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The biggest challenge that the neuromorphic community faces today is to build systems
that can be considered truly cognitive. Adaptation and self-organization are the two
basic principles that underlie any cognitive function that the brain performs. If we can
replicate this behavior in hardware, we move a step closer to our goal of having cognitive
neuromorphic systems. Adaptive feature selectivity is a mechanism by which nature
optimizes resources so as to have greater acuity for more abundant features. Developing
neuromorphic feature maps can help design generic machines that can emulate this
adaptive behavior. Most neuromorphic models that have attempted to build self-organizing
systems, follow the approach of modeling abstract theoretical frameworks in hardware.
While this is good from a modeling and analysis perspective, it may not lead to the most
efficient hardware. On the other hand, exploiting hardware dynamics to build adaptive
systems rather than forcing the hardware to behave like mathematical equations, seems
to be a more robust methodology when it comes to developing actual hardware for
real world applications. In this paper we use a novel time-staggered Winner Take All
circuit, that exploits the adaptation dynamics of floating gate transistors, to model an
adaptive cortical cell that demonstrates Orientation Selectivity, a well-known biological
phenomenon observed in the visual cortex. The cell performs competitive learning,
refining its weights in response to input patterns resembling different oriented bars,
becoming selective to a particular oriented pattern. Different analysis performed on the cell
such as orientation tuning, application of abnormal inputs, response to spatial frequency
and periodic patterns reveal close similarity between our cell and its biological counterpart.
Embedded in a RC grid, these cells interact diffusively exhibiting cluster formation, making
way for adaptively building orientation selective maps in silicon.
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1. INTRODUCTION
The past decade has been a landmark decade in the progress of
Neuromorphic Engineering. Technological advances have paved
the way for large scale neural chips having millions of neurons
and synapses (Indiveri et al., 2006; Bartolozzi and Indiveri, 2007;
Wijekoon and Dudek, 2008). We now have silicon cochleas and
retinas (Chan et al., 2007; Lichtsteiner et al., 2008). A num-
ber of groups around the world have built large scale multichip
neuromorphic systems for real time sensory processing with pro-
grammable network topologies and reusable AER infrastructure
(Serrano-Gotarredona et al., 2005; Chicca et al., 2007; Merolla
et al., 2007; Schemmel et al., 2008). All these approaches can be
broadly classified into analog, digital or hybrid approaches. The
analog approach interfaces well with the real world, emulates bio-
inspired behavior more closely and is most suited for modeling
local neural computations. Digital systems on the other hand
efficiently exploit addressing mechanisms to emulate long dis-
tance communication in the brain. Therefore, an amalgamation
of the digital and analog approaches i.e., the hybrid approach, is
most appropriate for implementing large scale neuromorphic sys-
tems. The challenge that now lies ahead is to develop truly brain
like cognitive systems. Systems that can adapt, self-organize and

learn according to cues in their environment (Indiveri et al., 2009;
Indiveri and Horiuchi, 2011).

A major step toward building such systems would be to under-
stand the underlying principles that the brain uses to accomplish
adaptation. It is well accepted now that very early in develop-
ment the brain has a generic cortical structure that adapts to
the environment by forming neural connections during the crit-
ical learning period (Sur and Leamey, 2001; Horng and Sur,
2006). This kind of adaptation leads to the formation of fea-
ture maps or interconnectivity patterns between hierarchically
organized layers of the cortices. The lower layers extract basic fea-
tures from the input space so that higher layers can extract more
complex features, using the information from the lower layers.
Both Nature (genetic biases) and Nurture (environmental fac-
tors) play a crucial role in the formation of these feature maps.
Different hardware and software approaches have been explored
to model self-organization. Each approach has a set of mecha-
nisms that exploit the available techniques. While models built
in software prefer to use mathematical equations, attempting to
do the same in hardware can turn out to be extremely cumber-
some (Kohonen, 1993, 2006; Martn-del-Bro and Blasco-Alberto,
1995; Hikawa et al., 2007). On the other hand, understanding

www.frontiersin.org April 2014 | Volume 8 | Article 54 | 1

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2014.00054/abstract
http://community.frontiersin.org/people/u/50333
mailto:gupta.priti.84@gmail.com
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Gupta and Markan Neuromorphic orientation selectivity

the hardware dynamics and then building adaptive algorithms
around it seems to be a more robust approach for building real
world applications.

To emulate activity dependent adaptation of synaptic connec-
tions in electronic devices, we look towards the developing brain
for inspiration. In the developing brain, different axons connect-
ing to a post synaptic cell, compete for the maintenance of their
synapses. This competition results in synapse refinement leading
to the loss of some synapses or synapse elimination (Lichtman,
2009; Misgeld, 2011; Turney and Lichtman, 2012; Carrillo et al.,
2013). Temporarily correlated activity prevents this competition
whereas uncorrelated activity seems to enhance it (Wyatt and
Balice-Gordon, 2003; Personius et al., 2007). Moreover, precise
spike timing plays a key role in this process e.g., when activity at
two synapses is separated by 20 ms or less, the activity is perceived
as synchronous and the elimination is prevented (Favero et al.,
2012). Apart from the biological relevance, synapse elimination as
a means of honing neural connections is also suitable for imple-
mentation in large scale VLSI networks because in analog hard-
ware it is difficult to create new connections but it is possible to
stop using some connections. Although some digital approaches
work around this by using virtual connections using the Address
Event Representation, however, in purely analog designs for ease
of management of large scale connections, synapse elimination is
best suited. In order to implement synapse pruning we need to
have non-volatile adaptable synapses which are best represented
by floating gate synapse or memresistors (Zamarreño-Ramos
et al., 2011). While memresistor technology is still in develop-
ment floating gate transistors have gained widespread acceptance
due to their capacity to retain charge for very long periods and
the ease and accuracy with which they can be programmed dur-
ing operation (Srinivasan et al., 2005). Floating gate memories
are being used for various applications like pattern classification
(Chakrabartty and Cauwenberghs, 2007), sensor data logging
(Chenling and Chakrabartty, 2012), reducing mismatch (Shuo
and Basu, 2011) etc. They have also found extensive application
in neuromorphic systems (Diorio et al., 1996; Hsu et al., 2002;
Markan et al., 2013). We therefore extend the study of adaptive
behavior of floating gate pFETs and demonstrate how this adap-
tive, competitive and cooperative behavior can be used to design
neuromorphic hardware that exhibits orientation selectivity, a
widely studied phenomenon observed in the visual cortex.

Prior efforts toward hardware realization of orientation selec-
tivity can be classified into two categories, (1) Ice Cube models,
(2) Plastic models. Ice cube models e.g., the model by Choi
et al. (2005) assumes prewired feed-forward and lateral connec-
tions. Another similar model by Shi et al. (2006) uses DSP and
FPGA chips to build a multichip modular architecture. They use
Gabor filters to implement orientation selectivity. This approach
provides an excellent platform for experimentation with fea-
ture maps, however, it falls short when it comes to compactness
and power efficiency. Moreover, these models do not capture
the developmental aspects of orientation selectivity. Some plastic
models that try to capture the developmental aspects include the
model by Chicca et al. (2007) that uses a mixed software/hardware
approach to simulate a biologically realistic algorithm on a PC
that is interfaced with a neuromorphic vision sensor. Another

model by Boahen et al. (Taba and Boahen, 2002; Lam et al.,
2005) uses activity dependent axon remodeling by using the con-
cept of axonal growth cones and implements virtual connections
by re-routing address events. Their design is biologically realistic
but hardware intensive since they use an additional latency cir-
cuit to decide the wining growth cone. Therefore, what is needed
is an approach that is more autonomous in terms of deciding
the winner in the competition. Through our approach, that is
based on the biologically inspired synapse elimination process,
we have attempted to build an analog design that can be used by
both analog and hybrid systems. The design has minimum hard-
ware requirements and is capable of self-organized clustering.
Our effort in designing a minimal competitive circuit, the time-
staggered Winner Take All (ts-WTA) (Figures 1A–D) that exploits
the adaptation dynamics of floating gate pFETs (Markan et al.,
2013) and then using a collective network of these ts-WTA cells to
exhibit orientation selectivity (Markan et al., 2007) is a small yet
significant effort toward bridging the gap between biological phe-
nomenon and its neuromorphic equivalent. The simulations were
performed using Tanner T-Spice v13.0 and Cadence Specter v7.1
with BSIM3 level 49 spice models for 0.35 μm CMOS process.

