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1. INTRODUCTION

In psychology and neuroscience, and
in other disciplines studying decision-
making mechanisms, it is often assumed
that optimal decision-making means
statistical optimality. This is attractive
because statistically optimal decision
procedures are known, can be simply
implemented in biologically-plausible
models, and Dbecause such models
have been shown to give good fits to
behavioural as well as neural data. Here
we question when statistical optimality is
the kind of optimality we should expect
natural selection to aim towards, by con-
sidering what kinds of loss function should
be optimised under different behavioural
scenarios. In laboratory settings subjects
are often rewarded only on making a cor-
rect choice, so optimisation of a zero-one
loss function is appropriate, and this is
achieved by implementing a statistically-
optimal decision procedure that gives
the best compromise between speed and
accuracy of decision-making. Many nat-
uralistic decisions may also be described
by such a loss function; however others,
such as selecting food items of potentially
different value, appear to be different since
the animal is rewarded by the value of the
item it chooses regardless of whether it
was the best available. We argue that most
naturalistic decisions are value-based.
Mechanisms that optimise speed-accuracy
trade-offs need to be parameterised, using
information about the decision problem,
in order to deal with value-based decision-
making. Mechanisms for value-sensitive
decision-making have been described,

however, which adaptively change between
decision-making strategies without the
need for continual re-parameterisation.

2. SPEED-ACCURACY TRADE-OFFS

It is usually assumed that decision-makers
have to decide to be either fast or accu-
rate. When speed is important mistakes
are more frequent, while when accu-
racy is needed decisions are slower. This
obvious problem is defined as the speed-
accuracy trade-off and is a distinctive fea-
ture of many types of decision making
(Wickelgren, 1977).

The speed-accuracy trade-off can be
explained within the theoretical frame-
work of sequential sampling models of
decision making that have been shown
to fit behavioral and neural data from
human and animal choice tasks (Ratcliff
and Rouder, 2000; Ratcliff et al., 2003,
2004; Ratcliff and Smith, 2004; Busemeyer
et al, 2013). In particular, the Drift
Diffusion Model (DDM; Ratcliff, 1978)
describes choice between two alternatives
(see Smith and Ratcliff, 2004; Bogacz
et al., 2006; Basten et al, 2010) and
recently has been shown also to be quan-
titatively accurate in describing trinary
choices (Krajbich and Rangel, 2011) and
value-based choices (Krajbich et al., 2010;
Milosavljevic et al., 2010; Krajbich and
Rangel, 2011; Krajbich et al., 2012), sug-
gesting that the DDM can be thought of as
a unifying computational framework for
describing decision making (Basten et al.,
2010). Moreover, Bogacz et al. (2006) have
demonstrated that several connectionist
decision-making models can approximate

the DDM under specific conditions. The
DDM is a special case of the statistically-
optimal Sequential Probability Ratio Test
(SPRT; Wald, 1947; Wald and Wolfowitz,
1948). In the DDM noisy sensory evi-
dence supporting the alternatives is inte-
grated over time until the net evidence
in favor of one alternative exceeds a cer-
tain positive or negative threshold value,
precipitating a decision for the corre-
sponding alternative. These thresholds
can be varied to compromise optimally
between the average speed and accuracy of
decisions.

