertemporal choice when
the subjects choose the larger-delayed payment over the money
available today, after controlling for their relative subjective val-
ues. Note that it is crucial to control for the subjective values
because, if the subjective value of the delayed reward is large
enough, the decision to wait becomes trivial. Second, we hypothe-
sized that effective connectivity from left dIPFC to vmPFC would
be stronger during trials in which subjects choose larger-delayed
rewards (again controlling for subjective value), which is consis-
tent with the idea that dIPFC can modulate the value signals in
vmPFC so that they place more weight on the value of delayed
payouts. Third, we hypothesized that the levels of activation in
dIPEC, as well as its effective connectivity to vmPFC, would help
to explain differences in discount rates across subjects.

These hypotheses are based not only on previous work in
dietary choice, but also on findings from the previous literature
on goal-directed choice. First, areas of vmPFC have consistently
been shown to correlate with stimulus values at the time of choice
across a wide variety of decision contexts (Tom et al., 2007;
Boorman et al., 2009; Lebreton et al., 2009; Basten et al., 2010;
Hare et al., 2010; Plassmann et al., 2010; Shenhav and Greene,
2010; Clithero et al., 2011; Kahnt et al., 2011; Park et al., 2011),
including decisions involving intertemporal tradeoffs (Kable and
Glimcher, 2007; Ballard and Knutson, 2009; Hare et al., 2009,
2011a; Carter et al., 2010; Peters and Buchel, 2010). Second, previ-
ous studies have associated responses in left dIPFC with choosing
to wait for delayed monetary rewards using transcranial magnetic
stimulation (TMS) and fMRI (McClure et al., 2004; Figner et al.,
2010; Luo et al., 2012). In particular, Figner et al. (2010) showed
that temporarily reducing activity in left dIPFC via TMS results
in subjects making more impatient choices, thus, establishing a
causal role for this region in temporal discounting. Third, recent
studies have found that resting-state connectivity in networks
including left dIPFC was correlated with discount rates (Gianotti
etal., 2012; Li et al., 2013).

Despite the attractiveness of the theory, and the body of consis-
tent evidence, critical questions remain open. In particular, none
of the previous studies have examined the effective connectiv-
ity between dIPFC and vmPFC during intertemporal monetary
choices, nor have they established that the dIPFC influences dis-
count rates through a mechanism that involves the modulation
of the stimulus values computed in vimPFC, or that the effective
connectivity runs from dIPFC to vimPFC, and not the other way
around. Here we are able to address these questions by estimat-
ing Dynamic Causal Models (Friston et al., 2003), and using those

parameter estimates to explain and predict differences in discount
rates across individuals.

MATERIALS AND METHODS

PARTICIPANTS

Twenty-seven subjects (18 males; age: mean = 24.1 years; range =
19-40) were included in the study. Two additional subjects were
excluded because of excessive head motion during the scanning
session (>2mm in translation or rotation). All participants had
normal or corrected-to-normal vision, no history of neurological,
psychiatric, or metabolic illness, and were not taking any medica-
tions that interfere with the blood oxygenation level-dependent
(BOLD) signal at the time of scanning. The Institutional Review
Board at California Institute of Technology approved the methods
and procedures used in this study.

INTERTEMPORAL CHOICE (ITC) TASK

On every trial, subjects chose between getting $25 at the end of
the experiment, or getting an equal or larger amount at a later
date. The later offers ranged from $25 to $54; with a delay from 7
to 200 days. Subjects made 216 decisions. The unique combina-
tions of amount and delay used are shown in Table 1. All subjects
saw the same set of options, although in different random orders.
Each option was shown twice. Note that by presenting all subjects
with the same options we were able to control for the objective
reward levels when testing how neural activity relates to discount
rates. Although beneficial for the hypotheses tested in previous
studies (Kable and Glimcher, 2007, 2010; Peters and Buchel, 2009,
2010), tailoring the choice sets around the indifference points of

Table 1 | Amounts by delay.

Delay Amount

7 25 26 28 30 32 35
10 25 26 27 29 30 32
12 25 26 28 31 33 35
14 25 26 28 32 35 39
21 26 27 29 30 32 38
25 27 29 31 33 35 46
28 26 28 32 35 39 46
30 26 27 29 30 32 38
40 27 33 35 40 47 54
45 26 29 31 35 40 46
50 27 30 35 40 46 54
60 29 33 35 40 47 54
90 26 30 33 40 46 54
95 31 33 35 40 47 54
100 26 31 38 39 46 54
150 31 33 35 40 47 54
180 27 31 35 39 46 54
200 26 28 35 39 47 54

Delays are listed in days and amounts in USD. The combinations of amount and
delay were chosen to facilitate the estimation of hyperbolic discounting param-
eters within the range 0.0005-0.05 that is commonly reported in monetary
discounting tasks.
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each subject would create a confound with objective value when
examining how individual differences in neural activity relate
to discount rates because less patient subjects would be shown
delayed rewards with higher monetary values.

As described in Figure 1A, each trial began with an offer pre-
sented onscreen. Participants were required to press within 3 s to
indicate whether or not they accepted the delayed reward offered.
Only the varying delayed option was presented onscreen. A but-
ton press response resulted in the termination of the offer screen,
and the appearance of a feedback screen for 250 ms displaying
“Yes,” if the delayed offer was accepted, or “No,” if it was rejected.
The phrase “No decision received” was displayed if the subject
failed to respond within 3's (mean = 2% of trials, standard devi-
ation 5%, median = 0%). Trials were separated by a fixation
cross of random duration (uniform: 2—65s). The assignment of
left/right button presses to accept/reject responses was counter-
balanced across subjects. At the end of the experiment a single
trial was randomly chosen and implemented: subjects received
the chosen option in addition to $50 (available immediately) for
participating in the study. All payments were made using prepaid
debit cards given to the subjects at the end of the experiment.
This allowed us to make the delayed payments available on the
appropriate date, without requiring subjects to return to the lab.

BEHAVIORAL DATA ANALYSIS

We estimated an individual discount factor (denoted by k)
for each subject using maximum likelihood. In particular, we
assumed that subjects assigned value to the delayed options using
a hyperbolic discounting function, in which the value of $A with
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FIGURE 1 | Task design and behavioral data. (A) Example display
screens and timing parameters. (B) Choice curve displaying the probability
of choosing the larger, delayed reward. The y-axis shows the probability of
selecting the future reward and the x-axis displays the stimulus value of the
future reward. Error bars represent the standard error of the mean. (C) Bar
graph showing the distribution of discounting parameters across subjects.
The x-axis represents individual subjects and the y-axis is the magnitude of
the discount parameter k from a hyperbolic discounting function.

a delay of D days is given by
dSV = A/(1 + kD),

where dSV denotes the discounted stimulus value. We also
assumed that the probability of accepting the delayed option is
given by the soft-max function

P(Yes) = (1 4 exp(bx(25 — dSV))) !,

where b is a non-negative parameter that modulates the slope of
the psychometric choice function. Note that in this formula the
value of the constant reference option is $25.