Section 2 attempts to highlight the salient features of the
ts-WTA circuit and discusses the motivation behind its design.
Section 3 describes the development of a framework for multi-
dimensional feature selectivity which is then extended to create an
orientation selective cortical cell model that learns and eventually
recognizes patterns resembling bars of different orientations. In
sections 3 and 4, experiments performed on the orientation selec-
tive cortical cell, that highlight how close the cortical cell is to its
biological counterpart, are discussed. Section 5 describes a frame-
work for diffusive interaction and cluster formation between
many orientation selective cells that has implications in orienta-
tion selective map formation. Section 6 includes the results and
discussion.

2. TIME-STAGGERED WINNER TAKE ALL
A novel CMOS time-staggered Winner Take All (ts-WTA) circuit
has been described in Markan et al. (2013). The ts-WTA is built
with two arms each representing a weighted connection, imple-
mented by means of floating gate pFET “synapses” (Figure 1A)
(Rahimi et al., 2002). These arms connect at a common source
node, Vs. Current through a bias pFET, also connected at Vs,
drives the two arms of the ts-WTA and ensures resource limi-
tation. A buffer device (D) separating Vs from Vi is introduced
to ensure that Vs is not influenced directly by the neighboring
cells. However, the voltages at Vs and Vi are nearly the same. A
feedback mechanism modifies the floating gate voltages of the
two floating gate pFET synapses as a function of the activation
node voltage Vi. The Tunnel (T) and Injection (I) devices, that
are a part of the feedback network (Figure 2), transform the Vi to
appropriate ranges that make tunnel and injection feasible. The
initial floating gate voltages of the two synapses are chosen ran-
domly with a small voltage difference δVfg . Inputs to the cell are
applied in the form of pulses of high (6v) and low (−1v) volt-
age represented by 1 and 0, respectively. A {0,0} input means both
the synapses are stimulated with −1v which is equivalent to say-
ing they are both off . An input {1,1} means that both synapses
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FIGURE 1 | (A) Actual circuit of the ts-WTA learning cell and (B) its abstract
model. In (A) (Vfg)i1, (Vfg)i2, and in (B) W1, W2 show the floating gate based
weighted connections. x1, x2 are inputs and node voltage Vi is activation of
the cell which is equivalent to A in (B). (C) Shows ts-WTA evolution of

floating gate voltages. (D) Starting with nearly equal weak connections (left),
the cell strengthens stronger of the two connections at the cost of the other
(right, shows both possibilities). Here ◦ => connection representing one
feature • => connection representing other feature.

are stimulated with a 6v pulse at the same time, which is how
conventional WTA circuits receive inputs. The inputs {1,0} and
{0,1} mean that the synapses are stimulated alternately or in an
uncorrelated manner. The ts-WTA is designed to work on this
uncorrelated scheme of inputs. When inputs from the sets {0,1}
and {1, 0} are applied at x1 and x2 in a random-inside-epoch order
(i.e., within an epoch both the synapses are equally stimulated but
the order in which they are stimulated is randomized for every
epoch) competition between the two arms starts taking place. The
below equation expresses the adaptation dynamics of the floating
gate voltage (Vfg) of any branch (synapse) as a function of Vfg of
the stimulated branch

d
(
Vfg

)
ij

dt
= FT

[
T{Vi},

(
Vfg

)
ij

]
− FI

[
I{Vi},

(
Vfg

)
ij

]
× xj (1)

The first part of the equation represents tunneling and the second
part represents injection feedback. The second part has an addi-
tional term xj, which is 1 when the pFET is ON and 0 when it
is OFF, taking into consideration that injection works only when
the floating gate transistor is ON whereas, tunneling works at
all times irrespective of the state of the floating gate transistor.
In the first and second parts, Vi is equivalent to

∑
j

f (Vfg)ij × xj

(which means we can express Vi in terms of floating gate volt-
ages of individual branches under the condition that only one
xj is 1 the other is 0 at any given time). In the first part T{Vi}
leads to a tunnel voltage Vtun which along with the floating gate
voltage (Vfg) determines the tunneling current (Itunnel) and in the
second part I{Vi} leads to an injection voltage Vinj which along
with Vfg determines the injection current (Iinjection) (please refer
to Markan et al., 2013 and Rahimi et al., 2002 for detailed equa-
tions). Injection works by lowering the floating gate voltage, Vfg ,
thus making the transistor more and more ON whereas tunnel-
ing causes the Vfg to increase gradually causing the pFET to slowly
drift toward the OFF state. On stimulation by uncorrelated inputs
over a period of time, injection amplifies the voltage difference
between the two floating gates. Tunnel on the other hand helps
in setting an upper limit on strength of the active connection,
and pruning the strength of the inactive connection. According
to Grossberg (1976), Winner Take All action requires that self-
excitation of a neuron must be accompanied by global lateral
inhibition. This occurs in ts-WTA with self-excitation in the form
of injection and global lateral inhibition in the form of tunnel-
ing. If over many epochs, the synapse strengthens more than it
weakens (there is more injection than tunneling), the floating
gate pFET turns more and more ON, but if the synapse weak-
ens more than it strengthens (tunneling is more than injection)
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FIGURE 2 | Shows the circuit level description of the Injection (I),

Tunnel (T) and Buffer (D) devices that are a part of the ts-WTA circuit

shown in Figure 1A. The Injection (I) and Tunnel (T) devices modify the
voltage at Vi to appropriate ranges that enable injection and tunneling to
occur in the floating gate pFETs. The buffer device (D) shields the common
source node (Vs) from the loading effect of neighboring cells. The graphs
show how the tunnel (Vtun) and injection (Vinj) voltages vary with the
common source voltage. Here Vinj(min) is set to −0.65 V, Vtun(max) is set to
13.6 V and VDD is 6 v.

then after several epochs it reaches a stage of no recovery where
the floating gate pFET completely switches OFF. The synapse that
strengthens more emerges as the Winner. However, ts-WTA has
an additional interesting dimension according to which, if the
weaker connection is stimulated more, then that emerges as the
winner. Interestingly, this ts-WTA competition can be extended
to any two contrasting input synapses (e.g., Left/Right eye in
Ocular Dominance, ON/OFF cells in Orientation Selectivity and
Lagged/Non-Lagged cells in Direction Selectivity) to perform fea-
ture selectivity. It can also be extended to other modalities like
auditory, somatosensory etc. Thus the ts-WTA is a very generic
cell and can be an essential core around which different feature
selectivity models can be built. This is necessary for eventual inte-
gration of different feature maps into one universal framework.
The ts-WTA has been studied under various stimulation schemes
and has been tested for stability under device parameter variations
(Markan et al., 2013) and is thus a robust circuit which closely
emulates brain like competition and learning and is therefore
suitable to build brain like feature maps.

