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Adult neurogenesis is a lifelong process that occurs in two main neurogenic niches
of the brain, namely in the subventricular zone (SVZ) of the lateral ventricles and in
the subgranular zone (SGZ) of the dentate gyrus (DG) in the hippocampus. In the
1960s, studies on adult neurogenesis have been hampered by the lack of established
phenotypic markers. The precise tracing of neural stem/progenitor cells (NPCs) was
therefore, not properly feasible. After the (partial) identification of those markers, it
was the lack of specific tools that hindered a proper experimental elimination and
tracing of those cells to demonstrate their terminal fate and commitment. Nowadays,
irradiation, cytotoxic drugs as well as genetic tracing/ablation procedures have moved
the field forward and increased our understanding of neurogenesis processes in both
physiological and pathological conditions. Newly formed NPC progeny from the SVZ can
replace granule cells in the olfactory bulbs of rodents, thus contributing to orchestrate
sophisticated odor behavior. SGZ-derived new granule cells, instead, integrate within the
DG where they play an essential role in memory functions. Furthermore, converging
evidence claim that endogenous NPCs not only exert neurogenic functions, but might
also have non-neurogenic homeostatic functions by the release of different types of
neuroprotective molecules. Remarkably, these non-neurogenic homeostatic functions
seem to be necessary, both in healthy and diseased conditions, for example for preventing
or limiting tissue damage. In this review, we will discuss the neurogenic and the
non-neurogenic functions of adult NPCs both in physiological and pathological conditions.
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INTRODUCTION
In 1913 Santiago Ramón y Cajal established that neurons of the
brain are only generated during the neurodevelopmental phase,
thus setting the so called “no new neurons” doctrine (Ramon
Y Cajal, 1913). However, he soon reconsidered his conclusions
when evaluating the results of an experiment performed a cou-
ple of years before by his younger assistant Francisco Tello. This
experiment, in fact, showed that regenerating fibers growing
from the stump of a transected optic nerve could suture with a
“regenerating” peripheral sciatic nerve (Tello, 1907).

Nevertheless, despite this initial hint, the existence of dividing
cells of neural origin in the central nervous system (CNS) was still
debated (Hamilton, 1901; Allen, 1912) and could not be formally
demonstrated until the beginning of the’60 when Smart (1961)
and Altman (Altman and Das, 1965) demonstrated the effective
presence of proliferating neural cells—i.e., neurogenesis—in the
adult rodent brain. However, this finding would have been indis-
putably confirmed only 20 years later, namely when Fernando
Nottebohm showed that neurogenesis in the ventricular zone is a
phenomenon that normally occurs in intact adult female canaries
(Nottebohm, 1981; Goldman and Nottebohm, 1983). Few years’
later, adult neural stem/precursor cells (NPCs) were identified as
a source of new neurons also in the brain of non-human primates
and humans (Kukekov et al., 1999; Ming and Song, 2005). Later

on, in vitro stable culturing systems either for rodent and human
NPCs were established (Reynolds and Weiss, 1992).

Nowadays, we know that neurogenesis in the adult brain
occurs in physiological conditions in specific neurogenic niches
that have particular anatomical and functional characteristics.
The role of neurogenesis after injury however still needs to be
fully clarified. While there is substantial evidence that active, and
latent, neurogenic niches might contribute to the formation of
new cells upon CNS tissue damage, the precise role of these newly
formed cells has not been yet completely understood. Here we
review the possibility that endogenous NPCs exert functional
roles not directly related to the production of new cells (the so
called “non-neurogenic functions”).

NEUROGENESIS IN THE ADULT BRAIN: FROM CELLS TO
FUNCTIONS
THE ADULT RODENT BRAIN
Neurogenesis in the adult rodent brain occurs during adulthood
in two main neurogenic niches, namely in the subgranular zone
(SGZ) of the dentate gyrus (DG) in the hippocampus and in the
subventricular zone (SVZ) of the lateral ventricles.

The SGZ is a thin layer of cells located between the two DG
layers of granule and hilus cells. The primary role of SGZ is to
generate new cells capable to functionally integrate within the
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DG granule layer. The DG granule layer is mainly composed by
primary excitatory neurons supporting cognitive functions, such
as memory and learning (Shors et al., 2002; Zhao et al., 2008).
The development of granule cells from NPCs proceeds through-
out different intermediate steps (Filippov et al., 2003). NPCs first
develop into (i) radial astrocytes (i.e., type I cells) that, in turn,
generate (ii) intermediate neural progenitors (i.e., type-D cells
or type II progenitors) (Fukuda et al., 2003)—which are imma-
ture progenitors (also called neuroblasts) further differentiating
into (iii) neuroblasts. Neuroblasts can be further sub divided into
D1 (immature) and D2 (more differentiated) cells (i.e., type G
or type III cells) (Filippov et al., 2003; Zhao et al., 2008), which
progressively acquire electrophysiological characteristics of gran-
ule neurons. SGZ neurogenesis occurs in parallel to angiogenesis
(Palmer et al., 2000) and endothelial cells act as scaffolding cells
for NPCs. Therefore, endothelial cells provide signals and soluble
factors that favor angiogenesis but also neurogenesis (Riquelme
et al., 2008).