IMAGING DATA ACQUISITION

FMRI data were collected in a Siemens (Erlangen, Germany) 3.0
Tesla Trio MRI scanner. Using an eight-channel, phased array
head coil, we collected gradient echo T2*-weighted echoplanar
(EPI) images with BOLD contrast. In order to optimize BOLD
sensitivity, we used a tilted acquisition in an orientation 30°
oblique to the anterior-posterior commissure line (Deichmann
et al., 2003). The imaging parameters were as follows: TR =
2500 ms; TE = 30ms; flip angle = 80°; FOV = 192 mm; in-
plane resolution = 3 x 3-mm; and 40 3-mm slices (0.3-mm
gap) with ascending acquisition. While in the scanner, sub-
jects completed two runs of the ITC task (with 323 volumes
acquired per run). They also completed an additional task involv-
ing the degustation of liquid rewards that is not relevant to this
study (task order was counterbalanced across participants). High-
resolution, whole-brain T1-weighted structural images (TR =
1500ms; TE = 3.05ms; flip angle = 10°; voxel resolution =
1 mm?; single-shot, ascending acquisition) were also collected for
each participant. These images were co-registered with the their
respective EPI images to assist with the anatomical localization of
the functional activations.

FMRI DATA PREPROCESSING

Imaging data were preprocessed using SPM8 (Wellcome
Department of Imaging Neuroscience, Institute of Neurology,
London, UK). Data were corrected for motion with realign-
ment to the mean image, spatially normalized to the Montreal
Neurological Institute EPI template, resampled to 3 mm? voxels,
and spatially smoothed using a Gaussian kernel (full-width-
at-half-maximum = 8 mm). Data were also temporally filtered
using a filter width of 128s.

GLMs
We estimated two different mixed effect models of the BOLD
responses, with first order auto correlation correction [AR(1)].
The models were designed to localize in our sample the areas of
vmPFC that, as discussed in the Introduction, have been repeat-
edly shown to correlate with stimulus values at the time of choice.
The models are identical except for the specification of the value
modulators.

The first model, GLM-dSV, had the following regressors of
interest: (1) An indicator function beginning at the onset of each
decision screen with duration equal to the reaction time for that
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trial, (2) the indicator function modulated by the subject spe-
cific value of each delayed offer (dSV), and (3) the indicator
function modulated by the variable Accept (which equals 1 if the
subject chooses the delayed outcome, and zero otherwise). The
third regressor was orthogonalized with respect to the second one
in order to assign any shared variance between them to the dSV
regressor. The model also included session dummies, linear time
trends, and head movements as regressors of no interest.

The second model, GLM-rdSV, was identical except for the
specification of the parametric regressor. In particular, for the
reasons described in the Results section, we defined a relative
discounted subjective value (rdSV) variable, which is equal to
dSV —25 for subjects that choose the delayed variable more than
50% of the time (15 subjects), and is equal to 25-dSV for those
that choose the immediate option more frequently (12 subjects).

Both GLMs were estimated in three steps. First we estimated
the model at the individual level. Second, we calculated the fol-
lowing first-level single-subject contrasts: regressor 2 (dSV or
rdSV) vs. baseline, and regressor 3 (Accept) vs. baseline. Third, we
calculated second-level group contrasts using one-sample t-tests
on the single-subject contrasts.

We controlled for multiple comparisons at the cluster level
using an individual voxel threshold of p < 0.005 to achieve a
whole brain corrected (WBC) p-values less than 0.05 (cluster sizes
are listed in each table). We also used small volume corrections
(SVCs) in areas of a priori interest to the study of the self-
control mechanisms that are at the core of the hypotheses tested
here. We carried out an SVC in the vmPFC using an anatomical
mask based on the AAL atlas (Tzourio-Mazoyer et al., 2002) that
included the rectal gyrus, medial orbitofrontal, and anterior cin-
gulate cortex below z = 5 (1619 3-mm>voxels). A region in left
dorsolateral PFC, in Brodmann Area (BA) 46, has been shown to
play a role in various types of self-control tasks (Hare et al., 2009,
2011a; Figner et al., 2010). Because anatomical masks of dIPFC
lacked the required specificity to isolate this region, we carried
out SVC using a mask composed of a 10-mm radius sphere cen-
tered around the target coordinates (x, y, z = —36, 30, 27) used
by Figner et al. (2010) to demonstrate a causal role of dIPFC
on discounting behavior. The TMS stimulation of left dIPFC in
this study was directed to the F3 location of the international
10-20 system for electrode placement, and we used the trans-
formation algorithms in the Miinster T2T-Converter software
(http://wwwneuro03.uni-muenster.de/ger/t2tconv/) to compute
an estimate of the underlying MNI coordinates.

To assess the impact of the dSV regressor on model fit within
the reward valuation network identified in two recent meta-
analyses (Bartra et al., 2013; Clithero and Rangel, 2013), we re-
estimated GLM-dSV and a reduced form of GLM-dSV using the
Variational Bayes routines in SPM8 (Penny et al., 2003, 2005). The
reduced form of GLM-dSV excluded the parametric regressor for
dSV, but included all other regressors described above. Following
estimation of both models at the single subject level, we used a
random effects Bayesian model selection (BMS) procedure (Rosa
et al., 2010) to assess the variance explained by the dSV regressor
independent of the sign (+/—) on its coefficient in a fashion simi-
lar to an F-test, but additionally accounting for model complexity.
This BMS procedure generated exceedance probabilities from the

model evidence for each GLM. The exceedance probabilities cor-
respond to the belief that the full version of GLM-dSV is more
likely than the reduced version given the data from all subjects
(or vice versa). We evaluated the exceedance probability in all
voxels within the conjunction of masks generated from recent
meta-analyses on reward valuation. Specifically, we formed the
conjunction mask from the voxels shown in Clithero and Rangel’s
(2013) Figure 3 and Bartra et al. (2013) Figure 3A. This mask
included voxels in vmPFC, ventral striatum (vStr), and posterior
cingulate cortex (PCC) consistently found to positively corre-
late with the value of reward across reward types and decision
contexts in the meta-analyses listed above. This mask can be
downloaded from the following website: http://www.rnl.caltech.
edu/resources/index.html.

DYNAMIC CAUSAL MODELING (DCM)

We tested the hypothesis that the effective connectivity from left
dIPFC-BA46 to vmPFC plays a critical role in self-control using
DCM (Friston et al., 2003). The analysis proceeded in several
steps.

First, for each subject we extracted average activation time
courses from vmPFC and left dIPFC-BA46. In particular, for every
subject we defined an ROI with a 5-mm radius, and a center given
by each subject’s most significant voxel within the group ROIs.
The group ROI in vmPFC was defined based on the conjunc-
tion between voxels showing an effect for the rdSV and Accept
regressors from GLM-rdSV at an uncorrected threshold of p <
0.005. The group ROI in dIPFC-BA 46 was defined as all voxels
showing an effect for the Accept regressor from GLM-rdSV at an
uncorrected threshold of p < 0.005.

Second, we optimized the basic architecture of the DCM, in
terms of where experimental inputs entered. To do so, we esti-
mated 64 different DCMs that could be organized into four
different families (Figure 3A), based on how the variables rdSV
and Accept affect activity in dIPFC and vimPFC. Each family con-
tained 16 models that varied in terms of the combinations of
connectivity between vmPFC and dIPFC-BA46 as a function of
three events: fixation, all choice periods, and choice periods in
which the delayed option is selected.