3. SPEED-VALUE TRADE-OFFS

In situations where decisions are rewarded
according to whether they are correct
or not, optimizing the speed-accuracy
trade-off is sensible. When decisions are
rewarded according to the value of the
option chosen, however, a different crite-
rion needs to be optimized. This can be
illustrated with the simplest case of choos-
ing between two equal value options; here
there is no decision accuracy, since choos-
ing either option is “correct.” Similarly,
there is no difference in average evidence
for which of the two options is more valu-
able, meaning that the SPRT/DDM will
only reach a decision by integrating suffi-
cient noise to cross a decision threshold.
Thus in this scenario there is no speed-
accuracy trade-off to manage; the optimal
decision is to choose anything as quickly as
possible. The fundamental insight is that
for certain decisions, speed-value trade-
offs are more appropriate to optimize,
rather than speed-accuracy trade-offs.
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The SPRT/DDM can be optimized to
take account of the value of the alterna-
tives but, as we discuss here, doing so
requires knowledge of the decision prob-
lem faced. The thresholds for an optimal
decision depend on the goals of the deci-
sion maker and are task specific. By way
of example, one route to accounting for
the values associated with different deci-
sion outcomes is to minimize an extended
version of the Bayes Risk (BR). BR is
a linear combination of expected deci-
sion delay and expected terminal decision
loss, first proposed by Wald and Wolfowitz
(1948), and assumes that decision mak-
ers seek to minimize a cost function that
is the weighted sum of decision times
(DTs) and error rate (ERs). This was sub-
sequently extended by Edwards to also
account for non-zero rewards for incorrect
decisions (Edwards, 1965; Bogacz et al.,
2006). Formally Edwards’ extension of BR,
which implements Wald and Wolfowitz’s
version as a special case, can be defined as

ER
BRE:ClDT+C2(1—ER> (1)

where ¢; is the cost of observing the stim-
ulus per unit time, while ¢, is a row-vector
specifying the payoffs from incorrect and
correct choices (Bogacz et al., 2006). If
¢ = (k 0), where k> 0 is a constant,
then Wald and Wolfowitz’s original BR
is recovered. Several studies demonstrate
that, under specific circumstances, sub-
jects choose decision thresholds close to
those that minimize BRg (Busemeyer and
Rapoport, 1988; Mozer et al., 2002).
Bayes risk is not the only criterion pro-
posed to date that decision-makers might
optimize. Bogacz et al. survey alterna-
tives, such as reward-rate, however, these
alternatives are all calculated based on
decision-accuracy, which requires explicit
parameterizations based on the values
of correct and incorrect choices (Bogacz
et al., 2006). We therefore concentrate our
analysis on Bayes risk. Bayes risk can be
used to optimize value-sensitive decision-
making; for example in a decision between
two equal alternatives, each having value
v if chosen, we would set the vector ¢; =
(v v) (e.g., dashed green line in Figure 1),
thus simplifying Equation (1) above to

BRg = ¢\DT +v. (2)
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FIGURE 1 | The accuracy-based component of Bayes Risk (BRg as defined by Equation 1) can
be used to approximate a value-based reward scheme. In value-based decisions individuals are
rewarded according to the value |v| + Av of the option they choose (solid lines), where |v| is the
average value of the alternatives under consideration, and Av is the deviation from this average of
the value of the option chosen by the subject. With knowledge of the values of the alternatives,
BRE can be used to optimize value sensitive decision-making as described in the main text; for
example the dashed lines show payoffs used in BRg for: options having values of 0.5 and 1.5 units
(black), options having equal values of 2.5 and 2.5 units (green) and options having values of 3.5 and
4.5 units (red). Intersections between payoffs selected for BRg (dashed lines) with value-based
reward (solid lines of matching colors) correspond to choice scenarios between different-valued
options for which BRg implements reward-by-value of the selected option; these intersections
represent choice scenarios involving “poor” (hollow circles) and “good” (filled circles) options
having particular values. However, the cost parameters for BRr need to be recalculated according
to the values of the options under consideration; for example, although the difference in the values
of the alternatives does not change from the low-value (black) to the high-value (red) scenarios,
since their absolute values change the BRg payoffs need to be recalculated in each case. As
described in the text, value-sensitive decision-mechanisms have been described that are able
adaptively to deal with a variety of such decision scenarios, without re-parameterizations.

