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Brain-Machine Interfaces (BMIs) can be used to restore function in people living with
paralysis. Current BMIs require extensive calibration that increase the set-up times
and external inputs for decoder training that may be difficult to produce in paralyzed
individuals. Both these factors have presented challenges in transitioning the technology
from research environments to activities of daily living (ADL). For BMIs to be seamlessly
used in ADL, these issues should be handled with minimal external input thus reducing
the need for a technician/caregiver to calibrate the system. Reinforcement Learning (RL)
based BMIs are a good tool to be used when there is no external training signal and
can provide an adaptive modality to train BMI decoders. However, RL based BMIs are
sensitive to the feedback provided to adapt the BMI. In actor-critic BMIs, this feedback
is provided by the critic and the overall system performance is limited by the critic
accuracy. In this work, we developed an adaptive BMI that could handle inaccuracies in
the critic feedback in an effort to produce more accurate RL based BMIs. We developed
a confidence measure, which indicated how appropriate the feedback is for updating the
decoding parameters of the actor. The results show that with the new update formulation,
the critic accuracy is no longer a limiting factor for the overall performance. We tested
and validated the system onthree different data sets: synthetic data generated by an
Izhikevich neural spiking model, synthetic data with a Gaussian noise distribution, and data
collected from a non-human primate engaged in a reaching task. All results indicated that
the system with the critic confidence built in always outperformed the system without the
critic confidence. Results of this study suggest the potential application of the technique
in developing an autonomous BMI that does not need an external signal for training or
extensive calibration.
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INTRODUCTION
In recent years, Brain-Machine Interfaces (BMIs) have been
shown to restore movement to people living with paralysis via
control of external devices such as computer cursors (Wolpaw and
McFarland, 2004; Simeral et al., 2011), robotic arms (Hochberg
et al., 2006, 2012; Collinger et al., 2013), or one’s own limbs
through functional electrode stimulation (FES) (Moritz et al.,
2008; Pohlmeyer et al., 2009; Ethier et al., 2012). Studies have
shown that the BMI control can be affected by several factors such
as the type of neural signals used (Wessberg et al., 2000; Mehring
et al., 2003; Andersen et al., 2004; Sanchez et al., 2004), long-
term stability of the input signals (Santhanam et al., 2006; Flint
et al., 2013), type of training signals used for decoders (Miller and
Weber, 2011), type of decoders (linear, non-linear, static, adap-
tive) (Kim et al., 2006; Shenoy et al., 2006; Bashashati et al., 2007;
Li et al., 2011), and cortical plasticity that occurs during BMI
use (Sanes and Donoghue, 2000; Birbaumer and Cohen, 2007;
Daly and Wolpaw, 2008). Other factors include the type of signal
used [local field potentials (LFPs), electrocorticograms (ECoG),

single or multiunit activity] and the long-term stability of the
signals (Schwartz et al., 2006; Chestek et al., 2011; Prasad et al.,
2012). Additionally, the performance can also be affected by per-
turbations such as loss or gain of neurons, noise in the system,
electrode failure, and changes in the neuronal firing characteris-
tics (Maynard et al., 1997; Shoham et al., 2005; Patil and Turner,
2008; Pohlmeyer et al., 2014). These factors occur dynamically in
nature and affect long-term BMI performance. Therefore, there is
a need to produce more stable, high performance BMIs that are
less affected by these daily changes in the neural input space due
to the above interactions so that they can be reliably implemented
in activities of daily living (ADL).

Traditionally, BMIs utilize a decoder that translates neural
signals into executable actions by finding the mapping between
the neural activity and output commands. Due to the non-
stationarity of the neural data (Snider and Bonds, 1998), many
of these decoders need to adapt its parameters in order to find
an optimal mapping between the neural control signals and the
output motor actions. Commonly used decoders (such as Wiener

www.frontiersin.org May 2014 | Volume 8 | Article 111 | 1

Maureen Clerc, Institut National de
la Recherche en Informatique et
Automatique, France
Kaitlin Elizabeth Cassady, University
of Minnesota, USA

*Correspondence:

Noeline W. Prins, Neuroprosthetics
Research Group, Department of
Biomedical Engineering, University
of Miami, 1251 Memorial Drive,
MEA 203, Coral Gables, FL 33146,
USA
e-mail: n.prins@umiami.edu

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2014.00111/abstract
http://community.frontiersin.org/people/u/64954
http://community.frontiersin.org/people/u/98685
http://community.frontiersin.org/people/u/9279
mailto:n.prins@umiami.edu
http://www.frontiersin.org
http://www.frontiersin.org/Neuroprosthetics/archive


Prins et al. Confidence metric to improve RL BMIs

models and Kalman filters) are trained using supervised learn-
ing (SL) techniques that require a training data set and a desired
output value, which is usually a real or inferred kinematic sig-
nal from a limb (Schalk et al., 2007; Gilja et al., 2012). However,
this paradigm poses challenges for paralyzed individuals who may
not be able to generate a training kinematic signal in order to cre-
ate a stable mapping between the motor control signals to BMI
command outputs. Maladaptive cortical reorganization occurring
due to non-use of the paralyzed limbs further worsens the reli-
able extraction of training kinematic signals in such individuals
(Elbert and Rockstroh, 2004; Di Pino et al., 2012). Studies have
used motor imagery, baseline neural activity, random initializa-
tion of the decoder, and ipsilateral limb movements to create
training signals that can be used to initialize the BMI decoder and
then refine the decoder during the experiment (Pfurtscheller and
Neuper, 2001; Bai et al., 2010). All these approaches are based
on the SL paradigm where the presence of an external training
signal is critical to achieve optimal BMI control and requires ini-
tial time-consuming calibration (which can range from 10 min to
about an hour) of the BMI decoder before each session to adapt
to the perturbations in the neural environment.