Third, we compared each model family using BMS (Stephan
et al., 2009) to determine the most likely pattern of task related
inputs into dIPFC and vmPFC.

Fourth, having optimized the model inputs, we calculated the
parameter estimates and posterior probabilities of the full model
(i.e., the one containing coupling parameters from dIPFC-BA46
to vmPFC and vice versa for all choice types and inter-trial fixa-
tion, as shown in Figure 3). Parameter estimates were computed
using Bayesian parameter averaging (BPA) over subjects (Kasess
etal., 2010). For completeness, we also tested the effective connec-
tivity parameters from dIPFC-BA46 to vimPFC using two-tailed,
one-sample f-tests against zero across individuals.

PREDICTION EXERCISE

We tested the hypothesis that the effective connectivity from left
dIPFC-BA46 to vimPFC predicts between-subjects differences in
the discount rate using the following out-of-sample prediction
exercise. For every subject, we estimated the following linear

Frontiers in Neuroscience | Decision Neuroscience

March 2014 | Volume 8 | Article 50 | 4


http://wwwneuro03.uni-muenster.de/ger/t2tconv/
http://www.rnl.caltech.edu/resources/index.html
http://www.rnl.caltech.edu/resources/index.html
http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience/archive

Hare et al.

Neural systems predicting individual discounting

regression using elastic net regularization (Zou and Hastie, 2005)
(alpha parameter = 0.3) on the other N—1 subjects.

¥y =Bo + x1P1 + x2B2 + - - +xBp

Where the dependent variable y was the log of the individual dis-
count rates (k) and the explanatory variables x1, ..., X, were the
complete set of estimated DCM parameters for each functional
run (exclusive of the hemodynamic parameters) listed in Table 7.
One advantage of the elastic net regularization is that the regres-
sion model is more robust to correlated predictor variables such
as the DCM parameters for separate runs from the same subject.

We then used the fitted coefficients from the elastic net model
to predict if the discount parameter for the excluded individual
was above or below the mean value for the N—1 subjects. The pro-
cedure was repeated for every subject. Finally, we computed the
balanced accuracy of the prediction using the confusion matrix,
in which the rows represent the true labels and the columns rep-
resent the predicted labels, generated by our classification results
(Brodersen et al., 2010). Briefly, this method controls for any
imbalance in the data classes that may bias the classifier accuracy.
The balanced accuracy is computed as

1 TP TN

2 <TP +EN + TN + FP)’
where TP, FN, TN, and FP represent the number of true positives,
false negatives, true negatives, and false positives respectively.

In order to further test the specificity of our findings, we car-
ried out different versions of this prediction exercise, in which
subsets of the DCM parameters were excluded (see the Results
section for details), or other candidate regions replaced left
dIPFC-BA46 in the DCM. In all cases, we used the same fully
connected DCM model with a fixed input to dIPFC-BA46 (or its
replacement, when appropriate) on accepted trials and an input
parametrically varying with the subjective value of the delayed
reward to vimPFC.

SPECIFICITY TESTS

These tests were designed to test the specificity of left BA46 activ-
ity and connectivity on the results. To do this, we repeated the
DCM and prediction exercises described above using the left
dIPFC-BA9 region listed in Table 6, or an ROI created by mir-
roring the 10 mm sphere centered on the estimated coordinates
from Figner et al. (2010) to the right hemisphere.

RESULTS

CHOICE BEHAVIOR

We began the analysis by estimating individual discount rates
(denoted by k) using maximum likelihood, and under the well-
validated assumption that subjects exhibit hyperbolic discounting
(Frederick et al.,, 2002; Green and Myerson, 2004; McKerchar
et al., 2009). These estimates also allowed us to compute the dis-
counted stimulus value (dSV) that each subject assigned to each
option. As shown in Figure 1B, which depicts the group’s psy-
chometric choice curve, the estimated values provided a good
description of the choice data. Figure 1C provides an ordered
histogram of the individual estimates of the discount parameter k

(with larger values denoting more frequent choices for immediate
reward), and shows that there were sizable differences across indi-
viduals. This is important because one of the goals of the study is
to relate individual differences in brain activity to differences in
discounting behavior.

REACTION TIMES

Subjects responded well under the time limit of 3s for both
immediate [mean = 1.22s, SD =0.24s, ts) = —39.2, p <
0.001] and delayed choices [mean = 1.20s, SD = 0.255, t26) =
—37.2, p < 0.001]. An ANOVA on reaction times as a func-
tion of choice (accept delayed offer vs. take money now) and
group (those who chose to wait for delayed rewards on the
majority of trials—wait group, WG—rvs. those who most often
took the money available today—now group, NG) showed no
main effects of choice or group [F(j, 48) = 0.10, p = 0.76 and
Fa, 48 = 0.49, p = 0.49, respectively]. However, there was an
interaction between the tendency to wait and choice [F(1, 48) =
4.79, p < 0.05]. This interaction was driven by the fact that WG
subjects showed faster reaction times when choosing the delayed
reward (mean = 1133 & 70 ms) than when choosing the imme-
diate reward [mean = 1277 & 63 ms; f(14) = —3.99, p < 0.001],
whereas NG subjects had slower reaction times when choosing the
delayed reward (mean = 1278 + 62 ms) compared to immediate
rewards [mean = 1143 4= 60 ms; t(11) = 2.58, p < 0.05].

GLM ANALYSES LOCALIZING THE dLPFC AND vmPFC ROIs

A central goal of this study was to investigate the role of effec-
tive connectivity between the area of vmPFC that has been widely
associated with the computation of stimulus values at the time of
choice, and an area of left dIPFC, in BA 46, that has been shown
to exert a causal influence on discounting behavior in monetary
intertemporal choices and implicated in self-control processes in
various domains. (See the Introduction and Discussion for more
details). In order to carry out the connectivity analyses, we first
needed to localize these two brain regions in our sample.

To do this, we first estimated a GLM of the BOLD responses that
contained dSV and Accept (defined as 1 if the subject chose to accept
the delayed option, and 0 otherwise) as parametric modulators at
the time of decision (GLM-dSV). Based on previous studies, we
expected that activity in vmPFC, PCC, and vStr would correlate
with the dSV regressor, as these areas have been shown consistently
to encode subjective values at the time of choice (Bartraetal., 2013;
Clithero and Rangel, 2013). Note that in our task the immediate
option was invariant ($25), whereas the delayed option changed
every trial. Therefore, all trial-wise variation in the value of the
delayed option is captured by dSV, even if the brain computes
relative value signals (e.g., dSV — 25 or 25 - dSV).

The contrast for the Accept regressor showed that, after con-
trolling for dSV, a region of left dIPFC in BA 46 was more active
when subjects chose the larger, delayed option (p < 0.05, SVC;
Table 2). No regions were more active when declining the larger
delayed reward in favor of the $25 today. Note that this increased
activity when accepting delayed options is present after control-
ling for dSV, indicating that it does not reflect a mere tendency
of the subjects to choose larger rewards more frequently (indeed
12 out of 27 subjects in our sample choose the objectively smaller
reward today most often).
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Table 2 | Regions more active when accepting delayed rewards
controlling for discounted stimulus value in GLM-dSV.

