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INTRODUCTION

Although ultra-high-field fMRI at field strengths of 7T or above provides substantial
gains in BOLD contrast-to-noise ratio, when very high-resolution fMRI is required such
gains are inevitably reduced. The improvement in sensitivity provided by multivariate
analysis techniques, as compared with univariate methods, then becomes especially
welcome. Information mapping approaches are commonly used, such as the searchlight
technique, which take into account the spatially distributed patterns of activation in order
to predict stimulus conditions. However, the popular searchlight decoding technique, in
particular, has been found to be prone to spatial inaccuracies. For instance, the spatial
extent of informative areas is generally exaggerated, and their spatial configuration
is distorted. We propose the combination of a non-parametric and permutation-based
statistical framework with linear classifiers. We term this new combined method
Feature Weight Mapping (FWM). The main goal of the proposed method is to map
the specific contribution of each voxel to the classification decision while including a
correction for the multiple comparisons problem. Next, we compare this new method
to the searchlight approach using a simulation and ultra-high-field 7T experimental data.
We found that the searchlight method led to spatial inaccuracies that are especially
noticeable in high-resolution fMRI data. In contrast, FWWM was more spatially precise,
revealing both informative anatomical structures as well as the direction by which voxels
contribute to the classification. By maximizing the spatial accuracy of ultra-high-field fMRI
results, global multivariate methods provide a substantial improvement for characterizing
structure-function relationships.

Keywords: fMRI, MVPA, searchlight, nonparametric statistics, decoding

resolution is multivariate pattern recognition analysis (MVPA),

The advent of functional magnetic resonance imaging (fMRI)
at ultra-high-field strengths allows an impressively fine-grained
insight into human cortical function. Modern scanners at 7T or
higher allow researchers to resolve functional data at ever finer
spatial scales, even to the point of resolving individual gray matter
layers (Polimeni et al., 2010; Trampel et al., 2011). The bene-
fits of improved resolution are accompanied by new challenges,
however, particularly with regard to data analysis, as it is not
obvious which analysis technique may best take advantage of the
richer data. For instance, classical activation-based approaches
such as the general linear model (Poline and Brett, 2012) generally
rely on spatial smoothing for statistical correction for multi-
ple comparisons, and hence are unable to make appropriate use
of the high resolutions. While a more sophisticated approach
has been proposed (Harrison et al., 2008) this is computation-
ally laborious and does not have face validity in terms of actual
neuroanatomy. A more promising means of exploiting higher

which enables fine-grained components of the brain activity sig-
nal to contribute relevantly (Norman et al., 2006). It is often
desirable to map the spatial location of discriminating patterns,
or in other words, where in the brain information about the
experimental condition is present.

For this, “information mapping” methods, such as the “search-
light” approach are often employed (Kriegeskorte et al., 2006).
The searchlight method attempts to extract the predictive power
of a small neighborhood of voxels (the searchlight) with regards
to the stimulus condition, and maps the result of the anal-
ysis back to the center voxel of the searchlight. Repeating
this procedure over all locations yields an information map
charting the presence and location of information relating to
stimulus condition. It should be noted that the searchlight
method is essentially a local multivariate pattern recognition tech-
nique that fails to take into account globally distributed voxel
patterns.
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Alternatively, global information maps can be computed
without such spatial preselection of voxels using multivariate
classifiers with support for high dimensional data or by using
dimensionality-reduced brain data (e.g., by first performing a
principal component analysis). Appropriate classifiers provide
information on the contribution of individual features (i.e., voxels
or principal components) to the classification decision. Mapping
this influence back onto the voxel space allows generation of a
whole-brain information map (Mourdo-Miranda et al., 2005),
which delineates the discriminative volume.