The second main neurogenic niche is the SVZ, a region located
in the lateral side of the two lateral ventricles. This region orig-
inates from the neuroventricular epithelium of the embryonic
ventricular zone, the area where radial glia proliferates during
development. Similarly to the SGZ, the SVZ shows a rather het-
erogeneous population of stem and progenitor cells. Here we can
find (i) relatively quiescent stem cells, known as B cells, that give
rise to (ii) actively proliferating cells representing intermediate
progenitors in transit to the terminal differentiation (i.e., type C
cells or transit amplifying cells) (Doetsch et al., 1999). Type C cells
differentiate into (iii) neuroblasts (i.e., immature type A cells)
that migrate along the rostral migratory stream (RMS) toward the
olfactory bulb (OB) to give rise to new OB granule cells (Lois and
Alvarez-Buylla, 1994; Belluzzi et al., 2003). The SVZ can be sub-
divided anatomically into three main structural domains: domain
I (wall of the ventricle) contains ependymal cells as well as the
primary cilium of type B cells and is in direct contact with the
cerebrospinal fluid (CSF); domain II (below the wall of the ven-
tricle) contains the cell bodies of type-B cells, type C cells, type A
cells, neuronal terminals, and other supporting cells; domain III
contains basal processes of B-cells that terminate in specialized
end-feet capable of contacting blood vessels (Fuentealba et al.,
2012). Due to their anatomical localization SVZ NPCs are strate-
gically positioned within the brain: on the one hand, they are in
direct contact with the CSF through their apical processes, and,
on the other hand, they are tightly apposed to blood vessels form-
ing a peculiar “periventricular” blood brain barrier (BBB) that is
the barrier circumventing the lateral ventricles and the third and
the fourth ventricle. SVZ NPCs are thus in close communication
with two different peripheral blood-related microenvironments
(Sawamoto et al., 2006; Mirzadeh et al., 2008; Tavazoie et al.,
2008). It is still matter of debate whether the periventricular BBB
is more permeable thus facilitating type B and C cells to receive
blood-borne molecules regulating self-renewal and differentia-
tion. Apart from the blood compartment, the SVZ is also located
very close to crucial areas of the forebrain (i.e., basal ganglia,
striatum) that contain GABAergic neurons capable of modulat-
ing interconnections between several cortical and sub-cortical
brain areas (Koos and Tepper, 1999). In fact, NPCs in the SVZ

are separated from the caudate nucleus and the striatum only
by a layer of myelin and are in intimate contact with surround-
ing glia and blood vessels (Doetsch et al., 1999; Alvarez-Buylla
and Lim, 2004). This peculiar position makes SVZ NPCs sus-
ceptible to the action of several neurotransmitters such as GABA
(Platel et al., 2008, 2010), glutamate (Platel et al., 2010), ATP
(Abbracchio et al., 2009), and acetylcholine (Cooper-Kuhn et al.,
2004; Young et al., 2011), all neurotransmitters released from
nearby neurons and collaterals. It is highly likely that SVZ NPCs
can be directly influenced by the activity of neuronal networks
(Tong et al., 2014). The decreased proliferation of NPCs, so far
observed in Parkinson’s disease, has been attributed to the loss of
dopaminergic innervation of the SVZ (Curtis et al., 2007a). Post-
mortem studies in humans have identified dopaminergic fibers in
contact with epidermal growth factor receptor (EGFR)- positive
cells in the SVZ (Hoglinger et al., 2004). In addition, the SVZ area
is innervated by serotoninergic fibers (Diaz et al., 2009) and sero-
tonin has been documented to increase neurogenesis in the SVZ
(Encinas et al., 2006; Kazanis, 2009).

THE ADULT HUMAN BRAIN
Although it has been variably shown that the two main neuro-
genic regions of the rodent brain, the SGZ and the SVZ, are also
present in the adult human brain, human neurogenesis has some
peculiarities that need to be highlighted.

In the 1990s, a study by Eriksson and colleagues performed in
a group of cancer patients receiving the DNA labeling nucleotide
Bromodeoxyuridine (BrdU) showed the BrdU signal in hip-
pocampal neurons (Eriksson et al., 1998). This work formally
established the presence of adult neurogenesis in the human
hippocampus during adulthood. However, the observed neuroge-
nesis could also have been attributed to the underlying pathology.
Some years later Knoth et al. (2010) confirmed the presence of
neurogenesis in the adult human hippocampus based on data
obtained from 54 human autoptic specimens (age 0–100). In the
same study, qualitative and quantitative age-related changes—
very similar to those occurring in the rodent hippocampus—
further confirmed and expanded these findings (Knoth et al.,
2010).