Region BA Side Cluster x y z V4
size score

Cerebellum R 74 27 -39 —-24 456

Occipital cortex 30/18 L 166 -9 —66 12 4.23*

Inferior 9 L 109 -51 3 24 417

frontal/precentral

gyrus

Precentral/inferior 6/9 R 118 36 —18 36 4.01

frontal gyrus

Precuneus 7 R 23 24 —-60 36 3.92

Anterior cingu- 32/24/10 L 82 —6 30 0 385

late/orbitofrontal

cortex

Small volume 62 -3 30 0 3.59%

corrected size/peak

Caudate/putamen L 80 =21 24 0 385

Thalamus R 39 6 -6 3 3.61

Cerebellum L 38 -4 —54 -30 3.56

Occipital cortex 18 R 86 21 —-87 12 3.54

Middle/inferior 46 L 38 -30 33 15 3.42

frontal gyrus

Small volume 15 -33 33 18 3.12%

corrected peak

Thalamus R 61 21 =27 0 338

Middle frontal 6 R 55 30 6 54 3.36

gyrus

Cerebellum L 91 -36 —-57 —-27 3.36

Superior frontal 6 R 33 0 -9 72 3.28

gyrus

Precentral gyrus 6 L 80 -30 -12 60 3.15

Occipital cortex 19 R 61 36 -78 —-12 3.1

Medial frontal 6 L 23 -9 -6 54 3.08

gyrus

Superior parietal 7 L 79 -18 —-75 60 3.08

cortex/precuneus

Middle frontal 10/9 R 26 36 48 30 3.03

gyrus

Middle temporal 37 R 29 48 b1 0 3.02

gyrus

Superior frontal 6 L 22 —24 6 75 2.98

gyrus

BA, Brodmann's Area.

Height threshold t = 2.78 (p < 0.005) and extent of 20 voxels for table inclusion.
Gray highlighting and * signify that the activation survives whole brain correction
(p < 0.05) for multiple comparisons at the cluster level.

s1Signifies that the activation survives small volume correction within an
anatomical mask of vmPFC.

52 Sjignifies that the activation survives small volume correction within a 10 mm
sphere centered on the estimated MNI coordinates from Figner et al. (2010)
(x,y,z=-—36,30, 27).

Peak voxel coordinates and cluster sizes within the small volume correction
masks are listed in plain text below the corresponding clusters identified in the
whole brain analysis.

Table 3 | Regions reflecting discounted stimulus value at the time of
choice in GLM-dSV.

Region BA Side Cluster x y z V4
size score
Middle frontal gyrus 6 L 1277 =21 9 60 4.56*
Middle/inferior frontal gyrus 46 L —36 36 15 4.06
Putamen L —-15 6 -3 355
Parietal lobe white matter R 247 30 —33 27 4.18*
Caudate R 24 -18 24 3.97
Inferior temporal lobe 19/37 L 61 —-48 —57 —6 3.58
Occipital cortex 19 L —48 —63 —12 3.47
Putamen R 151 9 6 -3 3.26
Thalamus L -3 —-18 12 3.21
Thalamus L —-12 -6 9 3.1
R

Middle frontal gyrus 10/46 34 42 45 21 3.13

BA, Brodmann's Area.

Height threshold t = 2.78 (p < 0.005) and extent of 20 voxels for table inclusion.
Gray highlighting and * signify that the activation survives whole brain correction
(p < 0.05) for multiple comparisons at the cluster level.

Labels in bold text are for the peak voxel within each cluster. Labels in plain text
identify local maxima more than 8 mm apart in different anatomical regions of
larger clusters.

The contrast for dSV revealed a large cluster (1277 voxels) with
a peak in the middle frontal gyrus (Brodmann Area 6), extending
into the putamen that was positively correlated with dSV (p <
0.05 WBC; Table 3), but, to our surprise, no significant activity
in the vimPFC region consistently linked to value computation at
the group level (Bartra et al., 2013; Clithero and Rangel, 2013). In
addition, none of the regions from the meta-analysis of negative
correlations with subjective value in Bartra et al. (2013) showed
decreasing activity as a function of dSV at whole brain or small
volume corrected thresholds. Although there was no significant
activity in canonical reward regions at the group level, inspec-
tion of individual participant results revealed positive correlations
with dSV within the vmPFC for many individuals. However, there
was also a large fraction of participants who showed negative cor-
relations with dSV in vmPFC, resulting in a summation of signed
t-test coefficients that was close to zero at the group level.

In order to examine the association between dSV and BOLD
signals at the group level in a manner independent of the sign
(+/—) of this relationship, we re-estimated GLM-dSV, as well
as a reduced version of this model excluding the dSV regres-
sor, using Variational Bayes (see Materials and Methods). The
logic of comparing the original version of GLM-dSV with the
reduced model excluding dSV is that any differences in their
fits to the data can be attributed to variance explained by dSV.
Critically for our purposes, the amount of variance explained is
unchanged by the sign of the regression coefficient allowing us
to compute random effects statistics across individuals showing
positive and negative effects of dSV. Following estimation of these
models at the individual subject level, we compared their relative
probabilities given the data from all subjects using BMS within
a mask of reward value sensitive regions including vimPFC, vStr,
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FIGURE 2 | Voxels in meta-analytically defined reward value regions
whose pattern of activity is better explained by a GLM including dSV
as a regressor than a reduced version of the GLM omitting dSV. Voxels
in violet are those within a mask of reward value sensitive regions including
vmPFC, vStr, and PCC created from recent meta-analyses on reward value
computation (Bartra et al., 2013; Clithero and Rangel, 2013) where the
exceedance probability for GLM-dSV compared to the reduced version
without dSV is 0.90 or higher. The exceedance probability was 0.90 or
higher for the version of GLM-dSV including dSV in 83% of voxels within
the meta-analysis conjunction.

and PCC created from recent meta-analyses on reward value com-
putation (Bartra et al., 2013; Clithero and Rangel, 2013). Here
we compared the models based on their respective exceedance
probabilities, which are measures that corresponds to the belief
that a particular model is more likely than any other in the test
set given the data from all participants. Figure 2 shows all vox-
els in this mask where the exceedance probability for GLM-dSV
compared to the reduced version without dSV is 0.90 or higher.
Quantitatively, 83% of voxels in the meta-analysis conjunction
had an exceedance probability of 0.90 or higher for the version of
GLM-dSV including dSV, whereas only 4% had a value of 0.90 or
higher for reduced GLM-dSV. This indicates that the dSV regres-
sor explains a significant amount of the variance in the BOLD
response in vmPFC, vStr, and PCC.

Given that previous studies have found evidence consistent
with the encoding of relative value signals in vmPFC at the time of
choice (Boorman et al., 2009; Lim et al., 2011; Hunt et al., 2012),
we carried out an additional generalized linear model (GLM-
rdSV). We hypothesized that there might be individual differences
in the computation of the relative subjective value. In fact, a class
of popular models in behavioral economics predicts that subjects
will use as their reference item (i.e., the one that is subtracted
when computing relative value) the option that they choose most
frequently (Koszegi and Rabin, 2006). Based on this, we defined
a relative discounted subjective value regressor (rdSV) that is
given by dSV — 25 for those that picked the delayed option more
than 50% of the time, and by 25 — dSV for those that select the
immediate option most frequently.