Unsupervised learning (UL) techniques provide an alterna-
tive to SL models as they only rely on the structure of the input
data and finds patterns within the data itself (Shenoy and Rao,
2005; Rao, 2010; Vidaurre et al., 2011; Gürel and Mehring, 2012).
This is particularly useful for BMI applications where the user
may not be able to generate reliable kinematic signals and the
input signals are affected by the changing dynamics of the neural
environment. However, if the input space changes in an unpre-
dictable manner or there are perturbations present unsupervised
decoders may not be mapped appropriately to the behavior since
they rely on the structure of the training data. For example, k-
means, an unsupervised clustering method uses the structure of
the training data to define clusters. When the statistics of the
data change between training and testing, an optimal solution
is not guaranteed (Fisher and Principe, 1996; Snider and Bonds,
1998; Antoni and Randall, 2004). Therefore, in order to address
these challenges we have utilized a semi-supervised learning tech-
nique based on Reinforcement Learning (RL), which depends
on performance outcomes and not on explicit training signals
(Sutton and Barto, 1998). In comparison to SL techniques, RL
uses an instantaneous feedback to modify its parameters but does
not require an explicit training signal. Since there is a structure
already present (due to its feedback) RL is able to respond to per-
turbations better than UL. The basic idea of RL is for an “agent”
to make actions on an “environment” and receive an instanta-
neous “reward” in order to maximize the cumulative or long term
reward the “agent” receives. In this case, the “agent” is an intelli-
gent system (e.g., BMI decoder), which selects an action out of
many available actions with an aim to maximize the long-term
reward. An action will change the state of the environment (action
space) from one state to another, for example, move left or move
up. The “reward” is the evaluation of the action selected depend-
ing upon its outcome. A good outcome will lead to a high reward
and vice versa.

Theoretical models of learning have been developed for dif-
ferent brain areas which suggest that the cerebellum, the basal

ganglia, and the cerebral cortex are specialized for different types
of learning (Houk and Wise, 1995). SL, based on an error sig-
nal has been proposed to be handled by the cerebellum, while
the cerebral cortex is specialized for UL and the basal ganglia are
specialized for RL based on the reward signal (Doya, 2000). We
used a particular class of RL known as the actor-critic RL in this
study, which provides us with a framework to obtain the reward
feedback from a different source than that of the action. The
“actor” makes decisions of which action to choose from, while
the “critic” gives feedback on the appropriateness of this deci-
sion. In other words, the critic criticizes the choice made by the
actor. In contrast to SL decoders, RL does not need an explicit
training signal. RL also gives a framework for adding more bio-
logical realism into the structure of the decoder design. We have
shown earlier an actor-critic RL as a framework for using an
evaluative feedback in neuroprosthetic devices (Mahmoudi and
Sanchez, 2011). This framework provides a structure where a
user and the agent can both co-exist and work toward a com-
mon goal. We have also shown how convergence, generalization,
accuracy and perturbations take place in a Hebbian RL frame-
work (Mahmoudi et al., 2013) and that adaptation is necessary
for maintaining BMI performance following neural perturbations
(Pohlmeyer et al., 2014). In these studies, the actor was driven
by the motor neural data and the critic feedback was computed
by comparing the action taken to the desired action. The drive
is to move toward an autonomous BMI which does not need to
know the desired action and would not need an external train-
ing signal of any kind. Therefore, to bring biological realism for
building a fully autonomous BMI system, we have investigated the
possibility of using a reward signal from the brain itself to drive
the critic (Prins et al., 2013). There are multiple reward areas in
the brain, which can be used to extract such information such as
the striatum (Phillips, 1984; Wise and Bozarth, 1984; Wise and
Rompré, 1989; Schultz et al., 1992, 2000; Tanaka et al., 2004),
cingulate (Shima and Tanji, 1998; Bush et al., 2002; Shidara and
Richmond, 2002), and orbitofrontal cortices (Rolls, 2000; Schultz
et al., 2000; Tremblay and Schultz, 2000); most notably the stria-
tum that is involved in the perception action reward cycle (PARC)
(Apicella et al., 1991; Pennartz et al., 1994; Hollerman et al., 1998;
Kelley, 2004; Nicola, 2007), which is the circular flow of infor-
mation from the environment to sensory and motor structures
and back again to the environment completing the cycle during
the processing of goal-directed behavior. All adaptive behaviors
require the PARC and the control of goal-directed actions relies
on the operation of such an information-movement cycle. A critic
driven by such a biological source (biological critic) would not
only be mimicking a biological system and adding more biolog-
ical realism, but also render toward an autonomous BMI which
does not need a training signal; however, the challenge is how to
incorporate a biological critic in to this actor-critic RL framework
to maximize the BMI performance. We have found from prelim-
inary analysis that the reward signals and reward representations
are diverse and leads to lower accuracy when classified. This is
due to the finding that the overall performance of the decoder
model is limited by the critic accuracy (Pohlmeyer et al., 2014).
This occurs because updating the system with wrong feedback
perturbs the temporal sequence of the RL trajectory and can lead