The human SVZ behaves, instead, very differently to the
human adult hippocampus. In this region, the extent of this con-
tinuous neurogenesis as well as the presence of a RMS is still
matter of debate. In 2004, Sanai and co-workers described within
the SVZ a ribbon of proliferating astrocytes—lining the lateral
ventricles of the adult human brain—that behaved as multipo-
tent progenitor cells in vitro (Sanai et al., 2004). However, they
did not find any evidence of chains of migrating neuroblasts in
the SVZ or in close proximity to the OB (Sanai et al., 2007). After
this provocative works, an intense debate occurred about the exis-
tence of a human RMS. In 2007, Curtis and colleagues showed
histological evidence of a human RMS-like structure organized
around a lateral ventricular extension reaching the OB (Curtis
et al., 2007a,b; Sanai et al., 2007). Two successive reports chal-
lenged the existence of a RMS; only a ventromedial prefrontal
cortex stream was observed in infants up to 2 years of age but
not in adults (Sanai et al., 2011). More recently, a retrospective
14C birth dating study showed that there is rather minimal adult
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neurogenesis in the human OB (Bergmann et al., 2012). While
in the adult human brain 700 new neurons are added in each
hippocampus per day (corresponding to an annual turnover of
1.75% of the neurons within the renewing fraction), OB neurons
are as old as the individual since the decrease in neuroblast num-
bers in the SVZ and their migratory path suggested that there
is negligible, if any, adult OB neurogenesis in humans (Spalding
et al., 2013). It was concluded that less than 1% of the OB adult
human neurons are exchanged over a century.

Therefore, while in the human brain the presence of neuro-
genic niches in the hippocampus and in the SVZ seems to be
similar to other mammals, the precise function, role and fate of
periventricular generated neuroblasts needs to be further refined.

STUDYING THE ROLE OF ENDOGENOUS NPCs IN THE ADULT BRAIN
While the study of neurogenesis was initially hampered by the
technical limitation of tracing and labeling the dividing cells
(Ming and Song, 2005), in the following years the major challenge
became the inability to specifically ablate NPCs in a determined
neurogenic niche. Consequently, approaches to eliminate prolif-
erating cells, using either intracerebral administration of antim-
itotic drugs, such as Arabinofuranosyl Cytidine (AraC), or brain
x-rays irradiation, were developed (Doetsch et al., 1999; Monje
et al., 2003) (Table 1). 60–90% of proliferating cells within neu-
rogenic niches can be successfully ablated by using the x-rays
irradiation method (Kageyama et al., 2012). However, there are
still limitations due to the overt inflammatory reactions caused
by the procedure (Palmer et al., 2000). These methods are how-
ever not selective for NPCs as also other proliferating cells (e.g.,
microglia, pericytes) might be affected by the treatment.

Recently, transgenic animals have been developed using vari-
ous types of “marker” genes selectively expressed by NPCs or their
progeny. Among transgenic models those based on the transgenic
use of the thymidine kinase (TK) gene under the promoter of
the GFAP (Garcia et al., 2004), Nestin (Singer et al., 2009), or
Doublecortin (Jin et al., 2010) are the most used so far along
with models in which the selective expression in NPCs of the
diphtheria toxin fragment A (DT-A), under the neuron-specific

enolase 2 gene promoter, has been achieved (Imayoshi et al.,
2008). Another method to stop the proliferation of NPCs with-
out direct ablation of the cells was the creation of conditional
mouse models relying on the cre/flox system such ad the FoxJ1-
CreER:floxed K-Ras mouse. In this model, FoxJ1 positive cells
(i.e., NPCs and ependymal cells in the CNS), upon administra-
tion of tamoxifen, are deleted for the Ras genes that are required
for mitosis (Sabelström et al., 2013). Transgenic models are effica-
cious since 80–90% NPC ablation can be obtained; however, also
in these models it is not possible to selectively analyse one or the
other neurogenic niche. This can be resolved by using a model
that has been recently published by our group and consists in a
selective ablation of SVZ NPCs upon GCV administration due to
the presence of the transgene only in the SVZ (Butti et al., 2012).

Finally, neurogenesis can be also studied in aged mice. In fact,
in those mice a physiological decline of neurogenesis occurs both
in the hippocampus and in the SVZ. Ageing does affect all tissues,
but at the same time the decline of neurogenesis in this model
is a naturally occurring process and therefore does not require a
specific gene manipulation (Villeda et al., 2011).