We estimated a new GLM (GLM-rdSV) with rdSV and Accept
as parametric modulators at the time of decision. Consistent
with the post-hoc hypothesis that value computations were made

relative to the most frequent choice, we found that BOLD
responses in vmPFC (p < 0.05 SVC, Figure 3A; Table 4) and the
anterior superior temporal gyri (p < 0.05 WBC) were positively
correlated with the modified value regressor. In addition, several
regions including the anterior insula (AI), dorsomedial prefrontal
cortex (dmPFC), inferior parietal cortex, middle frontal gyri,
and posterior cingulate showed negative correlations with rdSV
(p < 0.05 WBC; Figure 4A; Table 5). Both the vmPFC region
that positively correlated with rdSV and the portions of the Al
and dmPFC that negatively correlated with rdSV show consider-
able overlap with results from recent meta-analyses (Bartra et al.,
2013; Clithero and Rangel, 2013) of reward value representation
(Figures 3B, 4B). This overlap with previous results for both pos-
itive and negative correlations with subjective value suggests that
there is significant variation between subjects in how discounted
subjective values are computed and that this computation may
be related to choice frequencies (e.g., most often wait or rarely
wait) consistent with our post-hoc hypothesis. We do not pre-
sume or infer any causal relationships between choice frequency,
and the directionality of relative discounted subjective value com-
putations from these results, and it may be that a third as yet
unknown variable drives choice preference, value computation,
or both. However, this analysis provides us with a sample-specific
ROI for vmPFC in which to test our main hypothesis about dIPFC
modulation and the prediction of individual differences.

Consistent with GLM-dSV, GLM-rdSV showed that regions of
left dIPFC in BA 46 and 9 were more active when subjects chose
the larger, delayed option (p < 0.05, SVC; Figure 5; Table 6). Just
as in GLM-dSV, no regions were more active when declining
the larger delayed reward in favor of the $25 today. Note that
both GLM-dSV and GLM-rdSV control for the value of delayed
rewards in a similar manner. The variance explained is the same
in both models because in the individual subject GLMs only the
sign of dSV regressor, and therefore, the sign on the regression
coefficients changes while the explanatory power of the regressor
remains the same.

TESTS OF EFFECTIVE CONNECTIVITY

Next, we used the ROIs in dIPFC-BA46 and vmPFC to test
our first hypothesis; namely, that effective connectivity from left
dIPFC-BA46 to vmPFC plays a critical role in delaying gratifica-
tion. This test was carried out on time courses extracted from
the vmPFC and dIPFC-BA46 ROIs identified in GLM-rdSV. We
focused on the ROI in BA46 because a previous TMS study
found a causal role for this region in choosing to wait for larger
delayed rewards in monetary intertemporal choices (Figner et al.,
2010). Furthermore, our previous effective connectivity analy-
ses of dietary self-control choices suggested other dIPFC regions
active during self-control choices (e.g., BA9) might work through
BA46 to modulate vmPFC (Hare et al., 2009). As explained in the
Materials and Methods section, the test was performed in several
steps.

First, we estimated 4 different DCM families that were grouped
based on how the experimental variables rdSV and Accept entered
into the model as driving inputs (Figure 6A). Each family con-
tained 16 models that varied on how the vmPFC and dIPFC-BA46
affect each other as a function of three task events: fixation, choice
periods, and choice periods when the delayed option is selected.

www.frontiersin.org

March 2014 | Volume 8 | Article 50 | 7


http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive

Hare et al.

Neural systems predicting individual discounting

FIGURE 3 | Areas correlated with the rdSV regressor from GLM-rdSV.
(A) A region of vmPFC showing increased activity as a function of rdSV
(p < 0.05 SVC). (B) Voxels in vmPFC where the activation for rdSV in the
current study overlaps with significant voxels in meta-analyses of positive
correlations with subjective value by Bartra et al. (2013) and Clithero and
Rangel (2013). All voxels shown in violet are significant in all three studies.

Next, we used BMS to identify the most likely family of mod-
els. We compared the models based on their respective exceedance
probabilities, a measure of whether particular model is more
likely than any other in the test set given the data from all partic-
ipants. The most likely model family (exceedance probability =
0.87), shown in Figure 6A, had two driving inputs (i.e., direct
influences): an input to vimPFC given by the rdSV of the delayed
option on every trial, and an input to dIPFC-BA46 given by
Accept.

Lastly, we examined the effective connectivity parameters
between dIPFC-BA46 and vmPFC using BPA on the fully con-
nected model (Figure6B) with the most likely experimental
inputs across subjects. We found increased signaling from dIPFC-
BA46 to vmPFC at the time of choice relative to inter-trial
fixation times, and further increases when subjects selected the
later option (posterior probability > 0.90 and 0.95, respectively;
Figure 6C). In contrast, the signaling in the other direction
was not significantly different from zero. For completeness, we
also compared the estimated DCM coefficients using one-sample
t-tests, which lead to the same conclusion: effective connectivity
parameters from dIPFC-BA46 to vmPFC increased during all
choices and further increased when subjects selected the later

Table 4 | Regions positively correlated with relative discounted
stimulus value at the time of choice in GLM-rdSV.

Region BA  Side Cluster x y z z
size score

Superior temporal 21/22 R 944 66 -6 -3 4.11*

gyrus

Cingulate gyrus 24 R 152 3 =12 42 4.01

Superior temporal 21 L 641 -39 -9 -9 3.88*

gyrus

Anterior cingu- 32/24/10 L 18 -9 30 -6 3.73

late/orbitofrontal

cortex

Small volume 81 -9 30 -6 3.73%

corrected size/peak

Cingulate gyrus 24/31 L 165 —12 48 21 3.7

Precuneus 3/5 R 96 18 —42 45 35
Precuneus/cingulate 5/7 L 40 -9 -42 51 3.36
gyrus
Middle temporal 39 L 32 -51 —72 21 3.08
gyrus

BA, Brodmann's Area.

Height threshold t = 2.78 (p < 0.005) and extent of 20 voxels for table inclusion.
Gray highlighting and * signify that the activation survives whole brain correction
(p < 0.05) for multiple comparisons at the cluster level.

s1Signifies that the activation survives small volume correction within an
anatomical mask of vmPFC.

Peak voxel coordinates and cluster sizes within the small volume correction
masks are listed in plain text below the corresponding clusters identified in the
whole brain analysis.

option [t(6) = 2.65 and t(56) = 3.80 respectively; p < 0.01], but
signaling in the opposite direction did not increase significantly
during any task events, suggesting that there is increased connec-
tivity from dIPFC-BA46 to vmPFC during decisions to wait for
larger delayed rewards, but not in the other direction.

BETWEEN-SUBJECTS PREDICTION

Next, we used the results of the DCM, to test our second hypoth-
esis; namely, that it is possible to use inter-individual differences
in the strength of effective connectivity between dIPFC-BA46 and
vmPFC, as well as differences in local responses in those regions,
to predict differences in discount rates.