Frontiers in Neuroscience | Neuroprosthetics May 2014 | Volume 8 | Article 111 | 2

http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


Prins et al. Confidence metric to improve RL BMIs

to a suboptimal decoding solution. When the critic feedback is
less than perfect, the actor is only able to achieve an accuracy
with the critic accuracy as its upper limit (Pohlmeyer et al., 2014).
Therefore, there is a need to develop a framework that can han-
dle inaccuracies due to uncertainty in the critic feedback so that a
biological critic can be used to drive an autonomous BMI.

In this study, we developed a novel method for decoupling the
overall performance from the accuracy of the critic by adding
a confidence measure in the critic feedback. Using this method,
the system only updates when the critic is accurate. The accu-
racy can be derived from the distance to the boundary for the
decision surface for rewarding and non-rewarding actions. We
performed simulations for this novel method on both synthetic
and non-human primate (NHP) data to show that the overall
performance can be increased above the critic accuracy to cre-
ate high performance BMIs. We used a two-choice task to show
proof of concept that a system with built-in confidence measure
is able to perform significantly better than a system without the
confidence measure. Such a system can be expanded to complex
tasks that include a larger number of targets where the critic out-
put is still in the form of two states similar to one shown in this
study (Mahmoudi et al., 2013). This new method of confidence
driven updates is particularly effective when the accuracy of the
biological critic is low.

METHODS
HEBBIAN REINFORCEMENT LEARNING
We used the actor-critic RL paradigm to test our decoder in which
the BMI decoder that decodes the action is embedded within
the actor architecture itself. We modified the weight updates
according to the Hebbian rule, called the Hebbian Reinforcement
Learning (HRL) (Pennartz, 1997). RL learns by interaction to
map neural data to output actions in order to maximize the
cumulative reward. For this, there are two functions: the value and
policy functions. The value function provides the reward value
and the policy function provides a method of choosing from a
variety of available actions. In actor-critic RL, the structure is such
that the policy is independent of the value function. The policy is
given by the “actor” and the value function is given by the “critic”
(Sutton and Barto, 1998). The actor chooses which action to exe-
cute out of the many actions possible and the parameters of the
actor is changed according to the evaluative feedback given by the
critic (Figure 1A).

The Hebbian learning rule specifies how much the weights
between two neurons must be changed in proportion to their acti-
vation (Pennartz, 1997; Bosman et al., 2004). HRL is a class of
associative RL where the local presynaptic and postsynaptic activ-
ity in the network is correlated with a global reinforcement signal
(Gullapalli, 1991; Kaelbling, 1994). Figure 1B shows the network
structure we are using for our model where the actor is an artifi-
cial neural network (ANN) with 3 layers. The input layer receives
motor neural data and the output layer gives the value for each
action available. Each processing node in the output layer repre-
sents one possible action. The policy we are using is the “greedy
policy,” which says that the action with the highest value is cho-
sen and implemented. Each node in the hidden and output layers
is a processing element (PE). Each of these PE has Equation 2

FIGURE 1 | Architecture of the actor-critic reinforcement learning (RL).

(A) Classical actor-critic RL architecture as adapted for Brain-Machine
Interface (BMI). The actor maps the neural commands into actions to
control the external device. The actor is driven by the motor neural
commands. The critic gives an evaluative feedback about the action taken
based on its reward. This evaluative feedback is used to update the weights
of the actor. The critic is driven by the neural data from the striatum for an
autonomous BMI. (B) Actor network structure in the actor-critic RL; fully
connected feed forward neural network with binary nodes, with 5 nodes in
the hidden layer. The policy function used is the “greedy” policy which
selects the node with the highest value at the output layer and channels
that action to the environment. The critic gives an evaluative feedback to all
nodes in the output and hidden layers. This modulates the synaptic weight
updates based on the local pre- and postsynaptic activity.

in its entirety which is known as the associative reward-penalty
algorithm in adaptive control theory (Barto and Anandan, 1985).
The input to each PE is xi (firing rate of the neuron i in a given
bin) and the output is xj. For the output node j, with the transfer
function f (·), xj is given by

xj = sgn
[
Pj
] = sgn

[
f

(∑
i

wijxi

)]
(1)

Where Pj = f
(∑

i wijxi
)
. We have used a hyperbolic tangent as the

transfer function. The weight update rule for HRL is given by:

