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So far most studies on adult neurogenesis aimed to unravel mechanisms and molecules
regulating the integration of newly generated neurons in the mature brain parenchyma.
The exceedingly abundant amount of results that followed, rather than being beneficial
in the perspective of brain repair, provided a clear evidence that adult neurogenesis
constitutes a necessary feature to the correct functioning of the hosting brain regions.
In particular, the rodent olfactory system represents a privileged model to study how
neuronal plasticity and neurogenesis interact with sensory functions. Until recently,
the vomeronasal system (VNS) has been commonly described as being specialized in
the detection of innate chemosignals. Accordingly, its circuitry has been considered
necessarily stable, if not hard-wired, in order to allow stereotyped behavioral responses.
However, both first and second order projections of the rodent VNS continuously
change their synaptic connectivity due to ongoing postnatal and adult neurogenesis.
How the functional integrity of a neuronal circuit is maintained while newborn neurons
are continuously added—or lost—is a fundamental question for both basic and applied
neuroscience. The VNS is proposed as an alternative model to answer such question.
Hereby the underlying motivations will be reviewed.
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INTRODUCTION
The idea of a mature brain as an organ with limited growth,
cell renewal and rewiring has considerably changed since pioneer
studies on adult neurogenesis (Altman and Das, 1966; Altman,
1969; Graziadei and Monti-Graziadei, 1979; Lledo and Gheusi,
2006; Kempermann, 2012). In the adult mammalian brain, neu-
ral progenitors are present in the subventricular zone (SVZ) of the
lateral ventricles and the hippocampal subgranular zone (SGZ)
where they give rise respectively to Dlx2/5/6-derived GABAergic
olfactory bulb interneurons and glutamatergic granule cells of the
dentate gyrus (DG) of the hippocampus (Doetsch et al., 1999;
Seri et al., 2001; Kriegstein and Alvarez-Buylla, 2009). Admittedly,
neurogenesis in other adult brain regions is generally believed to
be very limited under physiological conditions (Nishiyama et al.,
1996; Horner et al., 2000; Dawson et al., 2003; Luzzati et al.,
2006, 2011; Bonfanti and Peretto, 2011), although it could be
induced after injury (Ramaswamy et al., 2005; Gould, 2007; Yu

Abbreviations: aAOB, anterior accessory olfactory bulb; AOB, accessory olfactory
bulb; CR, calretinin; DCX, doublecortin; DG, dentate gyrus; ECL, external cellular
layer; EGC, external granule cell; ET, external tufted; GAD, glutamic acid decar-
boxylase; GC, granule cell; Gl, glomerular layer; HMW, high molecular weight;
ICL, internal cellular layer; IGC, internal granule cell; LMW, low molecular weight;
LOT, lateral olfactory tract; MACs, main accessory cell; MOB, main olfactory bulb;
MOE, main olfactory epithelium; MOS, main olfactory system; NSE, non-sensory
epithelium; OB, olfactory bulb; OSNs, olfactory sensory neurons; pAOB, posterior
accessory olfactory bulb; PC, principal cell; PG, periglomerular cell; PV, parvalbu-
min; SA, short axon cell; SGZ, subgranular zone; SVZ, subventricualr zone; TH,
tyrosine hydroxylase; VNO, vomeronasal organ; VNS, vomeronasal system; VSNs,
vomeronasal sensory neurons.

et al., 2008; Kernie and Parent, 2010; Saha et al., 2013) or as
a consequence of tissue inflammation and degeneration (Buffo
et al., 2008; Ohira et al., 2010; Luzzati et al., 2011; Belarbi and
Rosi, 2013). Nowadays several approaches have been developed
to maintain and manipulate pluripotent stem cells in-vitro in
the perspective of brain repair (Takahashi and Yamanaka, 2006;
Yamanaka and Blau, 2010). Particularly the rodent olfactory bulb
(OB) has been widely studied to clarify the logic of neuronal
stem-cell biology in the SVZ opening new venues to brain-repair
strategies, cell transplants techniques in disease models and other
translational approaches (Gage and Temple, 2013).

However, the development of clinical translations cannot stand
aside the basic research, focused in this case on the physiologic
function of the neurogenic regions in-vivo (see for critical reviews
on this point Lau et al., 2008; Lindvall and Kokaia, 2010).

In addition, studying OB neurogenesis may yield new insights
in the biology of olfaction, being olfactory sensory activity and
behaviors easy readouts of any experimental manipulation in
rodents.

Understanding how the environment affects newborn neu-
rons integration into mature networks, and consequently nor-
mal brain function, are certainly meaningful aims to define the
boundaries between physiology and pathology in translational
neuroscience. The restoration of brain connectivity after trauma
or the comprehension of the etiology of major brain disorders
may certainly move forward and undoubtedly more clinically ori-
ented approaches would benefit from the unbiased attempts of
basic research to address these issues (Fang and Casadevall, 2010;
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Enserink, 2013). In the present manuscript a special attention will
be given to neurogenesis in a particular olfactory subsystem—
namely the accessory/vomeronasal system (VNS)—due to the
fact that, despite its behavioral relevance in rodent sociality, it
received so far a minor deal of attention. The main point hereby
stressed concerns the unclear relationship between form—plastic
and changing—and function—presumably stable, innate—in the
VNS. Due to its distinct peculiarities, compared to the rest of the
olfactory system, the VNS offers an unparalleled opportunity to
analyze how newborn neurons constantly integrate into mature
circuits without interfering with the physiological behavioral and
endocrine development. Recent findings on neurogenesis in the
vomeronasal organ (VNO) and accessory olfactory bulb (AOB)
will be listed and discussed with a particular emphasis on the
AOB, since it represents the first central brain region of this
olfactory pathway.