For each subject we estimated an elastic net regression model
using only the data from the N—1 other subjects, with discount
rates as the dependent variable, and the estimated DCM parame-
ters as the predictors. The estimated parameters of the model were
then used to predict whether the discount rate of the excluded
subject was above or below the mean of the group. The procedure
was repeated to obtain a prediction for each subject. We found
that the mean balanced accuracy (MBA) across all subjects was
71% correct (95% posterior probability interval = 54 — 85%).
In a complimentary analysis, we tested how well the continuous
discount rate rankings (e.g., 1 = highest to 27 = lowest) esti-
mated from the DCM parameters matched to those estimated
from behavior, and found a significant correlation (Spearman’s
rho = 0.42, p < 0.02). Thus, the elastic net regression model can
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FIGURE 4 | Areas negatively correlated with the rdSV regressor from
GLM-rdSV. (A) Regions of the dmPFC and Al where activity decreased as
a function of rdSV (p < 0.05 WBC). (B) Voxels in dmPFC and Al where
responses to rdSV overlap with the meta-analyses results for regions that
negatively correlated with subjective value at the time of choice in Bartra
et al. (2013). All voxels shown in violet are significant in both studies.

accurately predict both binary high low labels and the continuous
ordinal rank of discount rates using DCM parameters.

Next, we compared the accuracy of several versions of this
prediction exercise, to test the specific role of the various
components of the DCM in predicting the individual discount
rates. Note that all parameters were estimated in the fully con-
nected version of the model (shown in Figure 6) and were sim-
ply omitted from the elastic net regressions during these tests.
The logic of these tests is as follows: the prediction accuracy
of a regression model that excludes a key parameter should
drop, whereas excluding a parameter that does not play a role
in intertemporal choice should not affect the model’s abil-
ity to predict the discount rates. The first test excluded the
local driving input response parameters in vmPFC (Spearman’s
rho = 0.14, p = 0.48; MBA = 65%; 95% post. prob. int. =
47 — 80%). The second test excluded the local driving input
response parameters for dIPFC-BA46 (Spearman’s rho = —0.03,
p = 0.90; MBA = 60%; 95% post. prob. int. = 44 — 76%). The
third test excluded the effective connectivity parameters from
dIPFC-BA46 to vmPFC (Spearman’s rho = —0.12, p = 0.54;
MBA = 58%; 95% post. prob. int. =41 — 74%). The fourth

Table 5 | Regions negatively correlated with relative discounted
stimulus value at the time of choice in GLM-rdSV.

Region BA Side Cluster x y z V4
Size score

Inferior parietal lobe 40 R 624 42 —-57 b4 4.96*

Anterior 13/45 R 153 36 30 3 4.85*

insula/inferior frontal

gyrus

Dorsomedial 6/32 L 425 -6 21 48 4.84*

prefrontal cortex

(SMA)

Superior R 12 27 39 484

frontal/anterior

cingulate gyrus

Supplementary Motor R 6 18 45 484

Area (SMA)

Anterior insula 13 L 105 —-33 21 -3 461*

Inferior frontal gyrus 45/47 L -33 21 12 4.61

Middle frontal gyrus 9 L 188 -39 12 39 4.55*

Middle frontal gyrus L —-45 21 12 4.55

Middle frontal gyrus L —-51 33 36 4.55

Lingual 30 R 66 21 -51 6 4.45*

gyrus/posterior

cingulate

Precuneus 7 L 189 —-12 -66 36 4.35*%

Inferior parietal lobe  40/7 L 239 33 -60 45 4.27*

Middle frontal gyrus  9/46 R 101 51 30 39 4.21*

Middle frontal gyrus R 48 36 27 4.21

Middle frontal gyrus R 45 18 42 4.21

Thalamus L 29 -—15 =27 12 4.12

Thalamus L —-27 =33 12 4.2

Lateral orbitofrontal M R 24 30 48 -9 4.06

cortex

Thalamus R 37 9 -12 9 3.97

Pons/midbrain R 26 0 -15 -33 36

BA, Brodmann's Area.

Height threshold t = 3.44 (p < 0.001) and extent of 20 voxels for table inclusion.
A larger individual voxel threshold was used here to separate large clusters.
Gray highlighting and * signify that the activation survives whole brain correction
(o < 0.05) for multiple comparisons at the cluster level.

Labels in bold text are for the peak voxel within each cluster. Labels in plain text
identify local maxima more than 8mm apart in different anatomical regions of
larger clusters.

test excluded the effective connectivity parameters in the other
direction (Spearman’s rho = 0.02, p = 0.91; MBA = 54%; 95%
post. prob. int. = 37 — 70%).

We found that omitting effective connectivity parameters
between dIPFC-BA46 and vmPEC in either direction, or param-
eters measuring local task induced responses within dIPFC-BA46
or vinPFC reduced the accuracy to chance levels. Together, these
findings show that the local responses in both areas, as well
as both directions of effective connectivity between dIPFC and
vmPFC, are critical for explaining the individual differences in
discounting. Table 7 lists the relative size and direction of the
effects of each DCM parameter on discount rates when estimating
the model over all 27 participants.
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FIGURE 5 | Increased activity in left dIPFC when choosing to accept
larger, delayed rewards after controlling for subjective value (p < 0.05,
SVC). The region of BA 46 shown here lies directly beneath the TMS
stimulation site from Figner et al. (2010) that showed causal effects on
temporal discounting behavior.

Finally, we tested the specificity of these results with regard
to the left dIPFC BA46 region. We replaced left dIPFC BA46
in DCMs using the vmPFC with either the more posterior left
dIPFC BA9 ROI that was also found to increase its activity when
subjects chose the delayed rewards, or with an ROI created by mir-
roring the 10 mm sphere centered on the estimated coordinates
from Figner et al. (2010) to the right hemisphere. This resulted
in two new DCMs and elastic net regression models. None of
these combinations yielded significantly better than chance pre-
dictions (best MBA = 55%) or significant correlations with the
true discount rates. The results replacing left dIPFC-BA 46 with
the analogous region in the right hemisphere are consistent with
previous TMS results showing that only stimulation of the left
hemisphere impacted choices for the delayed monetary rewards
(Figner et al., 2010).

DISCUSSION

The results in this paper, in conjunction with previous reports
(Hare et al., 2009, 2011a; Harris et al., 2013), suggest that a similar
set of computational and neurobiological mechanisms are at work
in tasks involving the delay of gratification in dietary and mone-
tary intertemporal choices. In particular, we found that left dIPFC
BA46 becomes more active in trials in which subjects choose the
delayed option, which on average requires more self-control. We
also found that the connectivity from left dIPFC BA-46 to a region
of vmPFC widely associated with the computation of stimulus
values (Bartra et al., 2013; Clithero and Rangel, 2013), increased
at the time of choice, and especially during trials in which subjects
chose to wait for the delayed reward. In addition, we were able
to explain between-subject differences in discount rates using the
estimated parameters from a DCM including the activity within
dIPEC BA-46 and vimPFC, and the coupling between them, but
only if the effective connectivity parameters between the two areas
were included.