�ωij = μ+r
(
xj − Pj

)
xi + μ− (1− r) (1− xj − Pj)xi (2)

where the reward, r evaluates the "appropriateness" of the PE’s
output (−1 ≤ r ≤ 1), xj, due to the input xi. μ+ and μ− rep-
resent the learning rates for the reward and penalty components,
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respectively (Mahmoudi et al., 2013). The first term corresponds
to the reward and the second term corresponds to the penalty.
There are two unique cases for this equation. The first case is
when r = 1, there is contribution only from the first term and
the weight update equation (Equation 2) becomes:

�ωij = μ+r
(
xj − Pj

)
xi (3)

This means that in rewarding trials (r = 1), only the positive com-
ponent contributes to the weight update. But in non-rewarding
trials (r = −1), both terms contribute and the system is more
sensitive to the negative feedback. The second case is when Pj

approaches xj there is contribution only from the second term,
hence the weight update becomes:

�ωij = μ− (1− r) (1− xj − Pj)xi (4)

In this case, the system will only adapt for negative feedback.
When both the above conditions are achieved, (r = 1and Pj →
xj), the weights will not update further. During instances where
there is no weight update, the system has consolidated the func-
tional relationship between input and output. Unless and until
there is a negative feedback, the system will not update further.

CRITIC CONFIDENCE
The decoder in the actor incorporated a confidence measure that
indicated the accuracy of the critic. This was motivated by our
previous findings that the overall performance of the system was
affected by the critic accuracy (Pohlmeyer et al., 2014) and that
the accuracy of extracting reward signal from the neural data was
less than 90% (Prins et al., 2013). The formulation adds an addi-
tional term in the HRL weight update equation (Equation 2),
which indicated how much confidence the critic had in the feed-
back value. We defined this term as the confidence (ρ) and hence,
the modified HRL weight update equation (Equation 2) becomes:

�ωij = μ+ρr
(
xj − Pj

)
xi + μ− (1− ρr) (1− xj − Pj)xi (5)

where ρ is the confidence in the feedback, r. Here, the critic
determines the appropriateness of the action taken by the actor.
The critic gives an output of ±1 (r = ±1) indicating if it was
an action to be rewarded or penalized. In addition, the critic
also gives a value of the confidence (ρ) it has on the feedback
given. If the confidence is high, the actor is updated but if it
is low, the actor is not updated. This is to be determined by
the value of ρ given by the critic. Depending on the confidence
given after each action is taken, the actor weights are updated
only when the critic confidence is high. Since noise in feedback
data can tend to add uncertainty closer to the decision bound-
ary, more noisy data can result in lower levels of confidence and
the actor weights are not updated as frequently. This system how-
ever, does not address the problem of mislabeled critic trials (i.e.,
wrong feedback with high confidence). By not updating (i.e.,
not changing the weights) when the confidence in critic feed-
back is low, it provides a mechanism for preventing inaccuracies
from entering into the system. The trade-off for this approach

is that the number of samples needed to train the system can
be more since every sample may not be used if the confidence
is low.

In the simulations, we varied the critic accuracy from 50 to
100%. An N% accurate critic means that (1-N)% of the time it
will be incorrect. The actor is blind to N, but for these simula-
tions we provided boolean confidence information to the actor
(ρ = {0, 1}). Thus, in these simulations, the actor with confi-
dence does not know how accurate the critic is, but knows exactly
when the critic provided accurate feedback. This actor does not
adapt at all if the feedback was inaccurate (i.e., ρ = 0). In con-
trast, the standard actor (without confidence) adapts fully to both
the accurate and inaccurate feedback.

GENERATING NEURAL DATA
We generated synthetic neural data and tested it on the HRL
update equation both without (Equation 2) and with confidence
(Equation 5) to compare the system performance. The perfor-
mance in each session was quantified by the number of correct
actions for that particular session. For synthetic data,one session
was considered as one simulation and each session consisted of
100 trials (actions). We also included additional noise by changing
the stimulus (how the synaptic current, I, is generated in Equation
6). For each different set of I, we generated data, performed the
simulations and tested the performance. Finally, we tested the
robustness of the model by using neural data from a NHP per-
forming a two choice reaching task and compared performance.
For the NHP data, one simulation consisted of 97 trials collected
over 2 consecutive days. The results presented are a mean of 1000
simulations for both synthetic and NHP data.

Generating MI synthetic data for the actor
The synthetic neural data used to test the model was generated
by the standard Izhikevich method (Izhikevich, 2003) where the
model was given by

v′ = 0.04v2 + 5v + 140− u+ I (6)

u′ = a (bv − u) (7)

with the auxiliary after-spike resetting

if v ≥ +30 mV then

{
v ← c
u ← u+ d

(8)

Here v was the membrane potential of the neuron and u rep-
resents a membrane recovery variable, which accounted for the
activation/inactivation of ionic currents, and it provided nega-
tive feedback to v. After the spike reached its apex (+30 mV),
the membrane voltage and the recovery variable were reset.
The synaptic current is given by the variable, I, which was
calculated from the stimulus of “1” for spike and “0” at all
other times. For excitatory cells, a = 0.02, b = 0.2, (c, d) =
(−65, 8)+ (15,−6) · e2 where e is a random variable uniformly
distributed, e ∈ [0, 1] (Izhikevich, 2003). We generated two
motor states (motor state 1 and motor state 2) using the above
model to depict two actions. The neural data was generated in
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3 ensembles, one ensemble each tuned to one state (activity of
the particular ensemble correlated with one state) and the third
ensemble not tuned to either state simulating noise in real neural
data.