THE VOMERONASAL SYSTEM AS A MODEL TO STUDY
ADULT NEUROGENESIS
Neurogenesis in the OB has been studied predominantly in the
main olfactory pathway. The neurons constantly replaced in the
main olfactory bulb (MOB) are GABAergic local interneurons
(periglomerular, PGs, and granule cells, GCs) mainly derived
from the Dlx2 subpallial domain in the SVZ (Puelles et al., 2000;
Alvarez-Buylla and Garcia-Verdugo, 2002; Lledo and Gheusi,
2006; Whitman and Greer, 2009). These cells play a key role in
regulating MOB input and output activity (Spors et al., 2012),
and they have been proved to actively contribute to olfactory pro-
cessing (Mandairon et al., 2011; Alonso et al., 2012) given their
activity dependent survival and functional recruitment (Magavi
et al., 2005; Mouret et al., 2008; Sultan et al., 2011a,b). In most
of these reports the role of newborn neurons in the context of
olfactory discrimination, short and long-term olfactory memory
has been analyzed using synthetic odor compounds or artifi-
cial behavioral tasks. These paradigms are well suited to answer
specific questions about the logic of sensory transduction (e.g.,
tuning, discrimination, detection threshold). However, framing
the same analysis within the contexts of reproduction and social-
ity may be more informative to clarify whether neurogenesis itself
is necessary or not to the mature brain. Indeed reproduction
and sexual selection constitute a powerful evolutionary force and
therefore the primary drive for any functional adaptation of a
brain circuit. So far only few recent studies correlated MOB neu-
rogenesis, with the regulation of social behavior in mice (see for
example Larsen et al., 2008; Kageyama et al., 2012; Monteiro
et al., 2013). The functional studies on the role of neurogenesis
in the VNS are considerably fewer despite the major contri-
bution of the VNS in rodent sociality (Tirindelli et al., 2009;
Mucignat-Caretta, 2010; Chamero et al., 2012; Ibarra-Soria et al.,
2013). Moreover the presence of neurogenesis in the AOB has
been largely ignored, if not denied (Mak et al., 2007). However,
neurogenesis occurs postnatally both at the VNS periphery, in
the VNO, and more centrally, in the AOB (VNO: Barber and
Raisman, 1978; Graziadei and Monti-Graziadei, 1979; Jia and
Halpern, 1998; Giacobini et al., 2000; Martinez-Marcos et al.,
2005; Weiler, 2005; Brann and Firestein, 2010; Enomoto et al.,
2011; AOB: Bonfanti et al., 1997; Martínez-Marcos et al., 2001;

Peretto et al., 2001; Huang and Bittman, 2002; Oboti et al., 2009,
2011; Figure 1). Interestingly cell survival in the AOB is higher
after sensory stimulation around weaning and puberty onset (ca.
4 weeks in mice) when, after gonadal and endocrine maturation,
social and reproductive behaviors become more clearly manifest
(Oboti et al., 2011). Concurrently, despite the VNO seems to be
already functional at birth (Coppola and O’Connell, 1989), the
process of wiring and synaptogenesis of the VNO-AOB circuit
has been shown to extend postnatally and to reach maturity only
around the third postnatal week (Horowitz et al., 1999).

This seems to suggest the occurrence of a post-pubertal func-
tional tuning of the VNS circuitry through neurogenesis, plastic-
ity and constant rewiring, which goes beyond an early postnatal
maturation of the system, similarly to the main olfactory system
(Figure 1; Bonfanti and Peretto, 2011; Lepousez et al., 2013).

The reason why the VNS has been neglected by more recent
studies on olfactory neurogenesis is possibly due to two main
reasons. Firstly, the VNS is absent in humans, therefore limit-
ing the interest in extending the study of olfactory neurogenesis
to this system in rodents. Secondly, this sensory system has been
traditionally associated to pheromone detection, innate signal
processing and stereotyped endocrine responses, for which plas-
ticity, neurogenesis, and rewiring are apparently not necessary.
Nonetheless, regardless of any homologies in the mammalian
olfactory systems, we undoubtedly share with rodents and other
species the functions that this sensory pathway specifically reg-
ulates, when present (Figure 2). Therefore, one of the main
reasons why neurogenesis in the rodent VNS deserves more atten-
tion is related to understanding the neural bases of mammalian
neuroendocrine and behavioral development and how they are
affected by environmental cues. Ultimately, the rodent VNS is a
suitable and simple model to tackle wider issues related to other
mammals in general, humans included.

The aim of the following paragraphs is to evaluate different
aspects of VNS neurogenesis ranging from the phenotypes of
newly generated neurons to their functional impact on specific
circuits. The comparative description accompanying each of these
points aims to open new questions for a wide range of approaches.
These entailing the developmental, circuit, and system biology
of olfaction. Aside, emerges the interesting—yet unanswered—
question of how this olfactory subsystem acquires its function in
the precise way it does, while its circuits are constantly chang-
ing. Rather than supporting the hardwired nature of this process,
the evidences here reported suggest a necessary role for neuro-
genesis, neuronal plasticity, and environmental adaptation for its
accomplishment.

NEUROGENESIS IN THE VOMERONASAL ORGAN
Olfactory sensory neurons (OSNs) are directly exposed to the
environment to detect chemical stimuli through membrane
bound receptors on their cilia (MOS) or microvilli (VNS). In
the olfactory epithelia, ciliated and microvillus neurons, support-
ing cells and ensheating glial cells are constantly renewed during
pre- and postnatal development (Murdoch and Roskams, 2008)
by neural stem cells deriving from both neural crest and olfac-
tory placode precursor lineages (Katoh et al., 2011; Heron et al.,
2013; Suzuki et al., 2013). Due to this peripheral localization,
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FIGURE 1 | Sketched representation of the mouse olfactory system.