Amongst the various CMOS WTA circuits that have been
designed, Lazzaro’s WTA(L-WTA) (Lazzaro et al., 1989) has
gained widespread acceptance (Figure 3). It is an elegant circuit
that performs instantaneous comparison between two or more
input values and brings about suppression of the outputs asso-
ciated with lower input values as compared to the highest value
giving rise to Winner Take All action. Our ts-WTA is inspired by
L-WTA, however, there are significant differences. In both the cir-
cuits, a current source restricts the amount of current that can
flow in the two competing branches. As a result, the branch that
draws more current forces the transistor of the other branch to
switch off, thus emerging as a winner. When both inputs are

y1 y2

Vb

VDD

Vs

Ib

Isi2
Isi1

FIGURE 3 | Shows the Lazzaro’s WTA (L-WTA) circuit. This can be
compared with the ts-WTA of Figure 1A. In both the circuits, a bias
transistor in saturation acts like a current source with constant current Ib.
This current ensures resource limitation forcing only one of the input arms
or “synapse” to survive in the competition. In ts-WTA the inputs x1 and x2

represent voltage pulses of +6 v and −1 v (1 and 0) applied alternately
(time-staggered inputs) to both the arms. The inputs y1 and y2 are voltages
(equivalent to x1w1 and x2w2, respectively) that are applied to the two
arms of L-WTA both at the same time. Here w1 and w2 represent the
weights of the two floating gate pFET synapses in the ts-WTA. L-WTA
performs instantaneous comparison between the two inputs and does not
have any memory element. The ts-WTA has floating gate pFET based
memory and Tunnel and Injection feedback devices that modify the floating
gate voltages as a function of response voltage (Vi). This allows it to
perform competition based on memory of prior activity unlike the L-WTA
that can only perform instantaneous comparison between two inputs that
are simultaneously applied.

applied at the same time, both ts-WTA and L-WTA behave in
much the same way. However, ts-WTA brings in an interesting
innovation in the form of long term memory retention using
floating gate dynamics. So, in fact, the ts-WTA is a learning WTA
cell that is capable of computing a winner based on which input is
statistically more significant over many epochs unlike the L-WTA
which only computes the winner based on an instantaneous com-
parison. Another interesting WTA circuit (inspired by L-WTA)
that incorporates a sense of time by using floating gate transis-
tors has been developed by Kruger et al. (1997). Their motivation
to introduce adaptation is to add a fatigue or refraction time to
each cell that wins. Their application is to form saliency maps
where there is a need to ensure that the saliency of all inputs
is considered and the WTA operation chooses different winners
at different times instead of just locking on to the most signif-
icant input. Another interesting variant of L-WTA is the one
introduced in Indiveri (2001, 2008). In this circuit by using local
excitatory feedback and a lateral excitatory coupling mechanism
the authors realize distributed hysteresis using which the network
is able to lock onto an input with the strongest amplitude and
track it as it shifts. They have shown an interesting application of
this in adaptive visual tracking sensors (Indiveri et al., 2002). Both
these circuits work on the conventional {1,1} or simultaneously
applied inputs. They are both ingenious circuits, however, their
motivation and design vary significantly from ours.

The true strength of the ts-WTA lies in the way it works
on uncorrelated inputs or inputs applied staggered over time.
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The inspiration for using time-staggered or uncorrelated inputs
comes from the way the brain is designed. In the brain, many
pre-synaptic neurons connect to a single post-synaptic neuron
through many afferent connections. It is only through correlated
or uncorrelated activity between the many pre-synaptic cell affer-
ents that the post-synaptic cell can tell to which pre-synaptic
cell the afferents belong. The activity, from all the afferents of
one pre-synaptic neuron is perfectly correlated whereas between
two different pre-synaptic neurons the activities are uncorre-
lated and this is the basis on which synapse elimination happens
(Stent, 1973). Hence, uncorrelated activity between different pre-
synaptic neuron helps the post-synaptic neuron to decide, which
connection is relevant and which is not. This selection pro-
cess happens over a period of time and not instantaneously and
therefore L-WTA is not suitable for such selection that involves
retaining some information of prior neural activity. One of the
most important aspect of neural information processing is feature
extraction and formation of feature maps. Formation of feature
maps requires that cells with similar feature selectivity cluster
together. For this to happen each cell should be able to uniquely
convey its feature preference at its output node which requires
that each cell has to be identically stimulated by a selected pat-
tern. Then on the basis of the responses of different cells for
that pattern, cells that are selective to that pattern can be iden-
tified. Similarly, by applying other patterns cells can be marked
for feature selectivity toward those patterns. Therefore, learn-
ing has to be deferred over an epoch so that all patterns are
stimulated once and cells with similar feature preference can clus-
ter together. In an L-WTA this is not possible for two reasons.
Firstly, because in L-WTA inputs are applied simultaneously or
in the {1,1} manner. This is analogous to applying all patterns
at the same time and hence cells cannot be uniquely identified
for their feature preference. Secondly, because the L-WTA lacks
a mechanism for long term retention of modified weights which
is needed for forming clusters. The ts-WTA on the other hand is
perfectly suited as a learning cell for developing feature maps in
silicon.

It may be apt to mention here that over and above facilitat-
ing synapse elimination, time-staggered or uncorrelated inputs
play a major role in the formation of feature maps and this
has been brought out in many seminal papers in neuroscience.
For example Weliky and Katz (1997) reported that by artifi-
cially inducing correlated activity in both the eyes of the ferret,
they found that the number of cells in the primary visual cor-
tex with clear orientation and direction selectivity was markedly
reduced when compared to un-stimulated controls. In a simi-
lar experiment on kittens, Stryker and Strickland (1984) found
that segregation in ocular dominance columns was promoted
when neural activity is synchronized in each eye but not corre-
lated between the eyes. In other similar experiments on cortical
feature map development in visual (Elliott and Shadbolt, 1998;
Jegelka et al., 2006) as well as auditory cortex (Zhang et al.,
2002) it has been reported time and again that spatiotemporal
relation between the inputs to both eyes/ears are the key to for-
mation of feature maps. Hence, it comes as a deduction from
the above evidences that uncorrelated or “time-staggered” activ-
ity is an underlying biological mechanism for the formation of

feature maps in the cortex. Therefore, using this inspiration to
build artificial feature maps in silicon would help us bridge the
gap between actual neural phenomenon and its neuromorphic
equivalent.

The use of ts-WTA to build Ocular Dominance (OD) Maps
has been described in Markan et al. (2013). In order to build a
generic framework for cortical feature map formation in neuro-
morphic hardware, our ultimate goal, we wanted to extend our
model to a larger input space. Orientation Selectivity (OR), a
property exhibited by neurons in the visual cortex, is a natural
extension to OD. OD is the selective preference cortical neurons
show toward inputs from either the left eye or the right eye. The
input space in OD is only two dimensional. OR on the other hand,
is the selective preference cortical neurons show toward light or
dark bars or edges of different orientations. Since orientations can
vary anywhere from 0◦ to 180◦, the input space is truly multi-
dimensional. The following sections describe how from the basic
building block of ts-WTA, we build an adaptable framework for
multi-dimensional input features and how we extend it to build
an adaptable circuit that is able to learn and eventually respond to
different orientations.

3. ORIENTATION SELECTIVITY
Cells in the primary visual cortex are known to respond to dark
and bright oriented bars. This property of the cortical cells,
known as Orientation Selectivity, was first discovered by Hubel
and Wiesel (1959). Hubel and Wiesel identified the receptive
fields of Simple Cells in the Primary Visual Cortex and then
showed bars of different orientations to the eye. Interestingly they
observed that a single cell gave maximum response to a bar of
only one particular orientation. They also observed that if the
bar was in the center of the receptive field, it gave the highest
response. In earlier experiments on retinal ganglion cells and lat-
eral geniculate nucleus cells (Kuffler, 1953) it was observed that
the receptive fields of these cells are divided into 2 parts (cen-
ter/surround), one of which is excitatory or “ON,” the other
inhibitory or “OFF.” For an ON/OFF center/surround cell, a spot
of light shown on the inside (center) of the receptive field elicits
spikes, while light falling on the outside ring (surround) sup-
presses firing below the baseline rate. Results are opposite for
an OFF/ON cell. Hubel and Wiesel were proponents of the the-
ory that receptive fields of cells at one level of the visual system
are formed by inputs from cells at a lower level of the visual
system, emphasizing that there is a hierarchical arrangement in
the cortex, where in the higher layers extract statistically rele-
vant information from the lower layers. Hence, they advanced
the theory that small, simple receptive fields could be combined
to form large, complex receptive fields. Later theorists also elab-
orated this simple, hierarchical arrangement by allowing cells
at one level of the visual system to be influenced by feedback
from higher levels. In their theory of orientation selectivity, Hubel
and Wiesel proposed that Simple cells have receptive fields com-
posed of elongated ON and OFF sub-regions (Hubel and Wiesel,
1959, 1962), which seem to originate from single synaptic input
from ON and OFF centered lateral geniculate cells. The circu-
larly symmetric receptive fields of neurons in LGN, that excite a
cortical cell, are arranged in a row creating elongated receptive
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fields see Figures 4B,C. These elongated sub-fields are sufficient
for generating a weakly tuned orientation response, which is
then amplified by local intra-cortical connections. Unlike Ocular
Dominance, that seems to develop only after eye opening, ori-
entation selective responses have been observed to be present
in primates, cats and ferrets as early as the first recordings can
be made (Chapman et al., 1996). However, how the genicu-
late afferents organize themselves into segregated ON and OFF
sub-regions during the prenatal period, in the absence of visual
input, is still not clear. Some researchers attribute this develop-
ment to spontaneous waves of activity that flow in the retina
and LGN affecting cortical development (Mooney et al., 1996),
and some attribute it to intra-cortical long range connections
that exist before birth, forming a scaffold for orientation maps
that later mature with visual inputs (Shouval et al., 2000). In
order to gauge to what extent, visual experience influences the
development of orientation maps, visual cortex of kittens reared
in a single striped environment was studied using optical imag-
ing techniques. It was found that even though kittens reared in
a striped environment responded to all orientations, however,
twice the area of the cortex was devoted to the experienced ori-
entation as compared to the orthogonal one (Sengpiel et al.,
1999). This effect is due to an instructive role of visual experi-
ence whereby some neurons shift their orientation preferences
toward the experienced orientation. Thus, it is now generally
accepted that although orientation maps are fairly stable at the
time of birth, abnormal visual experience can alter the neu-
ronal responses of a large percentage of cells to the exposed
oriented contours. Under normal conditions, the prenatal tun-
ing properties of neurons are retained and get refined with visual
stimulus.