Neural perturbations—additional noise in data
While the synthetic data was generated using a biologically realis-
tic model, there are dynamic factors, which contribute to forms
of noise not considered in the model. These are factors such
as neurons dropping, electrodes deteriorating or breaking and
encapsulation. Without making the model more complicated to
mimic the noisy physiological system, we introduced additional
noise to the synthetic data by adding a probability component
to the stimulus, which generated the I in Equation 6. The actual
value of noise in the stimulus was decided by a Gaussian distribu-
tion instead of the “1” or “0” as before. The number of neurons
with this additional noise was varied from 0 to 100% in 10%
increments. This additional probability component resulted in
overlapping classes; the higher the probability component, more
overlapping in the states generated. This was verified graphically
using the first two principal components and confirmed that
as the probability component to generate I was increased, the
overlapping of the two classes also increased.

Simulations using NHP data
To validate our simulation results, a two choice decision mak-
ing task was designed and neural signals were acquired while the
monkey performed the task. We varied the critic accuracy from 50
to 100% in 10% increments and evaluated the performance. The
experiments were conducted by a marmoset monkey (Callithrix
jacchus) implanted with a 16 channel microwire array (Tucker
Davis Technologies (TDT), Alachua, FL) targeting the hand and
arm region in the primary motor cortex (MI). Neural data was
acquired at 24,414.06 Hz using a TDT RZ2 system and band-
pass filtered 300–5000 Hz. Thresholds were set manually by the
experimenter and 20 multi-unit signals were isolated in real-time
based on waveform and amplitude of the isolated waveforms. We
did not distinguish between single unit and multi-unit activity.
All the procedures were consistent with the National Research
Council Guide for the Care and Use of Laboratory Animals and
were approved by the University of Miami Institutional Animal
Care and Use Committee.

The task was a two-choice decision making task where the
monkey was trained to move a robot arm to one of two targets
to receive a food reward (Figure 2). A trial was initiated by the
monkey when he placed his hand on a touchpad for a random
(700–1200 ms) hold period. The trial onset was an audio cue that
corresponded to a robot arm moving upwards from behind an
opaque shield and presenting its gripper in front of the animal.
The gripper held either a desirable (waxworm or marshmal-
low, “A” trials) or undesirable (wooden bead, “B” trials) object.
Simultaneously, the A (red) or B (green) spatial target LED corre-
sponding to the type of object in the gripper was illuminated. For
A trials, the monkey had a 2 s window to reach to a second sen-
sor to move the robot to A, while for B trials, he was required to
keep his hand still on the touchpad for 2.5 s and the robot would
move to B target. If the robot moved to the target illuminated, for

both A and B trials, the monkey received a food reward. If the ani-
mal either did not interact with the task or performed the wrong
action, these trials were removed from the analysis. The firing rate
over a 2 s window following the trial start cue was used as input
to the decoder.

RESULTS
We tested the model using 3 different data sets in one-step (classi-
fication) mode. Data sets used were: (1) synthetic data generated
by an Izhikevich neural spiking model, (2) synthetic data with a
Gaussian noise distribution, and (3) data collected from a non-
human primate engaged in a reaching task. We varied the critic
accuracy from 50 to 100% and ran two sets of simulations (S1 and
S2) for each of the three data sets; S1, updated the actor at every
trial and S2 updated only when the critic feedback was correct
(i.e., confidence high). This was performed to compare whether
it was better to adapt after each trial or only when the critic feed-
back was correct. For the purpose of these simulations, we used
the correct critic feedback to indicate a high confidence of “1”
and an incorrect critic feedback to indicate a low confidence of
“0.” This can be determined empirically by the critic data that
would require an in-depth evaluation, which was not the focus
of this study. Since the decoder started at a naïve state, we used a
pseudo-real time normalizing of the inputs before feeding to the
network. This prevented any bias due to the difference in the mag-
nitude of the inputs. This was done by keeping a real time record
of the highest firing rate detected for each input, and then used to
continually update the normalization parameters throughout the
session (Pohlmeyer et al., 2014).

COMPARISON OF ACTOR’S PERFORMANCE WITH AND WITHOUT
CONFIDENCE MEASURE
Figure 3A shows how the performance level increased as the critic
accuracy increased. The actor which was updated every time is
shown in blue. The performance was always below the 1:1 curve
showing how the actor performance is limited by the critic accu-
racy. However, the performance of the system where the actor
was updated only when the critic was confident (shown in red)
was able to perform above the critic accuracy level as seen in the
figure. The performance increased from 50% (±6.6%) to 70%
(±8.8%) at critic accuracy of 50% and further improved from
87% (±10.4%) to 92% (±6.9%) at critic accuracy of 90%. A
critic accuracy of 90% means that the critic gave a correct feed-
back 90% of the trials and wrong feedback 10% of the trials. For
example, in our simulations each consisting of 100 trials, a 70%
accurate critic gave correct feedback in 70 trials and wrong feed-
back in 30 trials. If there was no confidence built-in, the actor
assumes that the value was always correct. In this new system
with confidence built in, we reduced the confidence of the wrong
feedback to zero. At lower critic accuracies (50, 60, and 70%),
the system with the confidence outperformed the system without
the confidence by approximately 20%. The performance of the
two systems showed significant difference for all critic accuracy
levels from 50 to 90% (Student’s paired t-Test, with a two-tailed
distribution, alpha 0.001—shown with ∗ in the figure). By updat-
ing weights accurately, the system learned optimal mapping and
stabilized with time. Given that the system began with random
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FIGURE 2 | The experiment where the monkey controls the robot arm.