These results parallel previous findings in the domain of
dietary choice, in which individuals chose among foods that
differed in their tastiness and healthiness (Hare et al., 2009,
2011a; Harris et al., 2013). Although an explicit between-subject
prediction exercise was not performed in those previous stud-
ies, the data indicate a central role for dIPFC-vmPFC interactions

Table 6 | Regions more active when accepting delayed rewards
controlling for discounted stimulus value in GLM-rdSV.

Region BA Side Cluster x y z V4
Size score

Cerebellum R 65 27 -39 —24 455

Inferior 9/6 L 127 —-48 3 24 427

frontal/precentral

gyrus

Precentral/inferior 6/9 R 205 36 —18 36 4.19*

frontal gyrus

Occipital cortex 30/18 L 1071 -9 -66 12 4.18*

Anterior cingu- 32/24/70 L 102 -6 30 0 3.99

late/orbitofrontal

cortex

Small volume 78 -3 30 0 3.697

corrected peak

Caudate/putamen L 77 -21 24 0 374

Precuneus 7 R 20 24 -60 36 3.7

Thalamus R 47 6 —6 3 3.66

Cerebellum L 35 —54 —-54 -30 3.51

Occipital cortex 18 R 80 24 —-87 9 345

Thalamus R 64 21 =27 0 3.38

Middle/inferior 46 L 40 -30 33 15 3.37

frontal gyrus

Small volume 18 -33 33 18 3.10%

corrected peak

Cerebellum L 84 36 -57 —-27 3.36

Superior frontal 6 R 35 0 -9 72 329

gyrus

Superior parietal 7 L 14 -18 =75 60 3.29

cortex/precuneus

Middle frontal gyrus 10/9 R 41 36 48 30 3.21

Precentral gyrus 6 L 134 -33 —-12 60 3.15

Medial frontal gyrus 6 L 20 -9 -6 57 3.13

Middle temporal 37 R 37 48 —51 0 3.09

gyrus

Occipital cortex 19 R 51 36 —-78 —12 3.03

BA, Brodmann's Area.

Height threshold t = 2.78 (p < 0.005) and extent of 20 voxels for table inclusion
Gray highlighting and *signify that the activation survives whole brain correction
(p < 0.05) for multiple comparisons at the cluster level.

s1Signifies that the activation survives small volume correction within an
anatomical mask of vmPFC.

52 Signifies that the activation survives small volume correction within a 10 mm
sphere centered on the estimated MNI coordinates from Figner et al. (2010)
x,y,z=—36, 30, 27).

Peak voxel coordinates and cluster sizes within the small volume correction
masks are listed in plain text below the corresponding clusters identified in the
whole brain analysis.

in dietary self-control. This suggests that the mechanisms medi-
ating self-control described in the Introduction are at work in
both tasks, and thus helps to advance our understanding of com-
mon computational and neurobiological components of various
forms of self-control. In this model, vimPFC computes the value
of options by identifying its various attributes, assigning value to
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FIGURE 6 | Dynamic causal modeling results. (A) Schematic
representations of the four DCM families compared in order to optimize
the task related driving input to dIPFC BA 46 and vmPFC. Bayesian
Model comparison showed that Family 1, outlined in black, was the most
likely description of the data generating process. (B) Diagram of the fully
connected model from the most likely family showing the posterior
probabilities of coupling or coupling modulation greater than zero
between vmPFC to dIPFC BA 46. Fixed refers to the baseline coupling
during all time points. All Choices refers coupling modulation at the time

. All Later
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of decision for all choices regardless of whether the immediate or
delayed option was selected. Later Choices refers to coupling modulation
during only those decisions when the larger, delayed option was chosen.
(C) Bar chart showing the effective connectivity (EC) strengths in Hertz
(Hz) between dIPFC BA 46 and vmPFC at different task periods. The
colors and labels correspond to the diagram in panel (B). Asterisks
indicate DCM parameters that are significantly different from zero when
tested using both Bayesian parameter averaging (posterior probability >
0.90) and one sample t-tests (p < 0.01).

them, and then integrating them into a net value for the option.
A critical component of the model is that basic attributes (like
immediate monetary payoffs, or the tastiness of foods) are pref-
erentially incorporated into the values computed in vmPFC, but
that more abstract attributes (like delayed monetary payoffs, or
the healthiness of foods) are generally given less weight unless
left dIPFC comes online and modulates activity in vmPFC, so
that it weights all attributes according to the current goals (e.g.,
eat healthy or maximize monetary payoff). Note that the types
of attributes that need to be represented and evaluated in both
types of tasks are different, but that poor self-control could be
attributed to the same source in both cases: reduced weighting of
abstract attributes in vimPFC in the absence of dIPFC modulation.

One limitation of the study must be emphasized. Our exper-
iment is not able to differentiate between heterogeneity in the
discount rates attributable to patience or self-control abilities
(potentially mediated by differences in dIPFC functioning or
connectivity), and heterogeneity due to differences in individual
circumstances (e.g., immediate budgetary constraints) that are
not directly associated with patience or self-control. Differences
in individual circumstances, therefore, do not enter our predic-
tion model and may be one reason why the model is less than
perfectly accurate. In other words, our analysis cannot indicate

if less patient subjects failed to wait for delayed rewards because
they are unable to do so, or because their best option was to take
the immediate monetary payout.

These results provide novel interpretations of results in the siz-
able literature on intertemporal choice paradigms. Consider three
important examples.

First, there has been a debate in the literature on whether or
not there are multiple and competing value signals at work in
self-control. In particular, previous findings (McClure et al., 2004,
2007) have been interpreted as suggesting that vmPFC-VStr and
dIPFC compute parallel but distinct value signals, with a vimPFC-
VStr valuation system placing more value on immediate, concrete
outcomes, and areas such as dIPFC computing the value of long-
term, abstract goals. In this view, the quality of decisions depends
on competition between the two valuation systems. In contrast,
others have proposed that one value system integrates informa-
tion about all stimulus attributes, both immediate and long-term,
to form an overall value for the stimulus (Kable and Glimcher,
2007, 2010). In this view, the quality of decision-making depends
solely on the weighting of different stimulus attributes in value
computation. The results here, and in previous work (Hare et al.,
2009, 2011a), suggest an obvious way of reconciling both views.
In this class of tasks, choices seem to be driven by the stimulus
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Table 7 | Regression coefficients predicting log(k) as a function of
DCM parameters.

Task period DCM parameter Elastic net parameter
Fixed v—>d 0.6
d—>v -1.9
All choices v—=>d -0.7
v self -0.1
d—>v 3.3
d self -1.6
Later choices v—>d 0.8
v self 0.0
d—>v -0.9
d self 0.2
Driving inputs Value — > v 0.4
Accept — > d 0.6

This table reports the regression coefficients from the elastic net regression
using the DCM parameters specified above to predict discount rates (log(k)).
The regression is identical to those used in the prediction exercises described in
the main text except that it was run with all 27 subjects at once. The regressions
were estimated using the DCM parameters for both functional MRI runs sepa-
rately and the values listed in this table represent the average of coefficients
across runs for conciseness and clarity.