Previously, the searchlight method has been reviewed critically
on the grounds of interpretability and with regard to spatial inac-
curacies in the searchlight information maps which obscure the
true local information content (Viswanathan et al., 2012; Etzel
et al., 2013). These shortcomings form the greatest concern with
very high spatial resolution fMRI data, such as that obtainable at
ultra-high-field, as they may well negate the gain in higher spa-
tial resolution. In particular, the lower voxel-wise signal-to-noise
ratio at very high resolutions requires larger searchlight diameters
to obtain significant results, exacerbating spatial inaccuracies.

In the present work, we investigate the quality of the search-
light method as a tool for the analysis of ultra-high-field fMRI
data. As an alternative to the searchlight approach, we present
a global multivariate method adapted from previous work
(Mourao-Miranda et al., 2005), which we combine with a non-
parametric solution for the multiple comparison problem (Stelzer
et al.,, 2013). To our knowledge, this is the first implementa-
tion fully accounting for the multiple comparisons problem,
tailored for this widely used multivariate framework for brain
mapping. We compare these two information-mapping methods
as a means for analyzing ultra-high resolution fMRI and sim-
ulated data. Noteworthy, while both methods (searchlight and
global information maps) incorporate different assumptions and
implementations, in research practice the results ultimately are
interpreted in a very similar fashion: Both approaches provide
voxel maps, which delineate voxels containing stimulus-relevant
information.

MATERIALS AND METHODS
1T TAPPING DATA SET
The ultra-high field fMRI study comprised ten healthy subjects
(age range 23-28, right-handed). The study was carried out in
accordance with the ethics approval from the University of Leipzig
and written informed consent was obtained before each study.
One single subject was selected as representative for visualization.
Per experimental condition, we conducted 15 trials (26.4s
each) from four experimental conditions. Trials were presented
subsequently (not randomized) in a block design. The basic task
was self-paced sequential tapping of four fingers of the right hand
to the thumb at a frequency of about 2 Hz. The first experimental
condition was rest (no movement, no imagination, i.e., base-line
condition), followed by the imagined finger movement condition.
The third and fourth conditions were finger tapping (tapping of
four fingers of the right hand to the thumb) and movement of
four fingers as in the previous condition but without thumb con-
tact. Due to limitations in scan time there was no rest period in
between subsequent trials. Performance compliance with this easy

task was confirmed using video monitoring. For the analysis in
our present work, only two conditions were used: Resting (no
task, no hand movement, no motor imagination) and sequen-
tial tapping with four fingers of the right hand to the thumb of
the right hand. (The conditions omitted were: Imagined finger
tapping without actual finger movement and finger movement
without touching the thumb).

The experiment was performed with a MAGNETOM 7T
scanner (Siemens Healthcare, Erlangen, Germany), using a 24-
channel head coil (NOVA Medical Inc., Wilmington MA, USA).
The functional scans contained 17-31 axial slices (depending
on the subject) covering the left motor cortex (TR = 3300 ms,
TE = 25ms, slice thickness 0.75 mm, in plane resolution 0.75 x
0.75mm?2) using a novel acceleration technique (Heidemann
etal., 2012).

Head motion correction was carried out using SPMS8
(Wellcome Department of Imaging Neuroscience, Institute of
Neurology, London, UK). Low frequency drifts were removed
using a temporal high-pass filter (fhighpass = 1/80 s~ with
LIPSIA (Lohmann et al., 2001). Using LIPSIA, a GLM was fitted
to each trial to estimate its B-parameters. We used a gamma-
function as hemodynamic response function (Glover, 1999).
The GLM yielded 15 three-dimensional B-maps per experimen-
tal condition. The pB-parameters were estimated on the z-scored
fMRI time series data (default settings in LIPSIA) and represent
the degree of fit between the trial data and the model.

DATA GENERATION FOR SIMULATION
A simulated data set of 30 scans (15 each for class A and B) of one
“virtual” subject was generated. Each volume (size 66 x 22 x 22
voxels) was filled with Gaussian noise [~ N(0, 1)] and smoothed
slightly with a Gaussian smoothing kernel (FWHM = 1 voxel).
An offset size of 0.5 was added at six locations (three in class A
and B, respectively), shaping six half-cubes positioned above and
below the centerline of the volume (Figure 3A). Upper half-cubes
were class A, lower half-cubes were class B.