ROLE OF ENDOGENOUS NPCs IN PHYSIOLOGICAL
CONDITIONS
NEUROGENIC FUNCTIONS
After having been a debated issue for years, it is now clear
that hippocampal neurogenesis is a necessary process to pre-
serve spatial memory, to support memory acquisition, especially
in the early period of memory formation, (i.e., recent mem-
ory), and in the maintenance of the overall memory capacities
(Snyder et al., 2005; Imayoshi et al., 2008). Sahay and colleagues
showed that increased hippocampal neurogenesis—obtained in
mice with the apoptosis-inducing gene Bax conditionally ablated
from NPCs (i.e., Baxfl/fl Nes-CreERT2 mice) —was paralleled
by an increased behavioral performance during a specific cogni-
tive task where two similar contexts needed to be distinguished
(Sahay et al., 2011). Kitamura and colleagues showed that hip-
pocampal neurogenesis, particularly concerning the integration
of new neurons, is a key factor in the gradual decay of DG

Table 1 | Newly developed mouse models to study the role of neurogenesis by specific ablation of different types of NPCs.

Mouse Target niche Treatment Ablation Experimental References

model and cells efficacy model

Nestin-δ-HSV-TK-EGFP SVZ and SGZ 4 weeks of GCV ≈30% in SVZ
≈60% in SGV

Distal MCAO Sun et al., 2013

FoxJ1-CreER; floxed K-Ras Ependymal cells 5 days of tamoxifen ≈90% Spinal cord injury Sabelström et al., 2013

Nestin-TK SVZ 4 weeks of GCV ≈70% Stroke and epilepsy Butti et al., 2012

Dcx-TK SVZ and SGZ 2 weeks of GCV ≈80% Permanent MCAO Jin et al., 2010; Wang et al., 2012

GFAP-TK SGZ 4–12 weeks of GCV ≈99% Moderate stress diseases Snyder et al., 2011

Nestin-TK SVZ and SGZ 4 weeks of GCV ≈90% Study of neurogenesis Singer et al., 2009

Wt rats and mice SGZ X-ray irradiation ≈85% Study of hippocampal function Kitamura et al., 2009

Nes-CreERT2;
NSE-DTA

SVZ and SGZ 4 days of tamoxifen ≈30% Study of olfactory bulbs Imayoshi et al., 2008

Dcx, doublecortin; EGFP, enhanced green fluorescent protein; GCV, ganciclovir; GFAP, green fibrillary acidic protein; HSV, herpes simplex virus; MCAO, middle

cerebral artery occlusion; NSE-DTA, neuron-specific enolase 2–diphtheria toxin fragment A; SVZ, subventricular zone; SGZ, subgranular zone; TK, thymidine kinase.
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long term potentiation (LTP) (Kitamura et al., 2009). They also
showed that decreased neurogenesis is accompanied by a pro-
longed hippocampus-dependent period of associative fear mem-
ory: this mechanism has been proposed to play a role in clearing
disused old memories to preserve the learning capacity of the hip-
pocampus (Willshaw and Buckingham, 1990). Animals exposed
to an environmental enrichment showed enhanced hippocampal
neurogenesis (Kempermann et al., 1997).

The functional role of NPCs residing within the SVZ is cer-
tainly more controversial. As said before, newly formed NPCs in
the rodent SVZ migrate along the RMS to the OB where they
integrate as interneurons within the granule and glomerular cell
layers; a process considered important in maintaining and reor-
ganizing the OB system (Imayoshi et al., 2008). The integration
of the new neurons in the OB and DG is varied: in the OB, neuro-
genesis contributes to the maintenance and reorganization of the
whole system while in the DG new neurons are added to modulate
and refine the existing neuronal circuits (Imayoshi et al., 2008).
While SVZ neurogenesis in the adult brain seems not to exert a
role in retaining the memory of spontaneous odor discrimination
and innate olfactory preference (Imayoshi et al., 2008), it seems to
be involved in consolidating long-lasting olfactory traces (Gheusi
et al., 2000; Lazarini et al., 2009). Indeed, the increased survival of
new-born granule cells observed after the enrichment is necessary
for the increased inhibitory activity in the OB and leads to a better
discrimination of highly similar odorants (Moreno et al., 2009).
Recent studies have confirmed these data and assessed that while
easy odor tasks (Mandairon et al., 2006)—e.g., the habituation-
dishabituation test—do not need neurogenesis (Kageyama et al.,
2012), more difficult odor tasks, instead, do require modulation
of the new-born neuron survival (Mandairon et al., 2006).

Besides the role in smell recognition, the instinctive response
to pheromones is also processed by the main and accessory olfac-
tory systems; SVZ neurogenesis plays an essential role in this con-
text (Kageyama et al., 2012). For example, olfactory activities are
very important for the maintenance of pregnancy (Bruce, 1959;
Kaba et al., 1994): pregnancy induces biphasic stimulation of
neurogenesis in the SVZ, leading to a biphasic increase in the pro-
duction of both granule cells and periglomerular cells in the OB
(Shingo et al., 2003). Neurogenesis in females is also induced by
dominant male pheromones and seems to be important for sex-
ual behaviors (Mak et al., 2007). Also in male, paternal-offspring
recognition behaviors seem to rely on postnatal offspring interac-
tion and are coupled to increased neurogenesis in the paternal OB
and hippocampus (Mak and Weiss, 2010; Kageyama et al., 2012).
Finally, SVZ neurogenesis might be required for predator avoid-
ance and sex-specific responses that are olfaction dependent and
innately programmed (Sakamoto et al., 2011).