Central and peripheral neurogenic regions are evidenced in red. (A) Social
odors and chemical cues are detected through the main olfactory epithelium
and the vomeronasal organ, which is enclosed in a bony capsule opened
rostrally toward the nasal cavity. A highly vascularized cavernous tissue flanking
the organ allows tissue contraction and therefore the access of mucuous fluids
transporting chemical cues toward the sensory epithelium. (B) Enlarged view
of the vomeronasal sensory epithelium and its cell types. Proliferating cells are
localized at the lateral and basal margins of the matured sensory epithelium.

Sensory neurons here located send axonal projections to the accessory
olfactory bulb. (C) Simplified anatomy of the accessory olfactory bulb cellular
layers. Cells evidenced in red in (B,C) represent immature or regenerating
neurons. Abbreviations: SGZ, subgranular zone; SVZ, subventricular zone; rms,
rostral migratory stream; GL, glomerular layer; PG, periglomerular cell; ECL,
external cellular layer; ICL, internal cellular layer; LOT, lateral olfactory tract; PC,
principal cell; GC, granule cell; V1R, vomeronasal receptor neuron type1; V2R,
vomeronasal receptor neuron type2; FPR, formyl peptide receptor neuron;
VSNs, vomeronasal sensory neurons; NSE, non-sensory epithelium.

OSN renewal has been generally associated to tissue growth (dur-
ing development), homeostasis and repair (during adulthood)
as gene expression patterns are maintained very similar (Heron
et al., 2013). In the VNO, as in the MOE, the proliferation
of different subsets of neuronal progenitors gives rise to OMP-
positive mature receptor neurons (Murdoch and Roskams, 2008;
Enomoto et al., 2011) but begins slightly later. In the rat olfac-
tory epithelium OMP starts to be expressed at E14, while in the

VN epithelium it occurs only at P2 (Kulkarni-Narla et al., 1997).
In the mouse OMP is expressed in vomeronasal sensory neu-
rons (VSNs) a few days earlier, during the last week of gestation
(Tarozzo et al., 1998). These data indicate that VSNs are not fully
developed at birth as most of their maturation begins and occurs
postnatally.

Mature VSNs can be divided in three main families, depend-
ing on the receptors expressed and the ligands they have been
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FIGURE 2 | Neuronal plasticity in the vomeronasal system is a conserved

trait across several vertebrate species. The increased organizational
complexity of the olfactory systems is plausibly related to their protracted
development through postnatal neurogenesis. (A) Cladogram representing the
main vertebrate taxa in which the presence of a vomeronasal system has been
reported (black lines). Taxa indicated in blue possess the cellular and molecular
elements of the VNS, without a defined structural organization. Old world
monkeys are indicated in gray, as reference, although they generally do not
possess a functional VNS. The species (and related taxa) in which neurogenesis
in the VNS has been reported are highlighted in red. (B) Features of the

vertebrate olfactory systems include: more defined cellular layering (white: low,
gray: moderate, black: high lamination), presence of periglomerular cells, PG
(white: absent, gray: ambiguous, black: present), development of mitral cell
secondary dendrites, M (white: absent, only multiglomerular primary
dendrites, gray: presence of both multiglomerular primary dendrites and
secondary dendrites, black: monoglomerular primary dendrites and secondary
dendrites), loss of granule cell axon, GC (white: smooth dendrites, axon, gray:
spiny dendrites, axon, black: spiny dendrites, no axon). Sources: (Meisami and
Bhatnagar, 1998; Eisthen, 2000; Halpern and Martinez-Marcos, 2003; Grus and
Zhang, 2008; Eisthen and Polese, 2009; Mucignat-Caretta, 2010); NCBI.

reported to detect: V1Rs, activated preferentially by low molecular
weight (LMW) hormone metabolites and other small molecules
possibly contained in urine and bodily secretions; V2Rs, activated
mainly by high molecular weight (HMW) peptidic compounds
such as lipocalins, or smaller MHC peptides; formyl peptide
receptors (FPRs), involved in the immune cell response to infec-
tions (Chamero et al., 2012; Figure 1B). V1R expressing neurons
populate the apical portion of the sensory epithelium, V2Rs
are located more basally while FPRs are more heterogeneously
distributed (Rivière et al., 2009).

The earlier steps of VSNs differentiation are regulated by
the proneural bHLH genes Mash1 and Neurogenin1, the for-
mer maintaining stem-cell progenitors, the second determining
their multipotency (Cau et al., 2002), which is further regu-
lated by the gene Ctip2 (Enomoto et al., 2011). Accordingly,
loss of Ctip2 shifts the V1R/V2R differentiation ratio toward the
V1R phenotype, suggesting a pivotal role in VSNs maturation
and the possibility that the V2R-lineage entails both V1R and
V2R committed neurons (Enomoto et al., 2011). The molecular
mechanisms specifying the FPR lineage are not known.

VSNs proliferation is not homogeneous across the sensory
epithelium but seems to be increasingly more localized at its

margins, as development proceeds (Barber and Raisman, 1978;
Giacobini et al., 2000; Martinez-Marcos et al., 2005; de la
Rosa-Prieto et al., 2011). Although immature VSNs show lim-
ited migratory capabilities during adulthood (Martinez-Marcos
et al., 2005; de la Rosa-Prieto et al., 2011), their proliferation
increases until 2 months of age, in mice (Weiler, 2005; Brann
and Firestein, 2010). Newborn VSNs are produced in clusters giv-
ing rise to patterned waves of migrating neurons (as observable
by DCX immunohistochemistry). It would be interesting to clar-
ify whether neurons expressing receptors of the same family are
simultaneously generated at a given time. However, BrdU exper-
iments suggested that both V1Rs and V2Rs are produced at the
same pace in physiological conditions (de la Rosa-Prieto et al.,
2010). Interestingly, postnatal development and growth seems to
be present also in the non-sensory epithelium (NSE, Figure 1B)
of the VNO (Garrosa et al., 1998; Elgayar et al., 2013).