05 10

Equation (2) shows us that, intuitively,
an optimal decision-maker in our equal-
alternatives scenario should minimize
decision-time DT, since doing so incurs
no penalty as the error rate ER no longer
features. However, using Bayes risk in this
way requires the values of the alterna-
tives to be known on a case by case basis,
as shown in Figurel. Subjects might
learn the values of incorrect and cor-
rect choices over time, for example when
trials are blocked in psychophysical exper-
iments (see Bogacz et al., 2006). However,
in the following we argue that in most
naturalistic decision scenarios decision-
makers will not have this opportunity,
and will therefore use other mechanisms
that directly optimize speed-value trade-
offs, rather than optimizing decisions
indirectly via optimization of the speed-
accuracy trade-off with an appropriate
payoff vector c,.

4. NATURALISTIC DECISIONS ARE
USUALLY VALUE-BASED

We argue that most naturalistic decisions

faced by animals, including humans, are

value-based, in that the animal is rewarded

according to the value of the option it
chooses. Such a view on decision-making
is not new to behavioral ecologists, where
a long tradition exists of studying behav-
iors such as mate choice and foraging
(Davies et al.,, 2012) or nest-site selec-
tion (Stroeymeyt et al., 2014). Recently
many studies have focused on how value
and reward are represented and inte-
grated during the decision process (Platt
and Glimcher, 1999; Sugrue et al., 2004;
Padoa-Schioppa and Assad, 2006; Rangel
et al.,, 2008; Kable and Glimcher, 2009;
Krajbich et al., 2010; Philiastides et al.,
2010; Hare et al, 2011; Krajbich and
Rangel, 2011; Louie and Glimcher, 2012;
Tsetsos et al., 2012; Cassey et al., 2013;
Towal et al., 2013); however, in psychology
and neuroscience, experiments are usually
designed such that there is always a cor-
rect choice, and only correct choices are
rewarded (see Gold and Shadlen, 2003;
Bogacz et al., 2006). While studying behav-
ior in psychophysical tasks is beneficial
in that it gives a well-controlled deci-
sion environment, our point is that only
rewarding subjects when they make cor-
rect choices may not correspond to the
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kind of decisions animals, and their neu-
ral circuitry, have typically evolved to deal
with. Even in the value-based decision
experiments cited above, which are ana-
lyzed using the DDM, it is typical to only
present subjects with a choice between
options known to have different values.
Moreover, even though some studies have
looked at how reward information is inte-
grated (Rorie et al., 2010; Gao et al., 2011),
much of this work has not yet focused
on the tradeoff between value and speed.
While usually in the decision-making liter-
ature the optimal behavior is to optimize
speed-accuracy trade-offs, and subjects
can apparently do this (Busemeyer and
Rapoport, 1988; Bogacz et al., 2006), we
argue that these scenarios are not repre-
sentative of many naturalistic settings, and
that there is great value in considering
how subjects make value-sensitive deci-
sions and how these should be optimized.
In the following section we discuss theory
that may be useful for this.

At least one important class of natural-
istic decisions does require optimization
of speed-accuracy trade-offs; these are life-
or-death decisions. If we analyze for exam-
ple the case of an animal attempting to
forage while avoiding predators (Trimmer
et al., 2008), a slow-but-accurate decision
would mean being killed by the preda-
tor, a maximal loss. On the other hand
if the decision is fast-but-inaccurate the
animal would escape even when the stim-
ulus is not a predator, and this would
mean losing food. The best strategy for
the animal is thus that which optimizes
the speed-accuracy trade-off, taking into
account the payoffs arising from the dif-
ferent decision outcomes; hence Trimmer
et al’s hypothetical animal is modeled with
a single-threshold DDM, with evidence
sufficient to cross that single decision
threshold leading to the animal taking
anti-predator action such as running away.