A number of models suggesting possible formation of orien-
tation selective cells in cortex have been proposed. These have
two main shortcomings. First, they employ a Mexican hat cor-
relation function in the cortex (some use it in the LGN as well
Miller, 1994). In the developing cortex, it is highly unlikely that
this structure exists (Buzás et al., 2001; Yousef et al., 2001; Roerig
and Chen, 2002). Second, competition in these models is brought
in through synaptic normalization (multiplicative or subtractive).
Normalization has its own associated problems, for linear synap-
tic weight update multiplicative normalization does not permit
positively correlated afferent to segregate, while under subtractive
normalization, a synapse either reaches the maximum allowed
value or decays to zero (Miller and MacKay, 1994). These short-
comings have brought in the necessity of introducing models
that are biologically more plausible (Miller, 1996; Elliott and
Shadbolt, 1998). It has been observed that although the hori-
zontal intra-cortical connections are still clustered at birth, the
thalamo-cortical connections are well defined (Sur and Leamey,
2001). This indicates that the Orientation selectivity observed
at birth could be manifesting out of the relatively well devel-
oped thalamo-cortical connections or the receptive fields of the
cortical cell. These findings suggest the existence of some com-
mon biological mechanisms that could be responsible for the
emergence of receptive field structure and thus orientation selec-
tivity in the visual cortex. It has been shown that competition
for neurotropic factors and neighborhood cooperation through

diffusion of leaking chemicals (that lower the threshold of the
neighboring cells and make them fire more readily on receiv-
ing same stimulus) are biological phenomenon acting in the
brain both before birth and after (Cellerino and Maffei, 1996;
Elliott and Shadbolt, 1998; McAllister et al., 1999). Models based
on this competitive and cooperative behavior have been able
to explain aspects of feature map formation of both orienta-
tion selectivity and ocular dominance (Markan, 1996; Bhaumik
and Markan, 2000; Bhaumik and Mathur, 2003). Our model
is inspired by the three layered model proposed by Bhaumik
and Mathur (2003) (see Figure 4A for the abstract sketch of
the model). However, there are some differences. While their
model aims to describe the formation of oriented receptive
fields prior to eye opening, our model also takes into account
the influence of visual experience or cortical plasticity observed
after eye opening. They use competition based on both pre
and post synaptic resource limitation and diffusion between
ON/ON center and OFF/OFF center cells, requiring precise ini-
tial connections between cells. Our resource limitation is only
post synaptic and is enforced by limiting current in the bias
transistor representing the cortical cell. The diffusion in our
model happens between all neighboring cells irrespective of their
type.

To build a hardware model of a cortical cell that exhibits
orientation selectivity, from the building block of a single ts-
WTA circuit, systematic scaling up was required. The next section
describes how this scaling up was done and how diffusive interac-
tion between ts-WTA cells was introduced.

3.1. BUILDING A FRAMEWORK FOR MULTIDIMENSIONAL FEATURE
SELECTIVITY

Any attempt at building self-organizing feature maps in hard-
ware, requires neighborhood interaction to happen in such a way
that local clusters are formed autonomously. We showed previ-
ously that this can be achieved by means of diffusive coupling
between neighboring cells by means of an RC network (Markan
et al., 2013). Biologically this happens through leaking chemicals
from active neurons and as more recently shown through gap
junction coupling (Li et al., 2012; Mrsic-Flogel and Bonhoeffer,
2012). In order to extend our design for feature selectivity over
multi-dimensional input space, we took four ts-WTA cells and
connected them in a row, with their outputs tied together in
a feed-forward manner through MOSFETs (see Figure 5). This
can be understood as a three-layered model where the first layer
is the retina, the second layer is the Lateral Geniculate Nucleus
(LGN) and the third layer is the visual cortex. While there is
one-to-one mapping between cells in layer 1 and layer 2, there
is many-to-one mapping from layer 2 to layer 3 cells, we call
these layer 2 cells the receptive field of that layer 3 cortical cell.
Therefore, now we have a cortical cell with a 1 × 4 receptive field.
Individual ts-WTAs are connected to their neighbors with a 10k
diffusive resistor (RD). The output of the cortical cell is fed back
to the individual ts-WTA cells, through a resistive feedback net-
work (RF), also of 10 k, as can be seen in Figure 5. The purpose
of these resistances (RF) is to reinforce the initial bias so that the
responses of the cells become fine-tuned ensuring that the pat-
tern learnt is one of the applied patterns. The diffusion capacitor
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FIGURE 4 | (A) Shows the three layer abstract feed-forward model of
Orientation Selectivity. The first layer, retina, is the layer that receives inputs.
The second layer is the LGN. There is one-to-one mapping between retina
and LGN cells. The third layer is the cortex. Many LGN ON/OFF center cells

innervate at a single cortical cell forming its receptive field. (B) Shows the
elongated ON-Centered, OFF-Surround receptive field of a cortical cell
(Inspired by Hubel and Wiesel’s model of Orientation Selectivity). (C) Shows
the elongated OFF-Centered, ON-Surround receptive field of a cortical cell.

ON-Centered synapse OFF-Centered synapse

Layer 1
(Retina)

Diffusion node (dno)

OR Cell Output (out) Layer 3
(Cortex)

Layer 2
(LGN)

RF RF RF RF 

RD RD RD

CD 

Ro

mo
Vbias

5v

VDD

ON-Centered synapse OFF-Centered synapse

FIGURE 5 | Shows 4 ts-WTA cells connected in a row by means of diffusive

resistors (RD). The output of each cell (Vs) is connected in a feed forward
manner using mosfets with their drains connected together at node out which
is the feed forward path conveying the self activation or response of the cell.

The activation node of each cell (Vi) is connected at the diffusion node, dno,
with feedback resistances (RF). This forms the feedback network of the cell. A
small resistance Ro connects out and dno to keep both these voltages nearly
the same. The bias transistor mo represents the cortical cell. Here VDD is 6 v.

(CD) connected at node dno, is of 10 pF. To achieve cluster forma-
tion on a larger scale, it is important to achieve cluster formation
locally. To ensure formation of local clusters within the set of four
ts-WTA cells, the first and fourth ts-WTA of the cortical cell are

connected diffusively in a ring fashion (not shown in the figure).
This ensures that the receptive field develops into only one of the
four patterns (0011), (1100), (0110), (1001), in which 11 and 00
are always clustered. We took 2 such cortical cells with a 1 × 4
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(ts-WTAs) receptive field. The development of the receptive fields
was analyzed in two situations. First, when the cortical cells are in
isolation and second, when they are diffusively coupled with each
other (Figures 6.1A,B).