(A) A trials associated with a motor high and the left target. Sequence of
events (a) monkey triggers trial (b) Robot moves out from opaque screen,
target A lights up (c) Monkey makes arm movement (d) Robot moves to

target A. (B) B trials associated with a motor low and the right target.
Sequence of events (a) monkey triggers trial (b) Robot moves out from
opaque screen, target B lights up (c) Monkey keeps hand still (d) Robot
moves to target B.

FIGURE 3 | (A) Performance of the BMI Vs the critic accuracy with and
without confidence inbuilt. (mean ± standard deviation. One thousand
simulations. One hundred trials per simulation). Red: New update rule with
confidence. Blue: Previous method with no confidence. Black: 1:1
relationship. Critic accuracy was varied from 50 to 100% with 100% being the
best. ∗Shows the values which showed statistical significant difference (alpha

0.001). The overall performance of the blue curve is limited by the accuracy of
the critic but the overall performance of the red curve is able to go beyond
the critic accuracy, decoupling the performance from the critic accuracy. (B)

Stability of the system without (green/blue) and with (purple/red) confidence.
Plot shows the number of simulations that maintained 100% accuracy
beyond 50 trials (green/purple) and beyond 70 trials (blue/red).

initial conditions, there was no guarantee that the system would
stabilize. Figure 3B gives a summary of the number of simula-
tions out of 1000 that stabilized after 50 trials and 70 trials with
and without the confidence. The convergence or stability was
defined as maintaining 100% accuracy (last 50 trials or last 30 tri-
als). The number of simulations that did stabilize at lower critic
accuracies was higher for the system with the confidence mea-
sure. At higher critic accuracy levels, the overall performance was
no longer limited by the critic accuracy but by the data itself.
As the critic confidence increased, the difference in performance
between the two systems became smaller and converged to a sin-
gle value (94± 5.8%) since at 100% critic accuracy, both systems
effectively have the same update equation.

Figure 4 shows the details of the action selected in each trial
and also the critic values for that particular trial. Figure 4A has
two sets of simulations S1 and S2 and Figure 4B also has two
sets of simulations S1 and S2. Each simulation started with ran-
dom initial conditions. Figures 4A,B shows two such examples
with two different critic accuracy levels. The critic accuracy was
changed randomly based on the percentage given to the decoder.
In Figure 4A, the critic is 60% accurate and the top subplot shows
the performance of the system if the actor was updated every time
(S1). The overall performance in this case is 47%. The first trial
was correct, but the critic gave a wrong feedback and the actor
weights were updated with this erroneous feedback causing the
second trial to be wrong. When the critic gave a correct feedback
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FIGURE 4 | Performance of each decoder during the length of the

experiment for one simulation starting at random initial conditions.

One hundred trials. Red: Action 1, Blue: Action 2, Black: Critic. (A) Critic
accuracy 60%. Both decoders perform correctly in the first trial but the
critic gives a wrong feedback. The first system changes the weights
causing the second trial to be wrong. Again, the critic gives a wrong
feedback causing the third trial also to be wrong. Since the system weights
are updated every time, wrong critic feedback causes the system to
perform below the critic accuracy. However, in contrast even though the
second subplot also starts the first trial the same way, the erroneous
feedback does not affect it and the decoder is able to perform better than
the first system. (B) Critic accuracy 80%. The first system starts with a
correct action, but is very sensitive to wrong critic feedback. The second
system starts with a wrong action, but by the 6th trial is able to achieve
good performance and maintain throughout the rest of the session.

during the third trial, the system started performing correctly.
However, due to the erroneous feedback the performance was
not stable. Even when the actor chose the correct action, if the
critic provided a wrong feedback, it decreased the performance.
In contrast, the second subplot shows the performance when the
actor was updated with a confidence level (S2). For the same neu-
ral data, order of trials and critic feedback, the performance of
the second system is 80%. Even though the critic gave wrong
feedback at first, the actor learned to ignore this and was able
to have a better outcome. Figure 4B shows the performance of
the two systems when the critic accuracy was 80%. The top sub-
plot shows when there was no confidence measure and the actor
updated every time (S1). The bottom subplot shows the actor
updating only when the critic was correct (S2). The critic pro-
vided a similar output at the beginning. For the first system, the
system started with appropriate random weights and continued to
do well with correct critic feedback at the beginning. However, an
erroneuous critic feedback at trial 3 caused the system to perform
wrong in the next trial. In contrast, the second system started
with random weights which caused the first trial to be wrong
but the system received good feedback and was able to perform

correctly in the subsequent trials. In the first 5 trials, the first sys-
tem performed better than the second. However, since the second
system actor weights were only updated when the critic feedback
was good, it took longer for the second system to learn the ideal
mapping.