The size of the half-cubes varied. The leftmost half-cube had
a dimension of 6 x 6 x 1 voxels (fine information spread), the
second one had a dimension of 6 X 6 x 2 voxels (medium infor-
mation spread) and the rightmost half-cube 6 x 6 x 3 voxels
(coarse information spread). There was a 4-voxel gap between the
leftmost, a 2-voxel gap between the middle, and no gap between
the two rightmost half-cubes (see Figure 3A).

SEARCHLIGHT DECODING

Each voxel of the brain was first scaled to the range [—1, +1].
Around every voxel (center voxel), we constructed a spherical
searchlight that contained every neighbor voxel within a given
radius r (Kriegeskorte et al., 2006; Stelzer et al., 2013). For every
searchlight, we trained and cross-validated (“leave 2 out” method)
a linear support vector machine (Chang and Lin, 2011). The
center voxel was then associated with the mean cross-validation
accuracy (i.e., the percentage of correctly predicted labels) and
later used for brain visualization.

FEATURE WEIGHT MAPPING
In FWM, the whole brain data was first reduced in dimensional-
ity with PCA [dim = df = #samples-1 = 29 (Abdi and Williams,
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2010)]. The PCA procedure obtained a new representation X*
of the data matrix X by orthogonally transforming the columns
(features) of X into linearly uncorrelated components (principal
components). The principal components were sorted in decreasing
order by the variance they explain in the data (Abdi and Williams,
2010). The maximal number of principal components was the
maximum of the number of observations and features (more
precisely the rank of X, dim = 30). In our data sets, the last com-
ponent contained no substantial variance and was left out. Hence
we always employed every PCA component with the exception of
the last one, corresponding to the number of maximal degrees
of freedom from the matrix decomposition. The PCA projec-
tion was calculated by performing a singular value decomposition
of X.

The resulting features were scaled to be within the range
[—1, +1]. Alinear support vector machine was then trained using
the entire data set (Chang and Lin, 2011), without the applica-
tion of further cross-validation procedures. Linear support vector
machines divide data samples into their classes by constructing a
maximally separating hyperplane between the high-dimensional
data points. The hyperplane is established by a set of points
X and the normal vector W to the hyperplane in the formula
W - X — b= 0. The optimal vector w is calculated by minimiz-
ing ||7v)” in the formula y; - (w; - x; — b) > 1 with i €{1, ..,n}
and x; being the sample vectors from X*. The values w; are the
weights given to each feature dimension, (i.e., the principal com-
ponents), and signify the importance of the component in making
the classification decision. We transform the weights of principal
components back to weights of individual voxels by reversing the
PCA transformation. Note that this procedure solely resulted in
weights and not in decoding accuracies.

NON-PARAMETRIC STATISTICS

We employed permutation tests for assessing statistical signifi-
cance (Golland et al., 2005; Mourao-Miranda et al., 2005; Stelzer
et al., 2013). No spatial smoothing was applied, however due to
interpolations (motion correction etc.) and the biophysical prop-
erties of the BOLD signal, a certain level of intrinsic smoothness
was present in the data. Permutation tests were carried out by ran-
domly shuffling the order of samples within a data set. For SLD,
permutations were assigned before splitting the data into train-
ing or test sets to ensure no bias due to uneven class distribution.
Each permutation was held fixed for all locations of the search-
light, preserving spatial correlations. For FWM, permutations
were assigned on the principal component level.

For each permutation, an accuracy map (SLD) or weights
map (FWM) was computed (cf. two previous sections). The
empirical p-value of each voxel was then the probability of
the original accuracy/weight of this voxel in the empirical
distribution function given all permutations.

Using the per-voxel p-value as a threshold map, we binarized
the original and permuted accuracy or weight-maps. For SLD,
we employed a one-sided (lower than p-value) statistic, for FWM
we employed a two-sided [lower than p/2 or higher than (1-p/2)]
statistic.