Both the cortical cells are stimulated with the same random-
inside-epoch order of input patterns, however, their initial biases
(initial floating gate voltages of LGN cells/layer 2) are different.
The initial biases are randomly generated floating gate volt-
ages varying between 5.15 and 5.16 v. We assume that the left
branch of each ts-WTA represents an ON-Centered synapse
and the right branch represents an OFF-Centered synapse.
The inputs patterns are from the set (1100/0011), (1001/0110),
(0110/1001), (0011/1100), (1010/0101), (0101/1010). The nota-
tion (1100/0011) means that when the ON-Centered synapses
(left branches) of the four ts-WTAs of a cortical cell are stimulated
by 1100 the OFF-Centered synapses (right branches) are stimu-
lated by 0011 (as described in section 2, 1 here represents a high
voltage (+6 v), and 0 represents a low voltage (−1 v) applied for
0.02 s). This is to emulate time-staggered or uncorrelated inputs.
Please note that the patterns 0001 and 1000 are omitted from the
set because they have unequal number of 0 s and 1 s and thus
do not stimulate both the branches equally). When the input
patterns are applied in a random-inside-epoch fashion, competi-
tion between the two arms of each ts-WTA cell begins. Depending

on whether a branch is favored by the initial conditions more
or is stimulated more or both, either the ON-Centered or the
OFF-Centered branch wins. The resultant receptive field (i.e., the
floating gate voltage profile of each branch of the four ts-TWAs)
looks like one of the input patterns applied. Figure 6.2A repre-
sents the 1 × 4 receptive field of cortical cell 1 and Figure 6.2B
represents the 1 × 4 receptive field of cortical cell 2 when they
develop in isolation. When the two cortical cells are isolated, their
receptive fields evolve into different patterns. Here cell 1’ s recep-
tive field has evolved into 1100 whereas cell 2’ s receptive field
has evolved into 0011. However, in the second case, when the
two cells are diffusively coupled, their receptive fields evolve into
similar patterns (1100) (Figures 6.3A,B). This happens because
the diffusive node (dno) voltage, of the two cells becomes cou-
pled. When the input patterns are applied, if one of the cells has a
stronger bias for a particular input pattern the voltage at its node
dno becomes high. Since both the cells receive the same random-
inside-epoch order of inputs, the other cell also experiences this
raised voltage at its node dno for the same pattern. The feedback
resistors convey this high response back to the tunnel (T) and
injection (I) devices (Figure 1A) which modify the floating gate
voltages of all the ts-WTA cells reinforcing this pattern on them.
Over many epochs, the difference between the ON-Centered and
OFF-Centered branches of each ts-WTA cell gets amplified and

VDD

RF RF RF RF 

RD RD RD

CD 

Vbias

5v
RF RF RF RF 

RD RD RD

CD 

Vbias

5v

VDD

VDD

RF RF RF RF 

RD RD RD

CD 
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5v
RF RF RF RF 

RD RD RD

CD 

Vbias

5v

VDD

Diffusion node (dno)
Cell 1 Cell 2

A

B

Cell 1 Cell 2
RDIFF

FIGURE 6.1 | Shows 2 cortical cells Cell 1 and Cell 2 with a 1 × 4

(ts-WTA) receptive field. In (A) the two cells develop independently. In
(B) the two cells are connected at the diffusion node (dno) by means of

a resistance RDIFF for diffusive interaction. Figures 6.2, 6.3 show how
the receptive fields (floating gate voltages) evolve for the two cells in
both the situations.
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FIGURE 6.2 | Shows the development of floating gate voltages of

the two cortical cells of Figure 6.1A. Here blue represents the
floating gate voltage of the ON-Centered synapse and green
represents the floating gate voltage of the OFF-Centered synapse. The

cells develop differently according to individual initial biases and inputs.
(A) Shows the four ts-WTAs of Cell 1. The pattern of receptive field
is 1100 and (B) Shows the four ts-WTAs of Cell 2. The receptive
field has evolved into 0011.

the floating gate voltages get developed for the pattern that evoked
the highest response at node dno during the initial few epochs.
Towards which pattern the competition tilts occurs depends on
the initial biases and the patterns applied and can be changed by
changing either. Hence, promising results in the form of coopera-
tion between neighboring cells are visible when two cortical cells
are diffusively coupled.

To see neighborhood cooperation and cluster formation on
a larger scale we then diffusively connected 10 cortical cells,
each with a 1 × 4 receptive field, with the tenth cortical cell
connected to the first in a ring fashion. By giving all the cells
different initial biases but subjecting them to the same sequence
of random-inside-epoch patterns, interesting cluster formation
was observed (see Figure 7). Figure 7A shows the develop-
ment of the 10 cortical cells in isolation whereas Figure 7B
shows their development under diffusive interaction. In the lat-
ter, two clusters of different patterns (or feature preference)
are clearly visible. Between two opposite feature preferences
(0011 and 1100), there is gradual variation between the fea-
ture preferences (1001) [see Figure 7B cells 2, 3, and 4 (rows
2, 3, and 4 from the top)]. With this idea of extendibility
to multi-dimensional inputs and a framework for neighbor-
hood interaction and clustering in place, we now build the
circuit of a cortical cell that is capable of adapting and self-
organizing, to become selective to patterns resembling different
orientations.

3.2. ORIENTATION SELECTIVE CELL MODEL AND SIMULATION
The previous section described the architecture of a cortical cell
with a receptive field of 1 × 4 (ts-WTA) LGN cells. These cells
when connected on an RC grid show diffusive interaction and
cluster formation. The Orientation Cell model has a similar three
layer topology, with retinal, LGN and cortical cells except that
instead of a 1 × 4 receptive field, the orientation selective corti-
cal cell has a two dimensional, 9 × 9 (ts-WTA), receptive field.
However, with some differences in component values to balance
out the effect of a larger neighborhood. The values of the diffu-
sion, (RD), and feedback resistances, (RF), are now of 1k ohm
each. A 3 × 3 simplified subsection of the circuit representing
the receptive field of the cortical cell is shown in Figure 8. The
capacitance connected at the node dno is 10 pF. The feed-forward
MOSFETs connecting the common source nodes of the individual
ts-WTA cells to the cortical cell (bias transistor mo) ensure that the
self-activation of each cell is conveyed appropriately at the OR cell
output, however, since there cannot be any current in the reverse
direction, the OR cell’s output will not affect the common source
voltage at each ts-WTA. The purpose of the diffusive and feedback
resistances remains the same i.e., to ensure proper neighborhood
interaction and to fine tune the cell’s response, respectively.

A set of input patterns resembling ON-Centered and OFF-
Centered oriented bars of angles 0◦, 45◦, 90◦, and 135◦ were
created (Figure 9A). Each pattern comprises of 9 × 9 blocks in
which a bright block means stimulation with a +6 v pulse given
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FIGURE 6.3 | Shows the development of floating gate voltages of the

diffusively coupled cortical cells in Figure 6.1B. Cell 1 which seems to
have a stronger bias influences the development of Cell 2 which modifies its

original response to become similar to cell 1. (A) Shows the unchanged
response of cell 1 (1100) and (B) shows the response of cell 2 under strong
influence of neighborhood (1100).

for 0.02 s and dark block means stimulation by a −1 v pulse given
for the same duration. To ensure that the learning is not biased
towards the order in which patterns are applied, these bars were
applied in a random-inside-epoch manner, however, with two
constraints. (1) within each epoch when the left synapses of the
9 × 9 ts-WTA receptive field are stimulated with an ON-Centered
oriented bar input, the right synapses are stimulated with the
same orientation but with an OFF-Centered oriented bar. This is
analogous to applying uncorrelated inputs to each ts-WTA branch
and (2) just after that, this order is reversed, meaning, the left
synapses are now stimulated with the OFF-Centered oriented bar
and the right branches with the ON-Centered oriented bar of the
same orientation angle. This is analogous to applying an orienta-
tion grating like input pattern that is necessary for orientation
map formation. Gratings ensure that all the cells in the 9 × 9
receptive field are stimulated with the same oriented bar. This is
necessary for cluster formation since clusters are formed when
the cells group together according to similar feature preferences
and whether two cells have the same feature preference or not can
be known only when they receive the same inputs. Interestingly,
the prenatal brain, when external inputs are absent, retinal waves
have been identified to play the role of grating like input pat-
terns that help in building a scaffold for orientation selectivity
even before birth (Wong, 1999; Akerman et al., 2002). On the
onset of simulation, the receptive field of the orientation selective
cell i.e., 9 × 9 LGN cells are given random initial biases within
5.15–5.16 v. By applying the eight different input patterns in a