Despite the vast number of MOE receptor genes (ca 1500
in the mouse) each OSN expresses only one of them. In the
VNO this rule is not followed since each VSN may express
more than one receptor gene (Martini et al., 2001; Silvotti
et al., 2007; Ishii and Mombaerts, 2011). Interestingly, the phe-
notypic identity of newborn VSNs can be affected by histone
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modifications following application of urine ligands in-vitro (Xia
et al., 2010). While application of HDAC inhibitors to cultured
VSNs decreases the expression of immature neuronal marker
Nestin, and increases the expression of markers of differentia-
tion such as Map2, Neuro D1-D2, and V2R genes (Xia et al.,
2010). It remains to be clarified whether these effects, repre-
sent a generalized adaptive response of the VNO epithelium to
sensory stimulation or if it constitutes a mechanism to selec-
tively specific subsets of newborn VSNs, as shown in the MOE
(Watt et al., 2004; Dias and Ressler, 2013). Both simple parsi-
mony and recent evidences suggest that this latter might be the
case (Broad and Keverne, 2012). However, other factors such as
odor exposure (Xia et al., 2006), hormonal changes (Kaba et al.,
1988; Paternostro and Meisami, 1996) and sensory activity (Hovis
et al., 2012) contribute to postnatal VNO neurogenesis and
VNO-AOB rewiring indicating the persistence of constant adjust-
ments in this circuit. Altogether these results strongly suggest
that VNO neurogenesis do not serves mere tissue homeostasis
and repair, but actively contributes to the functional tuning of
the organ during postnatal development. A possibility still largely
unexplored.

NEUROGENESIS IN THE ACCESSORY OLFACTORY BULB, A
COMPARATIVE NOTE
Afferent axons from VSNs reach the brain at the level of the dorsal
part of the OB. Here they form glomerular-like structures with the
apical dendrites of a separate group of projection neurons which
constitute the accessory olfactory bulb (AOB; Figures 1A,C). As
for the MOB, their activity is regulated by inhibitory glomerular
and granule cells (Figure 1C). Neurogenesis in the AOB involves
mainly these two cell types (Oboti et al., 2009). Despite earlier
doubts on its presence, several lines of evidence support the idea
that adult neurogenesis represents a constitutive feature of the
AOB. It can be found in adult mice of both genders (Oboti et al.,
2009; Nunez-Parra et al., 2011), in adult rats (Peretto et al., 2001)
and rabbits (personal observation). In addition, AOB neurogen-
esis has been reported not only in mammals (Altman and Das,
1966; Altman, 1969; Hinds, 1968a,b; Kaplan and Hinds, 1977;
Bayer, 1983; Kaplan, 1985; Kishi, 1987), but also in other verte-
brate species such as amphibians (Fritz et al., 1996), and reptiles
(Garcia-Verdugo et al., 1989; Pérez-Cañellas and García-Verdugo,
1996; Pérez-Cañellas et al., 1997) indicating that it represents
a conserved trait across different taxa (Figure 2A), rather than
a parallel convergence. Neuronal plasticity in the olfactory sys-
tem occurs independently of the presence of a discernible VNS,
as in primates, fishes, cetaceans, and birds for example (García-
Verdugo et al., 2002; Mucignat-Caretta, 2010); Figure 2A). In
addition, taxa in which some of the typical cellular and molecular
elements of the VNS are present, although with different levels
of organization (as anurans, lungfishes, sea lampreys, teleosts,
and cartilaginous fishes; Eisthen and Wyatt, 2006; Figure 2A),
retain neuronal plasticity and neurogenesis in the primary olfac-
tory structures during post-hatching and more mature stages.
This indicates that a plastic VNS may not be an apomorphic
(underived) trait of terrestrial vertebrates (Figure 2A; Table 1).
In bat species, even though the VNS is not always developed, the
presence of immature neurons typically expressing doublecortin

(DCX) has been noted in the AOB (Amrein I., personal commu-
nication).

In mice, rats, rabbits and guinea pigs SVZ neuronal pro-
genitors give rise to neuroblasts integrating in the AOB mainly
as granule cells localized in the inner granule cell layer, below
the lateral olfactory tract. The presence of newborn neurons in
periglomerular layer is very limited, possibly reflecting a much
slower turn-over rate of PGs (Martínez-Marcos et al., 2001;
Peretto et al., 2001; Oboti et al., 2009; Nunez-Parra et al., 2011).
A limited number of cells can be found in the plexiform layer
between the GC and PG layers, where principal cells (PC) are
located (Oboti et al., 2009; PCs are homologous to MOB mitral
cells), possibly representing other cell types such as external
granule cells and dwarf cells (Larriva-Sahd, 2008). The increas-
ing importance of local interneurons for OB signal elaboration,
reflected by the increased complexity in OB structural lamina-
tion (Eisthen and Polese, 2009; Figure 2B), implies a possible
correlation with the maintenance of their turnover. Overall, OB
neurogenesis may represent a necessary and conserved feature of
the olfactory pathways, reminiscent of the higher neuronal plas-
ticity showed by the paleocortex, to which it belongs (see Table 1
for a list of representative studies explicitly focused on VNO or
AOB postnatal development and neurogenesis). In the following
paragraphs, attention will be given to the anatomy of the AOB,
the phenotypes of AOB newborn cells and the possible role in
its circuitry considering the present knowledge about its role in
the VNS.

