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The papers that accompany this Research Topic fall at the
intersection of foraging theory and neuroscience. Why does
such a topic merit a Research Topic in Frontiers in Decision
Neuroscience? And what does foraging theory have to do with
decision neuroscience?

Foraging theory was created in the 1960’s, as behavioral ecol-
ogists began to absorb the intellectual advances in microeco-
nomic theory of the 1940’s and 50’s, and apply its principles
to their research. Early foraging theorists realized that animals
can be thought of as economic decision-makers that thrive
by learning to maximize benefits and minimize costs. A key
insight was that adaptive fitness—the main driving influence
in Darwinian evolution—behaves mathematically like any other
economic good, and that we can analyze behavior by assum-
ing animals seek to maximize it (McNamara and Houston, 1986;
Stephens and Krebs, 1986).

While economics focuses on human problems, such select-
ing a brand of peanut butter or choosing a retirement plan,
foraging theory focuses on animal problems. Early foraging
theorists identified two major abstract problems: whether to
accept or reject a prey item (the diet selection problem) and,
when foraging in a prey-rich patch, when to leave it and
move on to another one (the patch-leaving problem, Stephens
and Krebs, 1986). Of course, these problems apply to humans
as well, from the hunter-gatherer foraging for small animals
to the internet surfer looking for interesting articles to pass
the time.

In the diet selection problem, an animal (e.g., a fox) must
decide, on encountering a prey (e.g., a pheasant) whether to
pursue it or pass it up (Krebs et al., 1977). Foraging theorists
realized that animals should integrate the costs and benefits of
pursuit (presumably learned through experience) into a sin-
gle decision variable and then compare that to specific thresh-
old (also learned). The realization that the optimal strategy is
a step-function and the method for computing this threshold
were major early discoveries. Importantly, the threshold is a
“background variable” that represents the marginal intake rate
associated with the overall environment. In economic terms,
it is the opportunity cost of pursuit. This example illustrates
three key features of foraging problems: (1) they are fundamen-
tally optimization problems that can be solved through cost-
benefit analyses, (2) they are modeled after problems encountered
by animals, and (3) decisions are usually framed as a fore-
ground (pursue) vs. background (ignore), rather than as two
simultaneously presented alternatives as in standard economic
tasks.

Several scholars have suggested that foreground-background
decisions, even if they are mathematically identical to two-option
choices common in economics, are mediated by distinct mental
operations (Stephens, 2002). Indeed, it has been suggested that
many animal decision-makers have difficulty making two-option
choices, and use degenerate strategies evolved to solve forag-
ing problems (Pavlic and Passino, 2010; Kacelnik et al., 2011).
Furthermore, there is evidence that human decision-making is
framed in terms or a default and an alternative, and that values
of these options may be associated with specific brain regions
(Kolling et al., 2012; Boorman et al., 2013). These findings
highlight the utility of considering foraging-like problems when
investigating the mechanisms of economic choice.

Indeed, results obtained in foraging conditions are often differ-
ent from those obtained in economic tasks. For example, consider
intertemporal choice tasks, in which animals choose between a
large reward available after a long delay or a smaller reward avail-
able sooner. Animals typically reject the larger gains if the delay
is more than a few seconds. This seemingly impulsive behavior
has often been used to argue that most animal species discount
future rewards heavily (Rachlin, 2000; Heilbronner et al., 2008;
Kalenscher and Pennartz, 2008; Stevens and Stephens, 2008).
Puzzlingly, however, in foraging tasks, animals discount only
weakly or not at all (Stephens and Anderson, 2001; Hayden
et al., 2011). Some scholars have suggested that the two-option
structure of the standard intertemporal choice task is confusing
for animals and that, because they misunderstand its struc-
ture, it produces highly biased estimates of discounting rates. In
contrast, foraging tasks, with their naturally-inspired structure,
do not (Bateson and Kacelnik, 1996; Kacelnik, 1997; Stephens,
2002; Pearson et al., 2010; Blanchard et al., 2013; Blanchard and
Hayden, 2014).

Another example comes in the context of risky choice.
Foraging theory emphasizes the serial and long-term strategic
nature of risky choice, and thus suggests that decisions ought
to be studied not solely in terms of non-linear utility—in other
words, the prospect of an immediate gain or loss multiplied
by its likelihood—but in terms of discontinuities between short
and long-term strategies (Hayden and Platt, 2007; Heilbronner
and Hayden, 2013). Whereas, economic theory often categori-
cally classifies organisms into those that are risk seeking or are
risk-averse, studies that look at repeated choices with uncertain
outcomes find that both humans and other animals can adapt
their choice strategies depending on the state of the environment,
their current needs, and their long-term goals (Real and Caraco,
1986; Kolling et al., 2014).
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Foraging theory’s emphasis on adaptive significance allows
us to consider each species within its own ecological niche. For
instance, most nutrition a rodent will encounter is at ground
level; danger will likely come from above. Rodent superior col-
liculus (SC) maps precisely this distinction, with visual input
from the upper quadrant of the visual field accessing the medial
SC, which mediates defense responses, whereas the lower quad-
rant projects more strongly to lateral SC, stimulation of which
results in approach behaviors (Comoli et al., 2012). The manual
dexterity and trichromatic binocular vision of primates, and ulti-
mately potentially the development of the prefrontal cortex, can
also be related to their need to forage for ripe fruit and tender
leaves in a visually complex, cluttered, and volatile environment
(Passingham and Wise, 2012). As we neuroscientists try to collate
fine-grained research from fruit flies and zebra fish to genetically
modified rodents and primates, such ecological considerations
will become increasingly pressing.

The papers included in this collection serve as an introduction
to some of the major ideas that have influenced the nascent field
of neural foraging. The most basic step in deriving a complete
understanding of the neural basis of foraging is to understand the
neural basis of the building blocks of foraging, food consump-
tion, and executive control of decision-making. One goal is to
make foraging theory more biological; whereas we assume that
food consumption—often considered simply as “reward” in many
neuroscience paradigms—is a “frictionless” process, it is in fact
a very real and complex one. To understand it we must under-
stand how it works (Caracheo et al., 2013; Horst and Laubach,
2013), and how it interacts with decision-making (Murray and
Rudebeck, 2013). Simultaneously, foraging involves complex cog-
nitive processes, and understanding how those work is critical for
understanding the way that our minds constrains foraging deci-
sions (Sallet et al., 2013). These include understanding of the
neural representation of variables that are psychologically rele-
vant to foraging decisions, like effort and risk (Miller et al., 2013),
as well as social factors (Pearson et al., 2013). Traditional forag-
ing theory tends to ignore factors that affect animal decisions like
aging (Mata et al., 2013). Future work will also point toward link-
ing economic ideas to foraging ideas, especially in the domain of
time and risk (Bixter and Luhmann, 2013).
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