random-inside-epoch manner, transient analysis on the circuit is
performed for 80 epochs. As the simulation progresses, the synap-
tic connections from the ON-Centered and OFF-Centered LGN
cells to the cortical cell compete and only one of the connections
survives, the other gets eliminated (ts-WTA action). The local
interaction between LGN cells is both competitive and cooper-
ative. Competitive because of resource limitation in each ts-WTA
cell, where only one of the connections (either ON-Centered or
OFF-Centered) survives and cooperative by means of diffusive
interaction between the neighboring ts-WTA cells, implemented
by means of diffusive resistive coupling (RD) of the 9 × 9 ts-WTA
cells, in a way similar to the Ocular Dominance model implemen-
tation. Details on the feedback mechanism acting on the floating
gate pFETs in the individual ts-WTA cells and Ocular Dominance
Map formation can be found in Markan et al. (2013). The ori-
entation input pattern for which the voltage at node dno is the
highest or a pattern that is statistically more significant gets rein-
forced through the feedback resistors (RF) and the injection and
tunnel feedback mechanisms of each ts-WTA cell (as discussed
in the case for a 1 × 4 receptive field) and we say that the cell is
selective to that particular orientation. Multiple simulations per-
formed with different random initial biases of LGN cells (floating
gate voltages) and different random-inside-epoch order of input
patterns result into the cell learning different oriented patterns
with equal likelihood of learning any one of the applied eight pat-
terns. A statistical analysis over 100 simulations is presented in
Tables 1A, 1B. The results show that each of the eight patterns
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FIGURE 7 | (A) Shows the development of floating gate voltages of 10 (1 × 4)
ts-WTA cells in isolation. Here Cell 1 is top row, Cell 2 is 2nd row and so on.
The black, white and gray squares represent the feature preference of the
ts-WTAs. Black represents an OFF-Centered cell, white represents an
ON-Centered cell and gray represents an unbiased cell. The cells develop

differently according to individual initial biases and inputs. (B) Shows the
same 10 cells when they interact diffusively. Near neighbor cells begin to
cluster developing similar feature preference. Between two opposite patterns
(e.g., 1100 and 0011) , there is a gradual variation (1001), see responses of
Cells 2, 3, and 4.

is learnt at least 10% of the times. A video of how the receptive
field of the orientation cell evolves, starting from initial random
biases of LGN cells to an oriented bar pattern, can be found in the
supplementary material.

3.3. ORIENTATION TUNING AND PERFORMANCE UNDER ABNORMAL
STIMULATION

Experiments done on many mammals demonstrate that during
the early postnatal periods, the recording over a cortical neuron
shows nearly equal response to many orientations or only slight
bias toward a particular orientation. If the response of the cell
is plotted against different orientation angles, it is a flat curve
showing faint selectivity to many different orientations. As the
orientation selectivity of the cell develops, as a result of stim-
ulus dependent activity, the tuning curve becomes sharper at a
particular orientation (Somers et al., 1995; Dragoi et al., 2000;
Seriès et al., 2004). Similar orientation tuning is exhibited by
our orientation selective cell. Once the cell has learnt a partic-
ular orientation i.e., the floating gate voltages of the cell have
matured, the injection and tunnel voltages can be modified in
a way that stops further learning, see learning rate parameter
in Markan et al. (2013). The cell’s response to any orientation
can then be obtained by observing the output node voltage (OR
cell output node) on the application of that oriented pattern as
input. Figure 9B shows the orientation tuning curve of our cell at

different stages of receptive field development. The development
of orientation tuning is clearly visible from the shape of the curve.
Initially the cell responds equally to all orientations, depicted by
the nearly flat curve, gradually becoming selective to only one,
represented by the rising peak at one of the orientations. The Half
Width at Half Height (HWHH) was computed for each receptive
field for the 100 simulations mentioned in the previous subsec-
tion. For the receptive fields that were not very finely tuned or they
seemed to be close to more than 1 input patterns e.g., receptive
field (5,5) in Table 1A, the HWHH was computed for each case
and the receptive fields were categorized (see Table 1B) accord-
ing to the lower HWHH value. The best HWHH, i.e., the HWHH
for a highly tuned receptive field e.g., (1,4) in Table 1A is 30◦ and
worst HWHH is 40◦ for a receptive field similar to (5,5).

Some experimental results also suggest that if on the onset
of vision, animals are reared in an abnormal environment such
as one with only single stripes, the orientation tuning of a large
number of cells, that were initially tuned to different orientations,
adjust their tuning to respond to the orientation of the striped
environment in which they are reared (Sengpiel et al., 1999;
Yoshida et al., 2012) and the cortical space that was initially shared
equally by all orientations now becomes exceedingly large for the
orientation shown. In other words the orientations shown take up
the cortical space of the orientations that were never shown. To
test if similar behavior is shown by our orientation selective cell,
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9 × 9 receptive field of our orientation selective cell. (A) Shows the
symbolic representation of a ts-WTA cell. In subsequent figures, the gray
square represents a ts-WTA. (B) Is the feed-forward MOSFET network that
takes the output of the individual ts-WTAs and feeds them to the OR Cell
output. This is a read out node from where self-activation of the cell can be

recorded. (C) Shows the diffusive resistance network consisting of RD, which
connects the ts-WTA cells to all their neighbors. (D) Shows the feedback
resistive network consisting of RF that feeds the output of the cell from dno
back to the individual ts-WTAs. Out and dno are connected by Ro which can
be replaced by a buffer device discussed in section 5.2. (see Figure 5 for the
lateral view, this is a top view).
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FIGURE 9 | (A) Shows the input patterns that are applied to the orientation
cell. (B) Shows the orientation tuning curve. Initially the response of the cell
is low and similar for all input patterns. As the receptive field develops (see
on the right, bottom to top), there is increased response toward that specific

pattern as can be seen from the sharpening of the tuning curve. The half
width at half height (HWHH) parameter for the best and the worst receptive
field has been marked. The sharper the tuning, the lower is the value of
HWHH.

two sets of experiments were performed. In the first experiment,
for 20 different initial conditions, 8 different orientation patterns
were applied. It was found that for 20 simulations, the receptive
fields developed into one of the eight patterns, with nearly equal

probability. Now, for the same set of initial conditions, we applied
only six patterns (two horizontal patterns, 1 ON-Centered and
one OFF-Centered were omitted). The results are summarized
in Tables 2, 3. It was observed that for 20 simulations, the cell
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Table 1A | Results of 100 simulations of the orientation selective cell performed with different random initial biases and different

random-inside-epoch inputs.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

now developed according to the 6 patterns applied with nearly
equal probability. Therefore the space that was earlier occupied by
eight patterns was now equally distributed amongst six patterns.
The cell demonstrated adaptive cortical plasticity by developing
receptive fields according to the applied patterns. However, if the
initial biases very strongly favor one of the missing patterns, like in
Table 3, 2nd row 4th column, the receptive field develops accord-
ing to the initial bias rather than the applied patterns. This kind

of adaptive plasticity to accommodate abnormal inputs may not
be possible in the model by Bhaumik and Mathur (2003) since
their model does not take into account the effect of external
stimulation.

3.4. ANALYZING THE EFFECT OF NATURE Vs NURTURE
It is known that both Nature (genetic biases) and Nurture
(environmental factors) play an important role in feature map
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Table 1B | Analysis of 100 simulations.

Orientation Receptive Field

Appearance
(no. of times)

in 100 simulations
10 19 12 11 1 3 12 1 3 9

*The evolved receptive field sometimes resembles two different orientations. In such cases the response towards both the orientations was noted and HWHH was

computed in each case. The categorization was done on the basis of the lower HWHH.

Table 2 | Summary of 20 simulations of orientation selective cell with all 8 oriented patterns applied as inputs.

Table 3 | Summary of 20 simulations of orientation selective cell with horizontal patterns missing.