Counting the cluster sizes (six connectivity scheme) in the per-
muted binarized maps, we calculated an empirical distribution

function (edf) of cluster sizes. Using this edf, we calculated the
probability of each cluster in the original binarized maps. In the
case of FWM, positive and negative clusters were recovered sepa-
rately. The final assessment of cluster p-values was corrected with
FDR (Benjamini, 1999; using a cluster p-value of 0.05).

ANALYSIS OF SIMULATION DATA

The analysis was carried out with and without multiple compar-
ison correction. Without multiple comparisons correction, only
p-value maps were binarized and no further cluster statistics were
computed. The remaining voxels were deemed significant.

With multiple comparison correction, the entire cluster-based
analysis (including the empirical cluster-size distribution derived
from permuted binarized maps) was repeated for different levels
of voxel-wise p-value thresholds. Voxels in the remaining clusters
were deemed significant.

Precision is defined as the proportion of true positives and all
positives:

. true positives
Precision =

true positives + false positives

Sensitivity is defined as the proportion of voxels in informative
regions that were discovered significant:

true positives

Sensitivity = — -
true positives + false negatives

RESULTS

7T DATA SET

The ultra-high resolution 7T finger tapping experiment was
analyzed using both the Feature Weight Mapping (FWM) and
Searchlight Decoding (SLD) method on a single-subject level.
Three axial slices of the results for the analysis are shown in
Figures 1A,B respectively using two different thresholds (the
appropriate threshold for the respective method was chosen based
on simulations in the next section). The searchlight radius was set
to 3mm.

The SLD method found the hand knob part of the motor
cortex to be significantly discriminative regarding the stimulus
condition (resting vs. finger tapping). Similarly, this region was
also labeled as discriminative using the FWM method.

Furthermore, while the SLD method identified the existence
and degree of discriminative value of voxels, the FWM method
also revealed the particular class toward which the voxel influ-
enced the classification decision. As shown in Figure 1B, regions
that discriminate toward resting state (blue) and toward tapping
state (yellow/red) are distinguishable. Effectively, FWM revealed
a finer delineation of smaller cortical structures than SLD. The
FWM method identifies additional regions in the parietal and
frontal cortex as discriminative, while in contrast these regions
remain undetected with the SLD method. Furthermore, the FWM
method specifically identifies the cortical sheet, while the SLD
method labels spatially more extended regions reaching deeper
than the cortex, and thus including some white matter.

The spatial precision of the SLD method critically depends
on the chosen searchlight radius. Larger searchlight radii return
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A  SLD nonparametric
7T fMRI

decoding accuracy
0.75 —— 1.0

FWM nonparametric
7T fMRI

FIGURE 1 | Results of the high resolution 7T finger tapping data
set, classifying resting vs. finger tapping with touch. The
non-parametric framework (including multiple comparison correction) had
been applied to the searchlight decoding (SLD) and feature weight
mapping (FWM) methods. (A) SLD method (diameter = 3.75mm) with
a voxel-wise threshold of pox = 0.001 (one-sided). (B) FWM method,
using a (two-sided) threshold of pox = 0.05.

accuracy maps where a substantially larger volume is labeled as
informative. We depicted three searchlight radii (3, 5, and 7 mil-
limeter) in Figure 2 and contrasted the results with our proposed
FWM method. As the two largest searchlight radii failed to reach
significance when including multiple comparisons correction, we
only show uncorrected accuracy and weight maps. Furthermore,
for illustrating the degree of voxels labeled informative within
white matter, we applied a gray matter mask: the accuracy or
weight of voxels within white matter is displayed in false colors
(by shifting the color hue by 180°). We found that for the larger
searchlight radii in Figures 2B,C, a substantial number of white
matter voxels is indicated with the highest accuracies. In con-
trast, most highly weighted voxels of the FWM method are found
within gray matter.