NEUROGENESIS IN THE TWO ACCESSORY OLFACTORY
BULB SUBREGIONS
Both the glomerular and principal cell (PC) layer of the AOB
look clearly partitioned by the segregated V1R/Gai2 and V2R/Gao
afferent fibers. Axonal projections from these two neuronal popu-
lations establish synaptic contact with either the anterior (aAOB)
or posterior (pAOB) AOB, respectively. This separation is vis-
ible in the PC layer neuropil (linea alba, Larriva-Sahd, 2008).
In rodents the V1R and V2R pathways have been shown to
selectively respond to low molecular weight organic molecules
(Leinders-Zufall et al., 2000; Sugai et al., 2006) and high molecu-
lar weight compounds of peptidic nature, respectively (Leinders-
Zufall et al., 2004, 2009; Kimoto et al., 2005). Accordingly to this
functional dichotomy, differences in c-Fos expression patterns in
the two AOB regions have been observed after exposure to gen-
der related odors in male and female mice (Kumar et al., 1999;
Halem et al., 2001). Interestingly, in mice and rats (Peretto et al.,
2001; Oboti et al., 2009, but not in opossums Martínez-Marcos
et al., 2001), newborn cells reaching the AOB in physiological
conditions (no odor exposures) seem to be unequally distributed
along the rostro-caudal axis. This may reflect a differential rate
of development of the two AOB sub-regions or alternatively be
related to the V1R/V2R functions being subjected to differen-
tial adaptive pressures in a given eco-ethological niche (Suárez
et al., 2011a,b). Accordingly, recently a dual embryonic origin of
the AOB has been proposed (Huilgol et al., 2013). In this study,
Huilgol and coauthors showed that PCs in the pAOB derive from
the thalamic eminences at the diencephalic/telencephalic bound-
ary (DTB) from Lhx5 expressing neurons, as part of the amygdala,
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Table 1 | List of representative studies explicitly focused on VNO and AOB neurogenesis.

Species VNO AOB

Mouse (Mus musculus) Barber and Raisman, 1978 Hinds, 1968a,b
Monti-Graziadei, 1992 Bonfanti et al., 1997
Cappello et al., 1999 Oboti et al., 2009–2011
Giacobini et al., 2000 Veyrac and Bakker, 2011
Weiler, 2005 Sakamoto et al., 2011
Martinez-Marcos et al., 2005 Nunez-Parra et al., 2011
Murdoch and Roskams, 2008
Brann and Firestein, 2010
Enomoto et al., 2011

Rat (Rattus norvegicus) Monti-Graziadei, 1992 Altman and Das, 1966
Weiler et al., 1999a–2005 Altman, 1969
Inamura et al., 2000 Kaplan and Hinds, 1977
Martínez-Marcos et al., 2000 Kishi, 1987
Matsuoka et al., 2002 Bayer, 1983

Peretto et al., 2001
Corona et al., 2011
Portillo et al., 2012

Rabbit (Oryctolagus cuniculus) Othman, 2011 Personal observation
Guinea pig (Cavia porcellus) Personal observation
Hamster (Mesocricetus auratus) Ichikawa et al., 1998 Huang and Bittman, 2002

Taniguchi and Taniguchi, 2008
Opossum (Monodelphis
domestica)

Jia and Halpern, 1998 Shapiro et al., 1997

Shapiro et al., 1997 Martínez-Marcos et al., 2001
Wallaby (Macropus eugenii) Ashwell et al., 2008 Ashwell et al., 2008
Ferret (Mustela putorius furo) Weiler et al., 1999b
Bat (various spp.) Amrein et al., 2007 (OB)
Garter snake (Tamnophis sirtalis) Wang and Halpern, 1982
Striped snake (Elaphe
quadrivirgata)

Kondoh et al., 2012

Wall lizard (Podarcis hispanica) Garcia-Verdugo et al., 1989
Sampedro et al., 2008
Font et al., 2012

Red-eared slider (Trachemys
scripta elegans)

Pérez-Cañellas et al., 1997

Gecko (Tarentola mauritanica) Pérez-Cañellas and García-Verdugo,
1996

Clawed frog (Xenopus laevis)
No Hansen et al., 1998 Fritz et al., 1996

Higgs and Burd, 2001
Yes Endo et al., 2011
Salamander (Plethodon
cinereus)

Dawley et al., 2000

Dawley and Crowder, 1995
Japanese brown frog (Rana
japonica)

Taniguchi et al., 1996

Zebra fish (Danio rerio) Byrd and Brunjes, 2001 (OB)
Adolf et al., 2006 (OB)

Species in which neurogenesis in the VNS components of the olfactory system could be present are indicated italics.

BST and Cajal-Retzius neurons (Huilgol et al., 2013), while the
aAOB PCs share common origin with MOB mitral cells, as indi-
cated by Tbx21 expression in the OB primordium (Huilgol et al.,
2013). The DTB is evolutionary conserved in amphibians and

mammals indicating that the pAOB may be a residue of the earli-
est sensory systems originating from the thalamic eminences and
controlling olfactory responses in amphibians (Krug et al., 1993;
Huilgol et al., 2013). However, the apparent morphology of AOB
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granule cell layer does not reveal a similar dichotomy, as AOB
granule cells connectivity may be more ambiguous (Larriva-Sahd,
2008). Despite the different origin of pAOB projection neurons,
immature GABAergic interneurons of both the aAOB and pAOB
may include cells derived from the same Dlx2/5/6, Emx1, and
Meis2 lineages in the SVZ (Kohwi et al., 2007; Agoston et al.,
2013). Overall this suggests the existence of different regulatory
mechanisms locally specifying the phenotype of cells belonging
to the same neuronal lineage but integrating in different circuits
(aAOB vs. pAOB, but also AOB vs. MOB). Further understanding
of the underlying mechanisms would extend our knowledge of
the morphological and functional adaptations newborn neurons
may be capable of. In addition, given the functional segrega-
tion of the VNS circuits (V1R-aAOB, V2R-pAOB), different levels
of neuronal plasticity and neurogenesis may reflect a different
degree of adaptability to the diversity of chemical stimuli each
subsystem elaborates. However, despite the differences these fea-
tures may have a similar functional relevance for their proper
function.