Table 4A | Summary of 20 simulations of orientation selective cell with same initial conditions but different random-inside-epoch order of

input patterns.

formation. To understand how our orientation selective cell
responds to nature (initial biases) vs nurture (pattern stimu-
lation) and to gauge how close it is to biology, two sets of
experiments were performed. In the first experiment, repeated
simulations were performed by keeping the initial biases over the
9 × 9 LGN cells the same, but changing the random-inside-epoch
order of input patterns over all the epochs. Statistical analysis
over 20 simulations showed that 80% of the times the cell learnt

a different oriented pattern, highlighting that stimulus driven
activity can override the orientation bent due to the initial float-
ing gate voltages in most of the cells. In the second experiment,
the random-inside-epoch order in which inputs are applied was
kept constant (creating preference for one of the patterns) over
all the simulations but the initial biases were changed every time.
It was observed that although 70% of the times the cell devel-
oped the same oriented receptive field, but 30% of the times it
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Table 4B | Summary of 20 simulations of orientation selective cell with different initial conditions but same random-inside-epoch order of

input patterns.
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FIGURE 10 | Shows the response of the Orientation Cell to patterns of

different spatial frequencies and periodic patterns of different

orientations. (A) Shows patterns of different spatial frequencies that are
applied as inputs to the OR Cell. (B) Shows the patterns that the cell learns.

Each simulation results in the circuit learning one of the input patterns with
equal probability. (C) Shows periodic patterns of different orientations that are
applied as inputs to the OR cell. (D) Shows the periodic patterns that the cell
learns.

did learn other patterns. This experiment brings out that it is
not just the input patterns applied, but the unique combination
of the inputs and the initial biases that decides which oriented
pattern the cell would learn or become selective to, bearing close
analogy to experimental findings. The results are summarized in
Tables 4A, 4B.

4. RESPONSE TO SPATIAL FREQUENCY AND PERIODIC
PATTERNS

Cells in the primary visual cortex are also known to respond to the
spatial frequency of visual inputs (Maffei and Fiorentini, 1973;
Tootell et al., 1981; De Valois et al., 1982; Everson et al., 1998).
Some cells respond to low spatial frequencies, some to high spatial
frequencies, essentially forming spatial low pass, band pass and
high pass filters that act on the visual inputs. To test if our cell
could also be selective to the spatial frequency of applied inputs,
we presented the circuit with patterns of different spatial frequen-
cies (Figure 10A). The simulations were performed in the same

way as described in section 3.2 except for the new input patterns
that have orientations of different spatial frequencies. We took
only two spatial frequencies (low and high). Repeated simulations
resulted in the cell learning orientations of different spatial fre-
quencies (Figure 10B). However, it was observed that the learning
time of the cell increased as compared to when all inputs are of the
same spatial frequency.

Certain cells in the visual cortex are also known to be selec-
tive to periodic patterns (Von der Heydt et al., 1992). These
cells respond vigorously to gratings but not so much to bars
or edges. Since these cells are not sensitive to the spatial fre-
quencies of the gratings but are only specialized for detection
of periodic patterns, they seem to have a role in the perception
of texture. In order to test if our circuit could have a similar
response to periodic patterns, we presented our circuit with input
patterns that resembled gratings of different orientations (see
Figure 10C). After several epochs of it was observed that the cell’s
receptive field developed according to one of the grating patterns
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A B

C

FIGURE 11 | In order to isolate the OR cell output (out) which conveys

the self-activation of the cell, from the diffusion node (dno) at which

other orientation cells connect and to prevent loading of node out, a

buffer device is created. (A) Shows the characteristic response of the

buffer device. The device is linear, and has a double inverting effect on the
voltage at node out. The VDD is 6 v. (B) Shows a typical design of the
buffer device. (C) Shows an abstract symbol for orientation selective cell
along with the buffer device.

(Figure 10D). Repeated simulations with different initial biases
and different random-inside-epoch order of inputs resulted in the
cell’s receptive field evolving into one of the eight grating pat-
terns with equal probability. These experiments show that the
cell developed is generic and is extendable to recognizing many
different patterns.

5. DIFFUSIVE INTERACTION OF CELLS
Feature map formation is based on three important tenets: conti-
nuity, diversity and global order. Continuity requires that nearby
cells share the same feature preference. Diversity means that there
is equal representation of all possible feature preferences and
global order implies that there is a periodic organization of differ-
ent features over the entire cortical surface. Literature sites several
mechanisms that coordinate the development of feature selectiv-
ity of single cells under neighborhood influence (Grossberg and
Olson, 1994). The essence of these mechanisms is that if cells have
overlapping receptive fields and they receive similar inputs, then
if they can be forced to have similar responses, Hebbian Learning
mechanism will ensure that the individual cells’ receptive fields
develop to form clusters. As discussed earlier, this poses certain
requirements on the behavior of the learning cell and the neigh-
borhood function. Firstly, it demands that the learning cell should
allow modulation of its feature selectivity under neighborhood
influence. Secondly, it demands for a neighborhood function that

is capable of generating an appropriate signal that can modulate
the development of feature selectivity of a cell in concordance
with other cells in the cluster.

Diffusive-Hebbian learning based on the biological phe-
nomenon of reaction-diffusion has been shown to be effective
in forming clusters of cells with similar feature preference and
has also been used to model Ocular Dominance and Orientation
Selectivity Map Formation (Markan, 1996; Krekelberg, 1997;
Markan and Bhaumik, 1999; Bhaumik and Markan, 2000;
Bhaumik and Mathur, 2003). Biologically, this happens by means
of leaking chemicals coming out of an active cell, that lower
the threshold of the neighboring cells. Reaction-diffusion can be
easily implemented by an RC network as shown in Shi (2009)
and Markan et al. (2013). The development of individual cells
and cells under diffusive interaction varies significantly. If the
cells have different initial biases then in the absence of diffu-
sive coupling they develop into cells with different orientation
preferences. On the other hand, the presence of diffusive cou-
pling causes nearby cells to have a similar voltage (at node
dno) and hence the injection and tunnel feedback that they
receive is also the same. Therefore, if the two cells receive sim-
ilar inputs, they develop to have similar feature preference. The
stronger cell (the cell that generates a higher voltage at node
dno) tends to influence the development of the weaker cells
around it.
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5.1. MODIFICATION OF ORIENTATION TUNING UNDER
NEIGHBORHOOD INFLUENCE

As discussed earlier, for any map formation, diffusive interaction
between cells should happen in such a way that it leads to
formation of clusters of cells having similar feature selectivity.
This is possible if some of the cells change their feature preference
when they are surrounded by strongly biased cells, forming clus-
ters showing gradual variation in orientation selectivity between
clusters. This means that some kind of mechanism needs to be
present that helps the cell in overcoming its initial orientation bias
to develop an orientation preference according to the neighbor-
hood influence. In our orientation cell this is achieved by ensuring
two things. (1). Keeping the time constant of the diffusive RC
network (τDiffusion) much smaller than the time constant of the
orientation cell (τReaction) and (2). Limiting the amount of learn-
ing in each iteration by applying input patterns for a very short
duration (0.02 ms). The first condition ensures that diffusion has
precedence over reaction and the strong neighborhood influence
is able to modify the individual bias of an orientation cell and the
second condition makes sure that the learning in the orientation
cell is at a pace that is suitable for diffusion to influence its devel-
opment i.e., the floating gate voltages are allowed to change by
only a small amount in every iteration. This is required because

once the difference between the floating gate voltages of the two
arms of the ts-WTA becomes large, it cannot be reversed.