NEURAL PERTURBATIONS—ADDITIONAL NOISE IN DATA
Figure 5A shows how the system with the critic confidence level
still performed better than the system which updates the actor
weights every time even with the additional noise. At lower critic
accuracies, the system which updated at every trial performed
at chance level (50% performance), while the system with the
critic confidence performed better (at critic accuracies 80% and
below the difference in the performance was approximately 10%).
However, as the critic accuracy increased (beyond 70%), the sys-
tem accuracy did not increase as expected in both curves (i.e.,
both systems stayed below the 1:1 curve). This was due to the lim-
itations in the input data as the data to the decoder was noisy and
the states were not as clearly separable. As noted in the previous
section, the performance of the two systems showed significant
difference for all critic accuracy levels from 50 to 90% (Student’s
paired t-Test, with a two-tailed distribution, alpha 0.001—shown
with ∗ in the figure). In Figure 5A, the probability component
used to generate I was 40%, which was most similar to the NHP
data shown in the next section. Figure 5B shows how different
noise levels affected the overall performance as the critic accuracy
increased. Each colored trace is a different noise level as shown in
the legend. With low noise levels, the system was still able to per-
form amidst the critic inaccuracies. However, as the noise level
increased, the system performed at chance (50%) at low critic
accuracy levels and performed marginally above chance even at
higher critic accuracy levels.

SIMULATIONS USING NHP DATA
These results are shown in Figure 6 where the blue trace shows
the performance of the actor updating every time and the red
trace shows the actor updating only when the critic is confi-
dent. Similar to the results of the synthetic data, we can see an
improvement (from 50 to 63% at critic accuracy of 50% and
from 77 to 83% at critic accuracy of 90%) in the overall perfor-
mance by adding the confidence measure in the update equation.
This is more apparent in lower critic accuracies (At alpha =
0.001 critic accuracies 50–90% showed significant difference—
shown with ∗ in the figure). At higher critic accuracies, the system
which only updates when the critic is confident is still able to
do better but the difference in the percentages was smaller. At
lower critic accuracies (80% and below) the difference in per-
formance is approximately 13% and at 90% critic accuracy the
difference in performance is approximately 7%. Ninety percent
critic accuracy means that 9 out of 10 feedback given by the
critic is correct. When the critic feedback was always correct, the
two systems converged to approximately the same performance
value.

DISCUSSION
In this paper, we demonstrated that adding a confidence level
in the feedback to a RL-based decoder can be used to deal
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FIGURE 5 | Effect of noise on the overall performance. (A) Performance of
the BMI Vs the critic accuracy with 40% of the neurons receiving a less
stimuli than the standard (mean ± standard deviation. One thousand
simulations. One hundred trials per simulation). Red: New update rule with
confidence. Blue: Previous method with no confidence. Black: 1:1
relationship. Critic accuracy was varied from 50 to 100% with 100% being
the best. ∗Shows the values which showed statistical significant difference

(alpha 0.001). The overall performance of the blue curve is limited by the
accuracy of the critic but the overall performance of the red curve is able to
go beyond the critic accuracy. Hence, decoupling the performance from the
critic accuracy. (B) How the overall performance changes with the critic
accuracy (1000 simulations). Each curve gives a different noise level of the
data set. Percentages indicate the percentage of neurons that were given a
less stimuli.

with uncertainty in the critic feedback to improve the decoder
performance. The introduction of a confidence component in
the HRL weight update equation provided guidance on when
to update the actor so that the decoder only updated when the
feedback was correct with a high confidence. This is important
as we seek to utilize biological signals for the critic in order to
build autonomous BMIs for use in diverse ADL environments.
Preliminary work suggested that the accuracy of extracting this
reward signal in animal subjects was less than 90% (Prins et al.,
2013) thus indicating that some form of confidence metric will
ultimately be needed for real BMI use. In this work, the effects
of the critic confidence were tested and the results indicated that
the system with the confidence level incorporated outperformed
the system without the confidence level at all critic accuracies.
This was the case for all 3 different data sets we examined: arti-
ficial neural data generated by the Izhikevich method (Izhikevich,
2003), neural data with additional noise, and for data recorded
from the MI of a NHP. The system was particularly more effec-
tive at lower critic accuracies (<80%). For NHP data the system
with the confidence built in performed approximately 13% better
than the system without the confidence measure at critic accuracy
levels of 50, 60, and 70%. At critic accuracy of 80 and 90%, the
system with the confidence performed 12 and 7%, respectively,
better than the system without the confidence. For synthetic data
with no additional noise, the system with the confidence per-
formed approximately 20% better than the system without the
confidence at lower critic accuracies (50, 60, and 70%). At 80%
critic accuracy, the difference in performance was 15% and at 90%
critic accuracy, this value was 5%. When the critic accuracy was
low, updating only when the confidence was high resulted in the
actor receiving fewer erroneous feedback, thus causing the sys-
tem to perform better over time. At higher critic accuracies, since
the actor gets correct feedback most of the time, the difference
between the two systems, though still noteworthy was small. Both
systems converged to the same value when the critic is 100%

accurate. As discussed previously, the neural data proposed for
the critic input yielded less than perfect accuracies which made it
necessary to find an alternate way to deal with the actor update
rule.