PHENOTYPES OF NEWBORN NEURONS IN THE ACCESSORY
OLFACTORY BULB
New neurons migrating from the SVZ through the rostral migra-
tory stream, reach all AOB layers: glomerular (Gl), external
(ECL), and internal (ICL) cellular layers (Larriva-Sahd, 2008).
At present no detailed analysis has been made to identify
these cell types. Moreover, the presence in the MOB of newly
generated tbr2-derived glutamatergic cells (Brill et al., 2009)
and GABAergic-serotonergic (Inta et al., 2008) interneurons
has been recently proven, while in the AOB it remains to be
verified.

In the MOB, the cell types forming the glomerulus (juxta-
glomerular cells) are classified in periglomerular (PG), short axon
(SA) and external tufted (ET) cells, based on their neurochem-
istry, morphology, and connectivity. Juxtaglomerular cells can be
divided in two main GABAergic chemotypes based on the expres-
sion of different isoforms of the GABA synthesis enzyme—GAD-
65, GAD-67—together with other markers such as dopamine
(DA), or its synthesis enzyme tyrosine hydroxylase (TH), cal-
bindin, calretinin, and others (Shipley et al., 2004). Virtually all
dopaminergic neurons express GAD-67, while little if no over-
lap is present between the GAD-65 and the TH sub-populations
(Kiyokage et al., 2010). As typical SA cells, TH-GAD-67 neurons
innervate multiple glomeruli while GAD-65 neurons are mostly
monoglomerular with only few secondary processes directed to
other glomerular formations (Aungst et al., 2003; Kiyokage et al.,
2010).

In the AOB glomerular layer scarce if not absent GAD-67 stain-
ing has been reported together with almost complete lack of TH
expression (Mugnaini et al., 1984; Oboti et al., 2009). This possi-
bly indicates a predominance in the AOB of the monoglomeru-
lar GAD-65 chemotype. However, newly generated cells with
morphological features of both PG uniglomerular cells and SA
multiglomerular cells have been identified in the AOB (Oboti
et al., 2009) suggesting that the low levels of GAD-67 expression
do not necessarily imply the absence of SA-like cells (Mugnaini
et al., 1984; Larriva-Sahd, 2008).

In the MOB, dopaminergic PG cells are responsible of
thresholding mitral cell firing in response to olfactory inputs
(Pírez and Wachowiak, 2008). The lack of dopaminergic signal-
ing in the AOB may imply a minor need for gain control of
vomeronasal inputs on PCs being their firing threshold possibly
determined by input coincidence from heterotypical glomerular
afferents (Meeks et al., 2010).

Other inhibitory cells located more deeply in the AOB are
external and internal granule cells, located above and below the
lateral olfactory tract (LOT), respectively. Evidence showed the
vast majority of newborn cells reaching the AOB is represented
by internal granule cells (Oboti et al., 2009; Nunez-Parra et al.,
2011). In the ICL main accessory cells are also present (MACs,
Larriva-Sahd, 2008) and are distinguishable from granule cells by
larger soma and nuclear size and by their sporadic presence in
the LOT. Although newborn cells can be often found in the LOT,
their nuclear size was always comparable to normal granule cells
(external granule cells, in this case), thus limiting the likelihood
for MACs to be regenerated during adulthood.

Recently, in the rat MOB the presence of newborn neurons
in the external plexiform layer (EPL) has been proved (Yang,
2008). These neurons have been reported to be PV/CR express-
ing Van Gehuchten cells, multipolar cells and superficial SA cells
(Yang, 2008). Since DCX- and BrdU-positive cells can be found
in homologous locations in the AOB (ECL), the presence here of
these cell types is possible but yet to be investigated.

It is not known whether SVZ-derived interneurons migrating
to the AOB belong to the same lineage of those in the MOB.
It is possible that genetically distinct populations of interneu-
rons are heterogeneously distributed in the two OB sub-regions.
Recently, viral fate-mapping experiments revealed the mosaic
nature of the SVZ proliferative domains giving rise to differ-
ent and heterogeneous pools of GABAergic interneurons (Merkle
et al., 2007). However, upon inspection of the material used
in this study, no apparent regionalization of either aAOB- or
pAOB-committed progenitors was found (viral infected GFP+
cells were found in the AOB of mice injected at all SVZ lev-
els, personal observation). Interestingly, although most of new-
born AOB neurons labeled with BrdU coexpress NeuN at 4
weeks of age (80%) as in the MOB, the level of coexpression
with other interneuronal markers is much lower (BrdU/GABA,
BrDU/GAD-67, and BrdU/calretinin reach only about the 30%;
Oboti et al., 2009) (MOB: BrdU/GAD67 is about 80% in the
GrL and 30% in the GL; Parrish-Aungst et al., 2007). These
results indicate that the phenotype of AOB newborn neurons
is similar to the MOB but conserve some peculiarities speci-
fied either locally or in the SVZ. The different relative abun-
dance of morpho- and chemo-types in this structure, renders
the AOB an interesting circuit to study the differential role of
a given cell type in different compartments of the bulbar cir-
cuitry. For example by studying PC (AOB mitral cell homolog)
electrical responses to peripheral nerve stimulations it would be
possible to clarify to which extent SA cells in the AOB may be
dispensable—in case of their limited presence in this structure—
for a certain olfactory coding task, or—by comparison—which
specific function do they serve when present in other bulbar
circuits.
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SENSORY ACTIVITY-DEPENDENT SURVIVAL AND FUNCTION
OF NEWBORN CELLS
As shown by olfactory enrichment or deprivation studies, the
maturation and survival of newborn neurons in the MOB
depends on sensory inputs (Cummings et al., 1997; Rochefort
et al., 2002; Mandairon et al., 2006). Newborn neurons reach the
MOB in massive waves but are gradually selected during inte-
gration into local circuits (Petreanu and Alvarez-Buylla, 2002)
activated by sensory inputs (Magavi et al., 2005; Mouret et al.,
2008; Sultan et al., 2011a,b). Importantly, loss or ablation of
newborn neurons in the MOB can impair olfactory function
(Breton-Provencher et al., 2009; Mandairon et al., 2011) since
younger cells are preferentially involved in these circuits (Nissant
et al., 2009; Alonso et al., 2012).