It may be noted that the diffusion node (dno) voltage varies
between 5.1 and 5.4 volts as the receptive field develops. After
development, the response of a developed cell to the pattern that it
favors, measured at the diffusion node (dno) is around 5.4 volts.
Interestingly, if we apply 5.4 volts to node dno externally, for a
pattern of our choice, and do this repeatedly, the circuit begins
to develop preference for that orientation instead of its natural
bias. Therefore, the receptive field development of the orientation
selective cell can be modulated externally by applying appropri-
ate voltage at the dno node of the cell for a particular pattern.
This way we force a high response for a pattern of our choice,
which causes the feedback mechanism to reinforce the desired
pattern on to the individual ts-WTA cells in the 9 × 9 receptive
field. It was observed that as the floating gate voltages become
more developed (developed floating gate voltages mean that the
difference between the floating gate voltages of the two synapses
of the individual ts-WTA cells has become large) it becomes diffi-
cult to modulate the orientation preference of the cell. For fully
developed floating gate voltages, i.e., strong orientation prefer-
ence, modulation does not happen at all, and the cells preserve
their original response as expected. Details of how the floating

A

C

B

D

FIGURE 12 | (A) Shows the independent development of receptive fields of
three orientation selective cells with different initial biases and same random
inside epoch order of inputs. (B) Shows the development of the same three
cells with the initial conditions and order of inputs same as (A), but with
diffusive interaction between neighbors. All the cells develop similar feature

preference. (C) Two more example of cells developing independently under
the same random inside epoch order of inputs but different initial biases.
(D) Shows the development of the same cells as (C) under diffusive coupling.
Diffusion causes the cells to develop the same feature preference in each
case.
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gate voltages vary during unlearning and the influence of injec-
tion and tunnel voltages are examined critically in Markan et al.
(2013).

5.2. BUFFER DEVICE FOR DIFFUSIVE COUPLING
When more than one orientation cells are connected with each
other diffusively using resistances at the diffusion node (dno), the
increased current at the node dno tends to undesirably load the
output node or OR cell output (out) (Figures 5, 8). Since the OR
cell output (out) node conveys the self-activation of each cell, this
value should not get altered. In order to avoid this loading effect,
we designed a buffer device (B) that shields the orientation cell
output (activation) from the excessive current coming to the node
dno of each orientation cell from other diffusively coupled cells.
This device ensures that the self-activation (feedforward network)
of the orientation cell driving the voltage at node out can influ-
ence the voltage at node dno, that drives the feedback network,
but node dno cannot influence the voltage at node out directly.
This buffer device is essentially a linear device that inverts the
voltage at the OR cell output (out) twice and feeds it to the dno
node (see Figures 8, 11). This way current only flows in one direc-
tion, i.e., out of OR cell output node and not into it. A typical
design of the buffer device is shown in Figure 11B, however, any
other device performing the same function can be used as well.

5.3. SIMULATION OF DIFFUSIVE INTERACTION BETWEEN CELLS
In order to test if our orientation cell fulfills the premise laid down
for diffusive interaction between cells, we performed multiple
simulations with orientation cells having different initial biases
but similar random inside epoch order of inputs, and we let them

FIGURE 13 | Shows the variation of current in the resistance, Rdiff,

connecting two orientation selective cells. The top boxes show the
evolution of receptive field of orientation cell 1 and the bottom boxes show
the evolution of receptive field of orientation cell 2. The current is high
(∼150 µA) during the learning phase. Once the orientation has been learnt,
or the floating gate voltages have matured, the current reduces and
remains constant thereafter.

develop under two conditions, (1) independently, i.e., without
any diffusive interaction and, (2) with diffusive interaction. As
discussed previously, the voltage at node dno affects the feedback
that regulates the response of the cell. If we connect two orien-
tation cells at the diffusive node (dno) by means of a resistance,
then on receiving similar inputs, the cell with the higher voltage
at node dno, starts to influence the response of the other cell by
making the injection and tunnel feedback mechanisms of both
the cells similar, thus enforcing the same pattern on each of the
cells. By changing the value of the diffusion resistance (by increas-
ing the resistance we reduce diffusion constant and by reducing
its value we increase the diffusion) we can modify the extent of
interaction we want between the cells. Several experiments were
performed with different diffusion constants, different biases and
different inputs. Each time for moderate(300> Rdiff >100 Ohms)
and high values of diffusion constant(100 > Rdiff >0 Ohms), it
was found that the response of the two cells became similar.
To which side the orientation preference tilts is dependent on
which cell has a stronger bias. The simulations were done for two
and three cells connected in a row. Figure 12 shows some of the
interesting results. Irrespective of the way the cells develop inde-
pendently, whether one is ON-Centered and other OFF-Centered,
whether their orientation preferences are totally opposite of each
other i.e., 135◦ and 45◦, with diffusion, they become selective to
the same orientation. It is important to note that the lateral diffu-
sive network and the feedback network are only important as long
as the learning is taking place and the receptive field of the cells
are developing. Once the receptive fields have evolved, the lat-
eral connectivity i.e., RC diffusive network and the cell’s feedback
network become ineffective and the cell work’s in a feed forward
mode where in on applying a set of inputs, the cell responds
according to its developed orientation preference. The power dis-
sipation also varies according to the learning profile of the cell e.g.,
between two orientation cells connected by a 100 ohm resistance,
the current through the diffusive resistor is maximum (∼150 µA)
during learning but reduces drastically (∼10 µA) once the learn-
ing is over (Figure 13). The power can be reduced by shifting the
whole resistance regime of the cell to larger values but keeping the
necessary ratio between (τDiffusion) and (τReaction) intact.

6. RESULTS AND DISCUSSION
Time-staggered or uncorrelated inputs have been shown to be
essential for feature map formation (Stryker and Strickland, 1984;
Weliky and Katz, 1997; Buffeli et al., 2002; Zhang et al., 2002).
The time-staggered Winner Takes All algorithm, based on un-
correlated inputs, has previously been shown to be biologically
more realistic and a mechanism underlying formation of Ocular
Dominance Maps (Markan et al., 2013). This paper introduces
the design of a cortical cell that is built using ts-WTA cells
comprising of ON/OFF Centered synapses forming a three lay-
ered structure similar to the visual sensory system in the brain.
On application of patterns resembling different orientations, the
floating gate dynamics, the diffusive interaction and the feedback
regime act in a way that the cell is able develop orientation selec-
tivity. Repeated simulations show that the orientation selectivity
develops according to two major factors, initial biases(nature) and
the inputs applied(nurture) and that there is an equal likelihood
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of the circuit becoming selective to any of the eight patterns
applied. Embedded in a RC grid, these orientation selective cells
are able to modify their feature preference under strong neigh-
borhood influence to form clusters of cells with similar feature
preference. The cell also responds to periodic patterns and spa-
tial frequency just like experimentally observed cells of the visual
cortex. This is a significant step toward developing neuromorphic
equivalents of biological phenomenon that could have diverse
applications in artificial vision systems.

Diffusive hebbian learning based on reaction-diffusion and
competition for neurotropic factors (Markan, 1996; Markan and
Bhaumik, 1999; Bhaumik and Mathur, 2003), has strong biologi-
cal support as basis to explain local computation and organization
in the brain. It is now well known that the developing cortex
is a generic neural structure that gets compartmentalized for
processing different sensory inputs through an adaptive learn-
ing process. It therefore becomes important to explore the basic
learning paradigms that are active in the brain, which are able to
extract statistically relevant information from the sensory input
space and map it onto the cortex, so that such principles can be
applied in artificial systems. In this sense, the model developed
is very generic and can be applied to inputs from any sensory
modality such as olfaction, gustatory, somatosensory and audi-
tory. Some preliminary work also demonstrates the applicability
of the model to abstract pattern recognition. In the brain no
sensory system works in isolation. Rather, it is a combination
of sensory inputs to different sensory modalities that the brain
responds best to. Eventual integration of features maps, corre-
sponding to different sensory systems, onto a common platform
could act as a database for higher cognitive algorithms to work
on. The work presented in this paper is a small yet significant
step toward the goal of building truly cognitive neuromorphic
systems because it presents a novel approach towards incorpo-
rating adaptability and learning in artificial systems by modeling
the developmental aspects of feature selectivity and feature map
formation in the brain. While reaction diffusion has been able
to address local range, non-axonal interactions in the brain and
explain how cortical feature maps evolve to a large extent, more
recent research has highlighted the role of gap junctions in lateral
information processing in the brain (Hameroff, 2010; Ebner and
Hameroff, 2011; Gupta and Markan, 2013). Experiments have
revealed that sibling neurons connected by gap junctions develop
to have the same feature preference (Li et al., 2012; Mrsic-Flogel
and Bonhoeffer, 2012). Since gap junctions can form networks of
neurons spanning large areas of the cortex, understanding how
they function, could give us new insights into multi-modal infor-
mation processing in the brain. It seems interesting to explore
gap junctions and see how similar behavior can be emulated in
hardware.
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