NON-NEUROGENIC FUNCTIONS
In the last few years, other non-neurogenic functions of NPCs
in the brain have been unraveled. NPCs are in fact able to pro-
duce and secrete a wide variety of factors that regulate and drive
complex functions of the brain. A recent report showed that neu-
roblasts derived from both neurogenic niches (the SVZ and SGZ)
exert a physiological phagocytic activity in clearing apoptotic
neuronal precursors, and that this phagocytic activity is critically

important in maintaining neurogenesis in the brain. Interestingly,
NPC phagocytosis requires the intracellular engulfment protein
ELMO1 to promote Rac activation downstream of phagocytic
receptors (Lu et al., 2011).

Moreover, recent evidence supports the importance of non-
neurogenic functions of NPCs. Sierra et al. demonstrated in fact
that apoptotic new-born cells are rapidly cleared out through
phagocytosis by unchallenged microglia present in the adult SGZ
niche and that microglia is important in maintaining the home-
ostasis of the baseline neurogenic cascade (Sierra et al., 2010).
Mosher et al. expanded this finding by demonstrating that NPCs
are able, through the secretion of vascular endothelial growth fac-
tor (VEGF), to modulate microglial activation, proliferation and
phagocytosis (Mosher et al., 2012). Furthermore, a bilateral cross-
talk between NPCs and microglia seems to take place (Mosher
et al., 2012).

Another “homeostatic” function coupled to NPCs has been
recently described. Despite not having classical features of a neu-
rogenic niche, median eminence tanycytes may also generate
new-born neurons (Kokoeva et al., 2005; Lee et al., 2012). After
a first study supporting the idea that hypothalamic neurogenesis
in adult mice has a role in the control of energy-balance, including
the capacity of regulating leptin-induced phosphorylation of sig-
nal transducer and activator of transcription 3 (STAT3) (Kokoeva
et al., 2005), another recent work showed that median eminence
tanycytes have a role in regulating the weight and metabolic
activity of adult mice (Lee et al., 2012).

Moreover, newly generated neuroblasts residing within the
SGZ seem to be able to dynamically regulate stress reactiv-
ity at both the endocrine and behavioral levels by buffering
stress responses, through the regulation of the hypothalamic–
pituitary–adrenal axis (Snyder et al., 2011). In fact, neurogenesis-
deficient mice also showed increased food avoidance after acute
stress, increased behavioral despair in the forced swim test, and
decreased sucrose preference, a measure of anhedonia (Snyder
et al., 2011). It would be interesting to understand whether the
observed alterations can be attributed to an alteration of median
eminence tancytes (and vice versa), given that the models used for
ablation of NPCs in this work did not exclusively target a single
NPC subpopulation.

These data altogether support the concept that NPCs might
exert, besides pure neurogenic functions, also a broad spectrum
of “bystander” non-neurogenic functions aimed at maintaining
the homeostasis of the brain (Figure 1) (Martino and Pluchino,
2006).

ROLE OF ENDOGENOUS NPCs DURING CNS PATHOLOGY
NEUROGENIC FUNCTIONS
Different types of brain damage—such as stroke, epileptic
seizures, trauma—induce the proliferation of NPCs in neuro-
genic areas, i.e., the SGZ and the SVZ (Riquelme et al., 2008).
The majority of neurons formed in SGZ after an insult become
dentate granule cells, similar to what occurs in the intact brain,
while in the SVZ newly generated cells often migrate, away from
the RMS, toward the lesion site (Jin et al., 2001).

Adult brain reacts to an ischemic injury by a long-lasting gen-
eration of neuroblasts from the SVZ; SDF-1a/CXCR4 signaling
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FIGURE 1 | Homeostatic multi-step actions exerted by endogenous NPCs:

from maladaptive (stressful) conditions to pathological chronic tissue

damage. Endogenous NPCs adapt their homeostatic functions to the needs of
the tissue. In order to reduce excitotoxicity so to prevent reactive inflammation,
endogenous NPCs release neuroprotective molecules (i.e., endocannabinoids,
endovanilloids) and increase glutamate uptake as soon as the occurrence of
early stress signals. If this barrier fails and acute inflammation occurs,

endogenous NPCs release different neuroprotective and anti-inflammatory
molecules (e.g., cytokines, chemokines, and trophic factors) that, in turn,
restrain the CNS infiltration of blood-borne inflammatory cells and the acute
inflammatory reaction. This latter second-step process is also finalized to reduce
the secondary tissue damage. Finally, during chronic inflammatory conditions
when tissue architecture is already compromised, NPCs might differentiate into
new cellular elements in order to replace endogenous cells lost.