B SLD r=5mm
7T fMRI

A SLD r=3mm

FIGURE 2 | Results of the high resolution 7T finger tapping data set
without multiple comparisons correction, using three searchlight
radii and the feature weight mapping method. \White matter voxels are
displayed in false colors (by shifting the color hue by 180°). Hence the
blue tones indicate false positivity. Dark blue tones indicate high decoding
accuracies or high feature weights. (A) SLD with a radius of 3mm.
Already at this radius, substantial false positivity is visible on the surface
of the cortex on the right side. On the left side, out-of-plane false
positivity is visible, as searchlights centered in the selected slice pick up
information from the slices below or above. (B) SLD with a radius of
5mm. The levels of false positivity have increased throughout the entire
volume. (C) With a radius of 7mm, the SLD method results in
substantially inaccurate depictions of true information content. (D) Feature
weight mapping, to enhance the clarity of the representation only the
absolute value of the weights is considered here. The highest (absolute)
weights are found within gray matter, while the weights found in white
matter are on a low level.

SIMULATED DATA
Using simulations, we aimed to target how SLD and FWM meth-
ods specifically depend on the underlying spatial distribution of
information. In total, we created three different levels of coarse-
ness by structuring information in a specific geometry. The
searchlight radius was set to three voxels.

The information distribution is depicted in Figure 3A, the vio-
let areas represent informative regions of condition A, while the
blue areas represent informative regions of condition B.

Qualitative comparison of FWM and SLD
Figure 3 depicts the results of applying SLD and FWM on the
prepared simulation data.

The SLD method labels most informative regions as
significant, while also labeling a considerable number of voxels
outside the informative regions significant (Figure 3B).

The tendency for false-positive labeling was especially promi-
nent in the fine and medium distributions, depicted in the left and
middle pictures of Figure 3B. Here, the SLD method appeared to
overestimate the local information content.

In contrast, the FWM method delineated the informative
regions with a high precision (see Figure 3C), and did not label
voxels outside of the informative regions as discriminative. The
number of true positives, however, was smaller compared to
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fme

SLD nonparametric test
voxel-wise threshold 0.001

C
FWM nonparametric test
voxel-wise threshold 0.05

FIGURE 3 | Analysis of the data simulation (A) Distribution of
information, the three violet half-cubes contained class information for
condition A, the three blue half-cubes contained class information for
class B. In total, three distinct levels of geometry of information
distribution were simulated, the leftmost half-cubes represented a fine
information spread, the middle ones an intermediate level and the
rightmost half-cubes a coarse information spread. (B) Results of SLD

m deCOdmg -
1.0
-0.05 m——— (.0

medlum coarse

classmer weight

method corrected with the non-parametric framework (including multiple
comparison correction), using a voxel-wise threshold of pyox = 0.001
(one-sided). (C) Results of FWM method corrected with the
non-parametric framework (including multiple comparison correction) using
a voxel-wise threshold of pyox = 0.05 (two-sided). The blue-green colors
represent influence toward class B, the red colors for influence toward
class A.

the SLD method, as not all informative voxels were declared
discriminative here.

Precision and sensitivity

We assessed the statistical performance of the SLD and FWM
method by calculating precision and sensitivity curves for each
of the three coarseness levels separately. The analysis was carried
out with and without application of the multiple comparisons
correction.

The three coarseness simulations are depicted separately in
Figure 4A (fine information spread), Figure 4B (intermediate)
and Figure 4C (coarse information spread). The left charts in
Figure 4 depict the analysis without multiple comparison correc-
tion while the right charts depict the analysis including multiple
comparisons correction.

In the case of the uncorrected charts (left) and for both
methods, the sensitivity increased for less stringent (i.e., higher)
p-values, while the precision declined. For fine and intermediate
information spread the FWM method had a higher precision for
any given level of sensitivity. Only in the case of coarse informa-
tion spread and low thresholds (corresponding to high sensitivity)
did the SLD method yield a higher precision.