Although renewing at a slower rate (Oboti et al., 2009), new-
born cells in the AOB are likely to similarly contribute to VNS
function. As in the MOB, sensory activity increases the survival
of newborn neurons in the AOB (Oboti et al., 2009, 2011; Nunez-
Parra et al., 2011). This effect is mediated by chemical cues present
in urine or bodily secretions (Nunez-Parra et al., 2011; Oboti
et al., 2011), it is abolished after VNO genetic functional abla-
tion in trpc2-ko mice (Oboti et al., 2011), it is persisting until 7
months of age (Nunez-Parra et al., 2011), and gives rise to neu-
rons responding preferentially to experienced odor stimuli (Oboti
et al., 2011).

The presence of gender related differences in AOB neuroge-
nesis is controversial (no differences in CD1 mice Oboti et al.,
2009, 2011; differences in B6 mice, Nunez-Parra et al., 2011).
However, the effect of odor experience on AOB neurogenesis
seems to be particularly evident in post-pubertal female mice
after male odor stimulation (Oboti et al., 2009, 2011; Nunez-
Parra et al., 2011). This seems particularly evident in the aAOB
upon chronic exposure to low molecular weight (LMW) chem-
ical cues present in male urine, which are mainly detected by
the V1R neurons (Oboti et al., 2011). Larger protein compounds
sensed through V2Rs are instead ineffective on neuronal survival
in neither of the two AOB regions (Oboti et al., 2011). However,
a lack of increase in surviving cells after sensory enrichment does
not necessarily imply the absence of a sensory dependent func-
tional recruitment of newborn elements, but only that the net
amount of surviving cells remains stable. Considering that social
odors are important primers on mice development and repro-
ductive behavior, these findings suggest a possible role of AOB
postnatal/adult neurogenesis in sensory processing in both gen-
ders. Accordingly, eliminating newborn cells in the whole bulb,
AOB included, Sakamoto and colleagues showed for the first time
an impairment in olfactory functions involving the VNS such
as predator-odor avoidance, aggression and mounting in males
(Sakamoto et al., 2011). A finding that has been extended to
VNO-dependent mate recognition in females (Oboti et al., 2011).
The effect of sensory inputs on AOB neurogenesis overall indi-
cates that newborn neurons play an active and possibly relevant
role on the vomeronasal circuitry during postnatal and adult life.

IMPACT OF NEWBORN NEURONS ON AOB CIRCUITS
A few comparative considerations with the MOB elementary
functional unit—the olfactory column—can be insightful in

defining the impact of newborn neurons on AOB network activ-
ity. The MOB olfactory column is considered equivalent to the
cortical columns and barrels in the visual and somatosensory
cortices (Shepherd, 2010). It comprises all OSNs projecting to a
single glomerulus, all the mitral and tufted cells extending their
dendrites to it and all the granule cells connected to these projec-
tion neurons. Granule cells can regulate mitral/tufted cell output
providing self inhibition through dendrodendritic synapses on
mitral cell lateral dendrites within the same column. In addi-
tion, they may exert lateral inhibition on adjacent columns by
shunting the propagation of action potentials on distal lateral
dendrites of extra-columnar mitral cells (Xiong and Chen, 2002).
This implies a dual role of granule cells on mitral/tufted cell
firing: through self-inhibition within the same column, granule
cells may act synchronizing the firing rate of projection neurons
belonging to different units while responding to the same sen-
sory input (Dhawale et al., 2010); through lateral inhibition on
extracolumnar mitral cells, granule cells may provide contrast
enhancement between two different functional units (as other
amacrine—axonless—cells in the retina for instance; Migliore
and Shepherd, 2008). Both effects have been hypothesized to
be relevant for olfactory discrimination (Migliore and Shepherd,
2008; Dhawale et al., 2010; see Lepousez et al., 2013 for a detailed
review on this hypothesis). Given the apparent lack of colum-
nar organization in the piriform cortex, this topological motif
in the bulbar circuitry probably reflects its cortical like function
and represents the modular unit encoding the diversity of olfac-
tory inputs (Haberly, 2001; Migliore et al., 2007). Importantly, the
constant re-adjustment of the synaptic inputs caused by renewal
of both local interneurons and olfactory fibers has been associated
with an optimization of this function (Alonso et al., 2006; Jones
et al., 2008; Adam and Mizrahi, 2011).

The AOB appears structurally similar to the MOB, although
it retains some peculiar features in both hodology and cell types.
However, the occurrence of similar plastic events in both struc-
tures motivates the same reasoning done for the MOB. Olfactory
glomeruli in the AOB are on average smaller than those in
the MOB and appear to be clustered in pseudostratified for-
mations. Contrarily to MOB glomeruli, they receive multiple
inputs from different types of VSNs (Takami and Graziadei,
1991; Belluscio et al., 1999; Del Punta et al., 2002), with V1Rs
projecting only to the aAOB and V2Rs to the pAOB. In addi-
tion, neurons expressing the same receptor/s in the VNO, may
project to up to 20–30 different glomeruli (Belluscio et al.,
1999), while same-receptor OSNs in the MOE project mainly
to two symmetrical glomeruli in the MOB. This conserved pat-
tern seems to underlie a higher degree of input convergence
on MOB projection neurons and therefore functional special-
ization of each olfactory column in the MOB (Hildebrand and
Shepherd, 1997; Su et al., 2009; Touhara and Vosshall, 2009) as
mitral cells project to a single glomerulus, therefore receiving
afferents from OSNs expressing the same receptor. Conversely,
AOB PCs reach multiple glomeruli receiving inputs from dif-
ferent VSNs (a feature shared with the OB of fishes: Ngai
et al., 1993; Speca et al., 1999). However, AOB projection neu-
rons maintain V1R/V2R segregated apical dendritic arboriza-
tions depending on their location in the aAOB and pAOB
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(Jia and Halpern, 1997). Nonetheless, a cross talk may exist
between aAOB and pAOB principal cells via thinner lateral den-
drites crossing the midline (Larriva-Sahd, 2008). As a result of
their heterotypic connectivity, AOB PCs integrate inputs from
different receptor types in the VNO and therefore different
ligands. Slice recordings on ex-vivo VNO-AOB intact prepara-
tion showed that this is indeed the case (Meeks et al., 2010).
Juxtaglomerular complexes in the AOB resemble the functional
triads described in the MOB: PG and SA cells have inter- and
intra-glomerular projections, external tufted cells contact a single
glomerulus.