regulates the migration of new striatal neurons generated from
endogenous NPCs toward the ischemic damage (Imitola et al.,
2004). Within these newly formed peri-infarct neurovascular
niches, newly-born immature neurons interact with the remod-
eling vasculature thanks to their production of stromal-derived
factor 1 (SDF1) and angiopoietin 1 (Ang1) (Ohab et al., 2006).
Interestingly neurogenesis and angiogenesis, another important
reparative process taking place in the peri-ischemic tissue, are
tightly coupled after stroke by VEGF that stimulates cell genesis
(Teng et al., 2008).

A long-lasting neurogenic response reactive to ischemic injury
has been observed not only in animal models but also in stroke
patients (Marti-Fabregas et al., 2010). Interestingly, the enhanced
neurogenic response is paralleled by increased microglia recruit-
ment, probably due to a stroke-induced up regulation of CXCL10
in the SVZ; this chemokine might act as chemoattractant of
CXCR3-expressing microglia (Rappert et al., 2004; Thored et al.,
2009). About 80–90% of newly formed striatal neurons that
potentially could replace the dead neurons will eventually die

(Arvidsson et al., 2002; Thored et al., 2006, 2007). In fact, only
a small portion of SVZ-derived cells migrated into striatum does
assume features of mature neurons with action potentials in a
rodent model of ischemic stroke (Arvidsson et al., 2002).

Similarly to stroke, also epilepsy is associated with an increased
level of progenitor proliferation paralleled with an accelerated
maturation and integration of only few newly generated neu-
rons (Rotheneichner et al., 2013). Neurons formed in the DG,
after an epileptic insult, undergo caspase-mediated apoptotic
death, similarly to NPCs isolated from the adult SVZ (Ekdahl
et al., 2001). In animal models of epilepsy, the initial rise in
neurogenesis is then followed by a long-lasting reduction of
neurogenesis (Hattiangady et al., 2004). Reduced cell prolifer-
ation has been also observed in the hippocampus of children
during the chronic phase of a frequent seizure convulsive dis-
order (Mathern et al., 2002; Rotheneichner et al., 2013). In
experimental epilepsy, SVZ-derived cells migrate toward the hip-
pocampus and differentiate terminally into glial but not neu-
ronal cells (Parent et al., 2006). Newly born neurons might
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exacerbate chronically epileptic hippocampus if they aberrantly
migrate and incorporate in the dentate hilus (Hattiangady
and Shetty, 2008). Interestingly, inflammation might influence
the functional integration of adult-born hippocampal neu-
rons as a high degree of synaptic plasticity of the new neu-
rons has been reported in an inflammatory environment. This
effect seems to be finalized to counteract inflammation-induced
increase of excitatory input (Jakubs et al., 2008). However, the
extent to which seizure-induced neurogenesis might contribute
to the formation of newly formed neurons destined to inte-
grate into the damaged epileptic hippocampus still need to be
clarified.

NON-NEUROGENIC FUNCTIONS
As said above, there is an increased reactive neurogenesis followed
by a scarce integration of newly formed neurons into neuronal
damaged circuits. This chain of events appears to be paradoxi-
cal. Several hypotheses have been proposed. One of these states
that NPCs might exert tissue protective functions by deviating
from their neuronal default into a glial differentiation path-
way or remaining undifferentiated and secrete neuroprotective
molecules in a bystander fashion.

Instead of differentiating into the neuronal default pattern,
NPCs (from both SVZ and SGZ) may turn into both astroglial
and oligodendroglial cells—a gliogenic rather than a neuro-
genic response—in order to constrain and/or prevent tissue
damage. Several recent evidence supports this NPC-mediated
phenomenon reacting to a CNS injury.

Localized photothrombotic/ischemic cortical injury triggers
the production of BBB stabilizing astrocytes from the postnatal
SVZ niche; an event controlled by the Notch modulator throm-
bospondin 4 (Thbs4). Indeed, knockout mice for Thbs4 had
a distorted neuroblast-astrocyte production, an abnormal glial
scar formation, and a significant delayed increase of perilesional
microvascular hemorrhages (Benner et al., 2013).

In demyelinating diseases, such as multiple sclerosis (MS),
NPCs in the rodent SVZ niche become activated, upon demyeli-
nation, and provide a potential source of myelinating oligo-
dendrocytes. SVZ-derived cells expand and migrate to the
lesions, undergo oligodendrogenesis (Nait-Oumesmar et al.,
1999), acquire morphology of myelinating cells, and express
myelin proteins (Menn et al., 2006).