For any given p-value threshold, the FWM method and SLD
method showed vastly different sensitivity and precision values.
While the FWM method performed very well (i.e., high sensitivity
and precision) for relatively high p-values (e.g., pyox = 0.05), the
SLD method performed better in the regime of low p-values
(e.g., pvox = 0.001). This difference in optimal choices for p-value
thresholds was the motivation for the parameters used for the
voxel-wise threshold for the fMRI data.

When including the multiple comparison correction, the
precision increased substantially for FWM, achieving almost
100% for most cases. Conversely, this precision gain was not
found with SLD (right charts of Figure4. At the same time,
FWM never achieved higher than 90% sensitivity, while SLD

achieved up to 100% sensitivity, but at considerable loss of pre-
cision, in particular for the fine and intermediate information
spreads.

DISCUSSION

Multivariate analysis techniques are commonly regarded as
promising candidates for analyzing ultra-high-resolution data
acquired with fMRI. In our study we compared two types of
multivariate information mapping techniques; the SLD method
and our newly proposed FWM method. Both methods (SLD
and FWM) aim to determine the local information content in
the brain responses elicited by different experimental conditions
(hence often termed “information mapping”) and use the same
underlying non-parametric framework for statistical analysis,
thus both methods are fully comparable.

Using ultra-high-field fMRI data and simulations, we found
that our new proposed method (FWM) achieves a consider-
ably higher spatial specificity, (that is to say, a higher accuracy
in localization and geometry of information) as compared to
SLD. We additionally observed that the results of the searchlight
approach were systematically inflated and inaccurate. Notably,
SLD mapped information to non-surface cortex regions con-
sisting of white matter. FWM, on the other hand, specifi-
cally mapped out the cortical surface. As increasing higher
resolution fMRI data become the basis for brain mapping stud-
ies, this methodological attention to anatomical specificity is a
necessity.

In the following we discuss the peculiarities and differences of
both information mapping methods in detail.

SEARCHLIGHT DECODING

Given that activity-based information in the BOLD fMRI sig-
nal is known to be distributed in quite specific types of loca-
tion in the brain (i.e., within the cortex, small pial veins and
subcortical gray matter locations), it should not be surprising that
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FIGURE 4 | Precision-sensitivity curves for the three different levels of
information distribution of the data simulation. The red dots represent
the FWM method, and the blue dots the SLD method. (A) Precision-
Sensitivity for a fine information spread. The left chart is based on
uncorrected voxel p-values (derived from the permutation distribution), the
right chart depicts results for the full non-parametric multiple comparison
correction (B) Precision-Sensitivity for an intermediate distribution of
information. The left and right charts are as above. (C) Precision-Sensitivity
curve for a coarse information spread. The left and right charts are as above.

searchlight information maps may be spatially exaggerated and
distorted.

Let us consider for example an image containing no signal
except one center voxel containing a large amount of class infor-
mation. The resulting searchlight information map (depicted in
Figures 5A,B) will label every searchlight location which con-
tains this center voxel as “informative,” effectively grossly inflating
the actual informative regions—thus giving many false positive
attributions. In a recent study, this effect has been termed a “nee-
dle in the haystack effect” (Viswanathan et al., 2012). Another

>
m
(¢}

FIGURE 5 | Schematic illustration of the searchlight induced inflations
and spatial inaccuracies. (A) Searchlight shape (down-projection to 2D)
with a 5-voxel diameter. The violet shaded voxels are located within the
searchlight. (B) No voxels carry class information, except the center voxel
featuring the green sphere labeled with the letter “i”: this voxel is the sole
voxel carrying class information. As a result of the SLD procedure using
searchlight decoding (A), many voxels are being labeled as informative
(these voxels are depicted in orange). The inflating effect has previously
been termed as “needle in the haystack effect” (Viswanathan et al., 2012).
(C) Here, no voxels except the two voxels with the green sphere labeled
with “i"” carry class information. The information carried by one voxel,
however, is sufficiently small so that a searchlight has to include both
informative voxels in order to be labeled significant. Hence only the voxels
in the middle, where the searchlight contains both informative voxels, are
labeled informative, resulting in inaccurate and distorted information maps.