The limited extent by which AOB PGs are regenerated by
SVZ-derived progenitors, together with the above mentioned
lack of TH, could be explained by the lack of TH/GAD-
67 cells in the AOB. Alternatively, since TH expression levels
in PGs are traditionally used as a proxy for olfactory input
(Nadi et al., 1981; Baker et al., 1983; Cho et al., 1996) and
VNO activity is subordinated to initial odor detection by the
MOE (Xu et al., 2005; Slotnick et al., 2010), the lack of
TH and GAD-67 in the AOB could be just a consequence
of the irregular nature of vomeronasal inputs. The expres-
sion patterns of other activity markers (such as cytochrome-c-
oxydase or β-secretase-1) in the AOB glomerular layer resemble
those in the MOB during sensory deprivation and therefore
could support this hypothesis (Yan et al., 2007; He et al.,
2014).

Conversely, granule cells in the AOB are the most repre-
sented cell type among newly generated neurons (Oboti et al.,
2009; Nunez-Parra et al., 2011). They are typically located in
the deep ICL (below the LOT) but also in the deeper portion
of the ECL and in the LOT, just below PC somata. They project
to PC dendrites belonging to the homologous region (aAOB or
pAOB), but considering that PC axon collaterals cross repeat-
edly the two sub-regions, they could receive synaptic inputs
from both. In addition their apical dendrites seem to reach the
glomerular layer (Larriva-Sahd, 2008), although it is not clear
whether they interact synaptically with the juxtaglomerular com-
plex. Interestingly, while EGC dendritic processes appose on PC
somata or proximal dendrites, those from IGC seem to localize
preferentially on distal and apical processes, between glomeruli
and PC somata (Larriva-Sahd, 2008), a feature confirmed by EM
studies (Moriya-Ito et al., 2013). This distinction may imply a
bias for AOB IGCs toward PC self-inhibition, instead of inter-
columnar lateral inhibition. Eventually, since the vast majority
of newly generated cells in the adult AOB are IGC, it is appeal-
ing to imagine neurogenesis in the AOB as a mechanism to
shunt directly input signals from the VNO. Given the variable
turnover rate of IGCs during postnatal development, this fea-
ture alone would be sufficient to justify changes in the response
to vomeronasal sensory cues over time. In addition, given that
both the survival and activation of newborn neurons is actively
driven by vomeronasal sensory inputs, this selective shunting
may contribute to encode stimulus familiarity. In general, a
change in IGC turnover rate, together with other physiologi-
cal changes, may set the timing for certain stimuli to be more
or less effective as social signals or endocrine modulators (e.g.,
effect of male urine odors on female estrous varying depending

on kinship or shared fostering). Ultimately, this could repre-
sent a possible answer to the question posed by the title of this
manuscript.

Overall these observations suggest that newly generated
GABAergic interneurons differently contribute to mature AOB
circuits, if compared to the MOB. The different nature of
GABAergic modulation of AOB output signals is further sup-
ported by the firing of AOB PCs, which appears to be longer
sustained, if compared to MOB mitral cells (Meeks et al.,
2010; Shpak et al., 2012). In addition, given PC heteroge-
neous glomerular connectivity and the convergence of their
centripetal projections to more central targets (Salazar and
Brennan, 2001), the information conveyed by their output sig-
nals is also different, and probably more complex. As a direct
consequence and in the whole system perspective, the impact
newborn IGCs have on PC output activity may definitely
be higher than that of granule interneurons on MOB mitral
cells.

CONCLUSIONS
Overall the considerations made in this manuscript are meant
to underline that the VNS is not only constitutively plastic but
also that this plasticity may constitute the basis for its pecu-
liar function. Eventually the VNS circuitry cannot be considered
hardwired but rather able to adjust its connectivity to environ-
mental changes. If the function of the VNS described so far
(see for critical views on this point Eisthen and Wyatt, 2006;
Mucignat-Caretta et al., 2012) is the result of the interaction
between plastic circuits and environmental stimuli, is definitely
not known and certainly deserves further investigation. Plausibly
neuronal plasticity and neurogenesis are indeed necessary to
shape it and maintain it throughout postnatal life. Eventually dif-
ferent rates of neurogenesis can determine the extent by which
VNS circuits adapt and tune to a given chemical environment,
being it referred to social, reproductive, or aggressive/territorial
behaviors. Even though the VNS is not simply the pheromone-
detector in the nasal cavity of mammals or other vertebrates
(Eisthen and Wyatt, 2006), it would be a challenge of future stud-
ies to test the impact of neuronal plasticity and neurogenesis
on those functions, commonly associated to pheromone sensing.
Indeed studying the molecular and genetic mechanisms underly-
ing the neuroendocrine physiology of sociality may yield insights
on the etiology of associated anomalies, even in those mam-
malian species, human included, in which this sensory pathway
is not present. For this reason the rodent VNS may repre-
sent the unique opportunity to dissect this issue in an animal
model in which these features strongly rely on its functional
integrity and—plausibly—its capability of cell renewal through
adult neurogenesis.
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