NOISY NEURAL DATA
Noisy neural signals as well as complex neural representation of
reward make it a challenging task to classify rewarding vs. non
rewarding information with a high accuracy (Schultz et al., 1997;
O’doherty, 2004; Knutson et al., 2005). Building a confidence in
to the critic feedback improved the performance of the system
when the data was contaminated with noise and when the multi-
ple neural representations caused difficultly in extracting a single
feedback signal required by the actor-critic decoder. We tested
how overlapping classes in the motor data can influence the abil-
ity of the decoder to predict the correct action; more the classes
overlap, lesser the accuracy in decoding. To add noise to the data,
we used a Gaussian distribution in the stimulating current, which
resulted in reducing the stimulating current of a certain percent-
age of neurons in the ensembles that were already tuned. Here, we
also showed that with limited noise in the motor data, the system
was able to maintain performance. When the motor neural data
was noisy, the limiting factor became how well the motor neural
data represented the task.

OVERCOMING INHERENT ISSUES WITH RL—TIME FOR CONVERGENCE
Due to the inherent nature of RL that learns through inter-
action, the time taken to reach an optimal condition in the
weights can longer than for supervised decoders (Beggs, 2005).
The agent needs to “explore” its environment in order to have
a better understanding of how each action changes the state of
the environment. Once the agent has learned enough about the
environment, it will “exploit” the situation or carry out the opti-
mal action. In RL, there is always a dilemma between exploration
and exploitation. Before the agent knows the optimal action and

Frontiers in Neuroscience | Neuroprosthetics May 2014 | Volume 8 | Article 111 | 8

http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


Prins et al. Confidence metric to improve RL BMIs

FIGURE 6 | Results of the simulations where the monkey controls the

robot arm. Performance of the BMI Vs the critic accuracy with and without
confidence inbuilt for data collected from monkey DU. (mean ± standard
deviation. One thousand simulations). Red: New update rule with
confidence. Blue: Previous method with no confidence. Black: 1:1
relationship. Critic accuracy was varied from 50 to 100% with 100% being
the best. ∗Shows the values which showed statistical significant difference
(alpha 0.001). At lower critic accuracies, the new update with confidence
performs much higher than the one without the confidence measure. As
the critic accuracy increase, the plot with the confidence measure is able to
outperform the curve without the confidence measure. However, the
difference in the performance becomes smaller as the critic accuracy
increases suggesting as before that the critic is no longer the limitation, but
the nature of the input data itself.

exploit it, the agent has to make several sub-optimal actions in
order to explore the environment. The more exploration that
takes place, the better understanding it will have of its environ-
ment, but the longer it will take to reach an optimal solution. In
the case of BMIs, the agent does not have many trials to explore as
each trial comes at a cost. Due to this, the experience of an agent in
the BMI setting is very limited. In previous studies, we have used
real time “epoching” of the data to speed the initial adaptation
from the purely random initialization weights to functionally use-
ful ones as a method of increasing experience with limited data.
Another method for overcoming RL limitations is to use a mem-
ory of past trials. Here, we used a memory size of 1 trial. For more
complicated tasks, a memory size of 70 trials has been found out
to give the optimum results (Mahmoudi et al., 2013; Pohlmeyer
et al., 2014).

EXTRACTING OPTIMAL REWARD SIGNAL FOR BIOLOGICAL CRITIC
FEEDBACK
There are several regions of the brain that can be used to extract a
reward signal for the critic, which include the striatum (Phillips,
1984; Wise and Bozarth, 1984; Wise and Rompré, 1989; Schultz
et al., 1992; Tanaka et al., 2004), cingulate (Shima and Tanji, 1998;
Bush et al., 2002; Shidara and Richmond, 2002), and orbitofrontal
cortices (Rolls, 2000; Schultz et al., 2000; Tremblay and Schultz,

2000). Whichever region is selected, the critic will need to decode
the reward as well as the confidence it has in its decision. One
possible method of decoding the confidence is using the distance
to the boundary of a decision surface: the closer a data point is
to the decision boundary, the less confidence it has in its decision
and further away the data point is, the more confidence it has in
its decision. This method assumes that the misclassifications are
due to overlapping classes and not due to mislabeled trials. This
concept will be further developed in future work.

In this paper, we developed a new formulation for an actor-
critic BMI decoder in order to be able to use biological feedback
signals. Since RL does not need an explicit training signal to
train the decoder, it can be used to develop next-generation BMIs
that self-calibrate in scenarios where the user is paralyzed and
cannot generate a kinematic reference or training signal. The
actor-critic RL paradigm also gives us the flexibility to develop
a fully autonomous BMI provided the critic can be driven by a
biological source and thus reduce set up times and the need for
calibrations.
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