effect can also be considered in an image containing only two
low-informative voxels. The direct area around each voxel will
be mapped uninformative by the searchlight approach, and will
thus appear as false negative, while those searchlights that con-
tain both informative voxels will be labeled informative (depicted
in Figure 5C). Thus a distorted picture of the geometry of infor-
mation is provided by SLD. Appropriately, this effect had been
given the name “haystack in the needle” (Viswanathan et al.,
2012).

It is easy to see that the latter effect depends on the search-
light diameter, as the number of informative voxels monotonically
depends on the diameter of the searchlight. However, the effect
also depends on the distribution of information and overall
geometry. Lastly, the (multivariate) signal to noise ratio presum-
ably also plays an important role.

Because one main benefit of ultra-high-field fMRI is that it
allows the study of activations at fine spatial scales (and so help to
establish structure-function relationships), it thus appears ques-
tionable whether the searchlight is the optimal method of choice
(Kriegeskorte and Bandettini, 2007).

The results of our case study and simulations fully supported
the above considerations with regard to exaggeration of spatial
extent and other spatial inaccuracies. The searchlight method
indeed yielded inflated estimates of information distribution
in both the simulated and ultra-high-field fMRI data set. SLD
labeled a high fraction of voxels as informative outside gray
matter areas, obscuring the actual distribution of information
in the cortex (Figure2A). This issue becomes especially pre-
dominant for larger searchlight radii, such as five and seven
millimeters (Figures 2B,C). It should be noted that searchlights
of such dimensions are common practice, or even exceeding
seven millimeters (Soon et al., 2008; Stelzer et al., 2013). The
simulations reflected the same spatial inaccuracies of the search-
light method as found previously in our fMRI data. In here,
we were able to modify the underlying spatial geometry of the
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true information distribution. We found that the spatial inac-
curacies of the resulting information maps were especially vis-
ible in areas of information distributed on small spatial scales
(Figure 3B).

The effect was especially pronounced in cases where adja-
cent informative regions were separated by a small uninformative
layer (middle column of Figure 3B). Here, the searchlight method
labeled the uninformative border region as highly informative.

The issue of exaggeration of spatial extent (“inflation”) may be
mitigated by limiting the searchlight only to gray matter voxels
or even directly applying it on the cortical surface (Chen et al,,
2011). However, for the surface-based methods, inflation is only
reduced in one of three spatial dimensions; while the spatial accu-
racy in the direction normal to the cortical surface is improved,
the two in-plane dimensions (along the cortical sheet) remain
inflated and distorted.

Another issue that needs to be addressed is the claim that the
searchlight method is only sensitive to local patterns, because
it analyzes only a small neighborhood of voxels at a time. The
searchlight method is often considered advantageous when it
comes to fine-grained local representations, where the infor-
mation is contained in a small region including only few
voxels. While this argument may hold for a single search-
light location in isolation, the argument does not necessarily
carry over to a searchlight map consisting of many search-
light locations. Due to the inflationary nature of the search-
light’s information maps, small informative regions will be
contained in many searchlight locations. Ultimately, the rep-
resentation of the information content is hence inflated to a
degree where small representations either fall under the statisti-
cal threshold (when including a whole-brain correction) or are
grossly overestimated in their spatial extent (see Figures1, 4).
Furthermore, the intrinsic “smoothing” effect of the search-
light method may be severely exacerbated by the inclusion of
spatial smoothing as a post-processing step (e.g., group-level
comparisons).