5. MECHANISMS FOR VALUE-
SENSITIVE DECISION-MAKING

Recent modeling work inspired by
studying another value-sensitive decision-
making system, collective nest-site
selection by honeybees (Seeley et al,
2012), has described a very simple mech-
anism able to adaptively account for the
value of different decision outcomes, with
minimal parameter tuning (Pais et al.,

2013). This simple model implements a
variety of sophisticated decision-making
strategies; for example, when equal but
low-value alternatives are presented, a
decision deadlock is maintained that can
be broken should a third, higher-value
alternative, be made available. However, if
equal-but-high-value alternatives are pre-
sented, or sufficient time passes, deadlock
is spontaneously and randomly broken
(Pais etal., 2013). This is particularly inter-
esting, since the classic DDM is insensitive
to the absolute value of the alternatives
under consideration, and only integrates
the difference in their values. When dif-
ferences between alternative values are
sufficient, the value-sensitive mechanism
of Pais et al. becomes closer to a classic
DDM, allowing speed-accuracy trade-offs
to be managed, although not optimized,
through modification of decision thresh-
olds. All of the different behavioral
regimes of the model arise without direct
parameterizations regarding alternatives’
values, simply through the dependence
of the model’s dynamics on the mean
values of inputs to its integrator popula-
tions; this allows the model to adaptively
respond to different decision scenarios
on a trial-by-trial basis, which cannot be
achieved in pure DDM models without the
decision-maker having access to explicit
information on the decision-task at hand.
Modifications to DDM-type models have
been proposed to deal with trial-by-trial
variability such as online estimation of
task parameters (Deneve, 2012) or the use
of time-dependent change in parameters
such as decision-thresholds, urgency sig-
nals or asymmetry of inhibition (Ditterich,
2006; Hanks et al., 2011; Drugowitsch
et al., 2012; Thura et al., 2012); funda-
mentally, however, these modifications are
still interpreted under the assumption that
decision speed vs accuracy is the trade-
off to be maximized, unlike the model of
Pais et al. (2013) in which the dynam-
ics are naturally interpreted in terms of
value vs time trade-offs. Pais et al’s mech-
anism also exhibits other characteristics
of natural value-discrimination systems,
such as Weber’s law of just-noticeable dif-
ference; interestingly Weber’s law arises
from the deterministic dynamics of the
mechanism rather than from noise pro-
cesses (Pais et al., 2013) (cf. Deco and
Rolls, 2006; Deco et al., 2007). Finally,

it is important to note that the DDM
cannot account for the non-linearity
that characterizes many decision mak-
ing dynamics (e.g., food recruitment by
social insects; Nicolis and Deneubourg,
1999) while the model of Pais et al. (2013)
is non-linear.

6. CONCLUSION

The study of speed-accuracy trade-offs has
been tremendously fruitful for psychol-
ogy, neuroscience and animal behavior,
and will doubtless prove fruitful for many
years to come. Yet as we have argued here
most naturalistic decisions, which animals’
brains should have evolved to optimize,
are value-based rather than accuracy-
based. This leads us to argue that the
drift-diffusion model, which optimizes
speed-accuracy trade-offs, is not an ideal
computational framework to describe
value-based decision-making; although
it has had some success in describing
particular experiments on value-based
decision-making, discussed in the sec-
tion “Speed-Accuracy Trade-Offs,” as we
have shown here the DDM requires special
case-by-case parameterizations to imple-
ment true value-based decision-making.
We suggest that this limits the generality
of the DDM as a unifying framework for
all ecologically-relevant decision-making
problems. However, recent theory has
presented mechanisms that can manage
value-sensitive decision problems without
the additional informational requirements
of the DDM. At the same time, experi-
mental and theoretical psychologists and
neuroscientists have started to tackle prob-
lems of value-based decision-making.
We have presented our arguments for
value in terms of animal decision-making,
but unicellular organisms and individual
cells also make decisions (e.g., Perkins
and Swain, 2009; Latty and Beekman,
2011), and value is likely to be simi-
larly important for these. We believe
that the evolutionary perspective we
have presented here should motivate fur-
ther research into value-sensitivity and
decision-making.
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