Note that the DCM parameters have been z-scored across subjects so that com-
paring the coefficients across parameters shows the relative size and direction
of the effects of each DCM parameter on discount rates. See the main text of
the Results section for quantification of the influence of each parameter on the
model’s ability to predict discount rates. Also, recall that smaller k values indi-
cate lower discount rates and, therefore, parameters with negative regression
coefficients increase the likelihood of choosing delayed reward options in our
temporal discounting paradigm.

The labels Fixed, All Choices, Later Choices, and Driving Inputs correspond the
portions of the DCM described in the main text and shown in Figure 5.

The label v — > d refers to signaling from vmPFC to dIPFC-BA 46.

The label d — > v refers to signaling from dIPFC-BA 46 to vimPFC.

The label v or d self refers to the parameters for the inhibitory self-connections
to each region at the specified time points.

The label Value — > v refers to an input equal to rdSV from GLM-rdSV into
vmPFC.

The label Accept — > d refers to an input equal the Accept regressor specifying
later choices in GLM-rdSV.

value signals encoded in a vmPFC-based valuation system, but the
activation of dIPFC is critical for the deployment of self-control,
because it appears to promote increased weighting of foresighted
stimulus attributes in the vmPFC value signals as evidenced by
increased effective connectivity to vmPFC during larger delayed
choices.

Second, our results provide a mechanistic explanation of the
influential study of Figner et al. (2010), which found that apply-
ing inhibitory TMS over left (but not right) dIPFC-BA46 resulted
in a decrease in subjects’ willingness to wait for delayed rewards
(Figner et al., 2010). Consistent with the implication of a causal
role for left dIPFC in self-control from these previous results, we
find that this region is more active when subjects chose larger
future rewards over payments on the same day, after control-
ling for the subjective value of the payments. Furthermore, our

data and analyses indicate that the left BA46 region of dIPFC
contributes to delaying gratification by influencing the valuation
process in vmPFC at the time of choice, rather than intervening
after valuation has occurred, as was previously suggested in Figner
et al. (2010). The previous suggestion by Figner and colleagues
was based on their finding that choices over delayed options,
but not the attractiveness ratings of those delayed rewards were
affected by TMS to left dIPFC. However, our data on effective con-
nectivity from dIPFC to vmPFC at the time of choice are more
consistent with a mechanism in which dIPFC activity directly
impacts valuation processes at the time of choice. We note, how-
ever, that these results are not contrary to Figner and colleagues’
assertion that the role of dIPFC is specific to decisions as opposed
to outcome free ratings.

Third, recent EEG and fMRI studies have found that individ-
ual measurements of activity and connectivity within networks
including left dIPFC taken at rest exhibited a sizable correlation
with discount rates taken in separate behavioral tasks (Gianotti
et al., 2012; Li et al., 2013). Similarly, a study of alcoholics found
that responses in left dIPFC also correlated with behavior dur-
ing intertemporal choices (Boettiger et al., 2007). Our results also
provide a novel mechanistic explanation for these findings as a
whole. Furthermore, our prediction exercises show that measures
of effective connectivity between dIPFC and vimPFC are a critical
aspect of being able to predict individual discount rates.

We investigated the specificity of the dIPFC-vmPFC interac-
tions in self-control by repeating a similar exercise replacing left
dIPFC-BA 46 with left dIPFC-BA 9 or right dIPFC-BA 46.

The specificity test using left dIPFC-BA 9 was motivated by the
fact that this area was more active when subjects delayed gratifi-
cation in previous dietary choice experiments (Hare et al., 2009,
2011a) as well the current monetary choice dataset, although the
activity did not survive whole brain correction in the current sam-
ple. However, it did not result in significant correlations with or
above average predictions of between-subject discount rates. This
is consistent with our previous findings in dietary self-control
where dIPFC-BA9 did not directly interact with vmPFC, but
rather affected a more anterior region in BA46, near the region
we find in the current intertemporal monetary choice task.

The intertemporal choice task utilized here, as well as the
dietary choice task that we have used in our previous related work
(Hare et al., 2009), examines the deployment of self-control in
the context of goal-directed choice. Other types of self-regulation
might be better characterized by competition between habitual
and goal-directed systems (Dayan et al., 2006; Balleine et al., 2008;
Rangel et al., 2008), or by the type of response inhibition asso-
ciated with action control in paradigms such as the go/no-go,
Flanker, or Stroop tasks (Wager et al., 2005; Congdon et al., 2010).
A critical question for future work is to systematically investigate
the commonalities and differences between these various sources
of self-regulation.

Another avenue for further investigation is our finding that
subjects appear to compute the discounted subjective value of
delayed rewards relative to their most common choice, perhaps
viewing this as a default. While not true in every case, the majority
of subjects who most often chose the immediate reward appeared
to positively encode a relative value signal in vimPFC equal to the

Frontiers in Neuroscience | Decision Neuroscience

March 2014 | Volume 8 | Article 50 | 12


http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience/archive

Hare et al.

Neural systems predicting individual discounting

difference between the immediate reward and the larger delayed
reward (i.e., $25 —dSV). They also showed negative correlations
with this relative value signal in a network of regions that includes
dmPFC, Al, and parietal regions consistently shown to negatively
correlate with SV (Bartra et al., 2013). This network has been
implicated in computations related to conflict, error process-
ing, decision difficulty, and evidence accumulation (Carter et al.,
1998; Botvinick, 2007; Pochon et al., 2008; Venkatraman et al,,
2009; Wunderlich et al., 2009; Hare et al., 2011b). On the other
hand, subjects who most often waited for the delayed reward fre-
quently encoded the opposite relative value signal of dSV— $25
in both sets of regions. This suggests that it is important to con-
trol for reference point variation across subjects when examining
the neural correlates of subjective values at the group level, but
further investigation of this issue is clearly warranted.

While our findings may at first seem contradictory to previ-
ous reports where all subjects showed positive correlations with
a value signal proportional to later reward—immediate reward,
this can potentially be explained by important methodologi-
cal differences. Many previous studies of intertemporal choice
have customized the offer sets for each participant to main-
tain an acceptance rate close to 50% for all subjects (Kable
and Glimcher, 2007, 2010; Peters and Buchel, 2009, 2010). In
contrast, we purposefully utilized the same offer set for all sub-
jects to examine individual differences in neural responses. By
keeping the response rate near 50% for all subjects, these pre-
vious studies may have also generated a more homogeneous
encoding of relative value in their participants avoiding the
heterogeneity present in our dataset. These previous datasets
also highlight that our findings with regard to relative value
computations are likely driven by choice or action probabili-
ties and not a function of discount rates or self-control ability
because these previous datasets show that when subjects with
high discount rates are presented with choices around their
indifference points, they also have positive correlations with
delayed reward values in vmPFC. Such changes in the direc-
tionality of relative value computations as a function of choice
or action probability represent an important target for future
research.

In summary, our data provide evidence that the dIPFC sup-
ports the delay of gratification by modulating activity in a vmPFC
region that reflects the stimulus value of available rewards. Our
between-subjects prediction results indicate that both local activ-
ity levels and connection strengths between these brain regions
mediate delay of gratification tendencies in this task. These find-
ings also suggest that examining effective connectivity parameters
in pathological populations with self-control deficits may provide
useful insights into the biological basis of their dysfunction.
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