From a conceptual point of view it can be argued that the
searchlight’s exclusive sensitivity to local patterns may provoke an
unrealistic impression of brain function, given that the brain is
a large and massively interconnected network. It is most likely
that the fingerprint of distinct brain states does not solely exist
at small spatial scales. Instead, the brain processes information
on larger spatial dimensions across wide-spread networks. For
instance, remote brain areas have been observed to jointly exhibit
patterns of activation governed by long-range neural communica-
tion (e.g., Laughlin, 2003). Evidently, such large-scale interactions
cannot be captured by the searchlight method. Although some-
times a strictly local investigation at small spatial scales is desired,
for example in (Diedrichsen et al., 2013), it is not clear that
the searchlight method is even suitable for such studies, given
its potential for false positive and false negative attributions of
informative voxels.

FEATURE WEIGHT MAPPING

The FWM method is a global multivariate information mapping
technique based on dimensionality reduction, which comprises a
support vector machine classifier and subsequent non-parametric

statistical analysis. Ultimately this allows computation of fea-
ture importance and includes multiple comparison correction.
The FWM method is tailored for the analysis of extremely high-
dimensional data such as that produced by high-field fMRI while
yielding spatially precise information maps.

We found that FWM consistently yielded fine-structured
information maps. In 7T fMRI data FWM revealed informative
regions precisely within the thickness of the cortex. Compared
to SLD, FWM labeled uninformative regions (e.g., within white
matter) much less often as significant.

In simulations, it delineated the informative regions precisely.
Precision and sensitivity curves were generally better for FWM
than for SLD, when the spatial distribution of information was
within the fine and intermediate information spread range. For
any given value of sensitivity (detected informative volume),
FWM was more precise than SLD (less false positivity). In the
simulations, FWM never reached the highest sensitivity levels
(>90%), which were accompanied by an extreme loss in spatial
precision in the SLD method.

Another advantage of FWM over SLD is the sign of the
mapping, which reveals the particular class to which the voxel
influences the classifier. For instance, if a voxel activates con-
sistently when in class A but does not activate when in class
B, the resulting weight component would be positive. On the
other hand, if the voxel activates consistently when in class A but
does not activate when in class B, the weight component would
be determined negative. Hence, the individual weight mapping
reveals how the corresponding voxel influences the classification
decision depending on the level of activation found in the fea-
ture. In an area with positive weights, a high activity level would
influence the classifier to decide on class A, while a low level of
activity would indicate class B. For negative weights, an analogous
argument can be made: Here a high level of activity would influ-
ence the classifier to decide on class B and a low level of activity
would indicate class A. In contrast, the SLD method is unable to
deliver such information about the direction of influence for any
given features, as it only determines whether class information is
present or not.

In contrast to SLD, FWM is a truly global multivariate
approach, that is, it considers all voxels simultaneously. Since the
classification has to be computed only once on a relatively small
data set (for each permutation), the computational resources nec-
essary for the non-parametric statistical framework are drastically
lower compared to those needed for SLD. Depending on the size
of the data set in terms of voxels (resolution) and experimental
trials, we found that the computation of the permutations in the
FWM method was between 5,000 and 30,000 times faster than the
SLD method.

Because the potential for Type I and Type II errors is vastly
reduced, the interpretability of FWM-generated information
maps is much improved as compared with SLD. With FWM, the
influence attributed to a given voxel is solely its influence on the
classification of that particular voxel.

Contrastingly, in the SLD method the accuracy at a voxel char-
acterizes the aggregate decodability of a neighborhood of voxels
around it. In other words, for the SLD analysis technique, voxels
with high accuracies are not necessarily informative themselves;
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the informative voxels may be located elsewhere in the voxel’s
neighborhood. This aspect is problematic, as this important dis-
tinction is commonly ignored in neuroscience research where
searchlight-based analysis is employed (Etzel et al., 2012).

Until now, to our knowledge no method information-
mapping method based on multivariate statistic and adapted
to ultra-high-field fMRI including a correction for the multi-
ple comparisons problem has been made available to researchers
as part of an easy-to-use software package. The proposed FWM
method will be made available as part of LIPSIA (Lohmann et al.,
2001) for free use.
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