Using genetic fate mapping, it has been shown that, after a
spinal cord injury (SCI), ependymal cells lining the central canal
of the spinal cord have neurogenic potential. Indeed, in mice
undergoing SCI, ependymal cell progeny starts migrating from
the ependymal layer toward the injury site within 3 days after
the injury; once within the lesion site, proliferating cells predomi-
nately differentiate into scar-forming astrocytes (Barnabe-Heider
et al., 2010). In fact the glial scar that forms after SCI is com-
posed by resident astrocytes and, in its central part, by ependymal
cell–derived astrocytes (Barnabe-Heider et al., 2010). Ependymal
cell–derived astrocytes might thus contribute to reinforce the
injured spinal cord thus avoiding the expansion of the cystic cav-
ity (Barnabe-Heider et al., 2010). Finally, cells recruited by the
SCI not only produce scar-forming glial cells, but also, to a lesser
degree, oligodendrocytes (Meletis et al., 2008).

The production of new neuronal or glial cells seems not to
be the prevailing and sole mechanism of reactive neurogenesis
occurring in response to tissue damage.

In stroke, not integrating newly formed SVZ-derived cells
seem to protect from tissue injury through the secretion of neu-
rotrophic factors (Jin et al., 2010; Wang et al., 2012; Sun et al.,
2013). In a recent work SVZ NPCs were indeed shown to pro-
tect striatal neurons from glutamatergic excitotoxicity (as that
occurring in the early phase of ischemic stroke and epilepsy) by
releasing endogenous endocannabinoids (AEA and 2-AG) capa-
ble of binding to their specific receptors (CB1 and CB2) (Butti
et al., 2012). Interestingly endovanilloids secreted by SVZ NPCs
were found to suppress the growth of high-grade astrocytomas
(HGA). NPCs by releasing endovanilloids activate the transient
receptor potential vanilloid subfamily member-1 (TRPV1) on
HGA cells that, in turn, triggers tumor cell death and prolongs
overall survival time of the mice (Stock et al., 2012).

Also in another CNS injury model, SCI, scar stabilizing NPC-
derived astrocytes do not only restrict secondary enlargement of
the lesion and further axonal loss (Sabelström et al., 2013), but
also exert a non-neurogenic action via the secretion of growth fac-
tors acting as neuroprotectant to enhance the survival of neurons
adjacent to the traumatic lesion.

As previously pointed out, whether a homeostatic function of
the endogenous NPCs might occur, the SVZ zone seems to be
the more appropriate area. In fact, as stated before, SVZ NPCs
are in close communication with two different microenviron-
ments being tightly apposed to blood vessels and in contact with
the CSF, and also very close to crucial areas of the midbrain
containing GABAergic neurons. A further confirmation of this
working hypothesis came from a recent work showing that den-
dritic cell (DC) traffic within the CNS—from the choroid plexus
to the cervical lymph nodes—along the RMS in order to modulate
CNS-infiltrating regulatory T cell (Treg) function. This migration
of DC seems to dampen experimental CNS auto-inflammatory
diseases, thus suggesting that it ultimately prevents pathogenic
T-cells from entering the CNS (Mohammad et al., 2014).

NEUROGENIC vs. NON-NEUROGENIC FUNCTIONS
Another important, but so far only partially solved issue, concerns
how of NPCs can determine their fate between neurogenic and
non-neurogenic functions in pathological conditions. The pre-
dominant view, supported by NPC transplantation studies, but
confirmed to be valid also for endogenous NPCs as well, is that
inflammation is in part responsible for the fate decision of newly
formed NPCs.

Inflammation, as process occurring as a consequence of
autoimmunity and/or traumatic and ischemic injuries, alter
endogenous NPC proliferation and differentiation characteris-
tics in a non-cell autonomous fashion (Pluchino et al., 2005).
When inflammation fades away and neurodegeneration prevails,
endogenous NPCs tend to differentiate into multiple neuronal
lineages, depending on the situation, partially capable of integrat-
ing into damaged neuronal circuits (Kokaia et al., 2012).

However, in acute inflammatory conditions, while remaining
undifferentiated, transplanted SVZ-derived NPCs might pro-
mote CNS tissue healing via the secretion of immunomodulatory
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and neuroprotective molecules, capable of reducing detrimental
tissue responses. Instead, in chronic inflammatory conditions
NPCs seem to be driven toward cell replacement (Martino and
Pluchino, 2006).

TRANSPLANTATION OF NPCs IN INFLAMMATORY CNS DISEASES
As underlined before, NPC replacement-based studies allow
to investigate the multimodal—neurogenic vs. non-neurogenic
functions—mechanism of action of endogenous NPCs (Pluchino
et al., 2005).

Whatever the therapeutic action exerted, transplanted NPCs
show a certain degree of pathotropism toward inflammatory foci.
This is due to the fact that such cells constitutively express an
armamentarium of chemokines and chemokine receptors (e.g.,
CCR1, CCR5, CXCR3 and CXCR4), cell adhesion molecules
(e.g., CD44) (Rampon et al., 2008) and integrins (e.g., VLA4)
(Campos et al., 2004, 2006; Leone et al., 2008). Transplanted
NPCs, very similarly to endogenous NPCs, have the characteris-
tic to be able to follow and reach chemoattractant foci both when
intraparenchymally and/or systemically injected (Ji et al., 2004;
Pluchino et al., 2005).

When transplanted in acute or chronic inflammatory dis-
eases (e.g., stroke, SCI, or MS), the majority of NPCs survive
close to perivascular inflammatory foci (i.e., the atypical ectopic
niche) where they interact with many other cell types such
as CNS-infiltrating blood-borne inflammatory cells, endothelial
cells and CNS-resident astrocytes and microglia. Within these
ectopic niches, inflammatory molecules [e.g., interferon (IFN)γ ,
tumor necrosis factor (TNFα)] inhibit NPCs differentiation by
blocking their cell cycle by up regulating the expression of cell
cycle dependent kinase inhibitors (Pluchino et al., 2008). As
undifferentiated cells, NPCs can produce a wide array of both
secreted and transmembrane molecules which, in turn, exert both
immunomodulatory and neurotrophic factors (Irvin et al., 2004;
Pluchino et al., 2005; Seifert et al., 2005; Martino and Pluchino,
2006; Bacigaluppi et al., 2009; Cusimano et al., 2012).

In relapsing-remitting experimental autoimmune
encephalomyelitis (EAE), the experimental model of MS,
intravenously (i.v.) transplanted NPCs promote the apoptosis
of encephalitogenic T cells either via the expression of death
receptor ligands (for example, FasL, Trail and Apo3L) or the
production of soluble mediators—i.e., NO synthase (iNOS),
IFNγ —involved in mitochondrial-mediated apoptosis (Einstein
et al., 2003, 2006; Pluchino et al., 2005). In the post-acute
phase of ischemic or haemorrhagic stroke, i.v. transplantation
of NPCs reduced activation of macrophage/microglia cells and
CNS recruitment of blood-borne inflammatory cells (Lee et al.,
2008; Bacigaluppi et al., 2009). Similarly, in the immediate time
points following SCI, intrathecally (i.c.) as well as intralesionally
transplanted NPCs modulate the local T cell, the microglial
response (Ziv et al., 2006) and the recruitment of CNS infil-
trating classically activated pro-inflammatory macrophages
(Cusimano et al., 2012). Interestingly, it has been recently shown
that also embryonic like induced pluripotent stem cell (iPSC)-
derived NPCs—once transplanted intrathecally into mice with
EAE—protect oligodendrocytes and OPCs from cell death. This
transplantation promotes myelin tissue reconstruction via the
selective production of leukemia inhibiting factor (LIF), and this

production is guided by the inflammatory microenvironment
(Laterza et al., 2013).

NPCs are therefore able to prevent inflammation-induced
neuronal programmed cell death and glial scar formation—
occurring, for example, in EAE, SCI, stroke—mainly via the
paracrine secretion of the nerve growth factor (NGF), brain-
derived neurotrophic factor (BDNF), ciliary neurotrophic factor
(CNTF), and glial-derived neurotrophic factor (GDNF) (Teng
et al., 2002; Lu et al., 2003; Pluchino et al., 2003, 2005; Chu et al.,
2004; Ryu et al., 2004; Ziv et al., 2006; Redmond et al., 2007;
Bacigaluppi et al., 2009).

Another bystander effect exerted by transplanted NPCs is
to directly modulate neuronal circuit plasticity (Zhang and
Chopp, 2009). In an experimental model of ischemic stroke
human foetal NPCs significantly improved functional outcomes
by promoting neuronal dendritic arborization in both hemi-
spheres and axonal projections within the corticostriatal and
corticospinal pathways. These effects have been attributed to
the capacity of transplanted NPCs to re-express developmental
molecules such as guidance molecules (i.e., slit, thrombospondin
1 and 2) but also trophic factor such as VEGF (Andres et al.,
2011).

CONCLUSIONS
NPCs in the adult brain exert an important homeostatic role
either by producing new cells (neuronogenic or gliogenic func-
tion) or by orchestrating important processes (non-neurogenic
functions): both actions are pivotal for the maintenance of the
proper functioning of the CNS. Those neurogenic and non-
neurogenic functions are in part NPC autonomous but are also
driven by the microenvironment that might foster, according to
the tissue needs, one of these functions. Our understanding of the
complex interplay between neuronal, macroglial, and microglial
cells in physiological and pathological conditions is continuously
evolving, and we have now to consider NPCs as integral part
of this interplay. New techniques of molecular biology and
genetics will allow us to further understand the neurogenic
vs. non-neurogenic functions of endogenous NPCs, and this
knowledge would certainly help the scientific community to
design efficacious stem cell-based treatment for still incurable
neurological disorders.
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