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Simulations of neural circuits are bounded in scale and speed by available computing
resources, and particularly by the differences in parallelism and communication
patterns between the brain and high-performance computers. SpiNNaker is a computer
architecture designed to address this problem by emulating the structure and function
of neural tissue, using very many low-power processors and an interprocessor
communication mechanism inspired by axonal arbors. Here we demonstrate that
thousand-processor SpiNNaker prototypes can simulate models of the rodent barrel
system comprising 50,000 neurons and 50 million synapses. We use the PyNN
library to specify models, and the intrinsic features of Python to control experimental
procedures and analysis. The models reproduce known thalamocortical response
transformations, exhibit known, balanced dynamics of excitation and inhibition, and
show a spatiotemporal spread of activity though the superficial cortical layers. These
demonstrations are a significant step toward tractable simulations of entire cortical areas
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on the million-processor SpiNNaker machines in development.
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1. INTRODUCTION

The rodent somatosensory cortex is principally concerned with
processing information from the whiskers, and is organized
accordingly (Petersen et al., 2009). In common with the other sen-
sory cortices, the barrel cortex is radially organized into granular
(layer 4), supragranular (layers 1-3) and infragranular layers (lay-
ers 5, 6). In lateral organization, it contains a topographic map
of the animal’s snout, in that layer 4 consists of discrete barrels
that can be visualized by cytochrome oxidase staining. A barrel
column is defined as a cylinder through all cortical layers, with a
cross-sectional area equal to that of the granular-layer barrel. Each
whisker is represented primarily by a corresponding barrel col-
umn, and the spatial arrangement of the barrel columns reflects
that of the whiskers (Petersen, 2007). Axonal projections from the
ventral posteromedial nucleus of the thalamus, which convey sen-
sory signals from the whiskers, primarily innervate the granular
layer. Broadly, signals flow within a barrel column from granular
to supragranular layers and in turn to infragranular layers (Lefort
et al., 2009). This relatively clear and well understood organiza-
tion makes the barrel cortex a good candidate for investigations
of cortical microcircuitry.

Pioneering models of the rodent whisker barrel reproduced the
thalamocortical response transformations observed by Simons
and Carvell (1989) but used very few neurons because of limita-
tions in the computing resources available at the time of publica-
tion (Kyriazi and Simons, 1993) or represented whole-population
activity as a single firing-rate state variable in order to analyze
the dynamics of the network (Pinto et al., 2003). In making
such abstractions, these models, respectively, may have intro-
duced artefactual finite-size effects and failed to demonstrate the
mechanisms by which discrete spikes process information in vivo.

Ever larger and more detailed models are becoming feasible
as high-performance computing enjoys an exponential growth
in power. However, structural and functional disparities remain
between organic and silicon computers that limit the scale of
neural-circuit simulations. High-performance computers com-
prise some thousands of processors and, typically, use point-
to-point communication channels and global synchronization
mechanisms. In contrast, the brain uses billions of processing
units that communicate across intricate axonal and dendritic trees
and synchronize, if at all, through decentralized, recurrent feed-
back loops. Analog computer architectures, such as BrainScaleS
(Schemmel et al., 2010), partially bridge this gap by directly mod-
eling membrane-potential dynamics with very few transistors in
subthreshold states, but these architectures still face problems
of communication and raise entirely new challenges of config-
uration and programming. Graphics processing units are also
commonly used in neural-circuit simulations, but suffer from sig-
nificant energy requirements and communications bottlenecks.

SpiNNaker is designed to emulate the structure and function
of neural tissue using very many low-power digital processors
and an interprocessor communication mechanism inspired by
axonal arbors. Here, we demonstrate that prototype SpiNNaker
hardware comprising one thousand processors is able to sim-
ulate a model of multiple barrel columns consisting of 50,000
leaky integrate-and-fire neurons and 50 million synaptic connec-
tions. To argue for the success of the hardware, we reproduce
in the model known thalamocortical response transformations,
balanced dynamics of excitation and inhibition, and a spatiotem-
poral spread of activity though the superficial cortical layers. We
also use SpiNNaker to run parameter-sweeping simulations to
explore model parameters and multi-trial simulations to find
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average activities. In doing so, we hope to demonstrate significant
progress toward time- and energy-tractable simulations of entire
cortical areas on the million-processor SpiNNaker machines in
development.

2. MATERIALS AND METHODS

2.1. SpiNNaker

A SpiNNaker chip contains eighteen processors, each responsible
for computing the dynamics of up to 1000 leaky integrate-and-
fire neurons and their afferent synapses. A single SpiNNaker
board comprises 48 such chips connected by a programmable
communications network. So, when a processor generates a
spike for some presynaptic neuron, a network of packet-switched
routers conveys that information along virtual axons to every
processor on which postsynaptic neurons reside. Connectors on
each edge of the network facilitate seamless tiling of boards into
multi-board machines, without the communication bottlenecks
suffered by, for example, GPU clusters communicating over PCI
busses. Furber et al. (2013) give a broad overview of the hardware,
and Sharp et al. (2012) demonstrate its extreme energy efficiency.

Each SpiNNaker processor executes a custom run-time kernel
to schedule and despatch simulation tasks, such as membrane-
potential evaluations and synaptic-current computations. The
kernel executes all tasks in response to corresponding events gen-
erated in the hardware: processors compute membrane potentials
every millisecond in response to timer events generated by their
internal clocks; they compute synaptic currents in response to
packet events that occur when the router delivers a spike to the
processor. Sharp et al. (2011b) describe this level of software in
greater detail.

Users of SpiNNaker may design simulations on a desktop com-
puter, via the PyNN package for Python (Davison et al., 2009).
PyNN allows users to build networks as populations of homoge-
neous neurons and projections of synapses, with models for each
drawn from a standard library. The PyNN programming inter-
face itself is essentially declarative, in that it provides a way for
users to specify networks to be simulated; an implementation of
the PyNN interface for a particular simulator, such as SpiNNaker,
then reads these specifications and drives the simulator accord-
ingly. However, since PyNN is a Python library, programmers
may use all of the usual imperative and object oriented features
of Python to build, simulate and analyze models; a program, for
example, may contain loops to run repeated trials, conditional
statements to guide parameter searches, or object orientation to
encapsulate substructures in models. PyNN ultimately serves as
an abstraction from the simulator, and does so for three reasons:
to hide the great complexity of the underlying simulation technol-
ogy; to ensure that models are portable between simulators; and,
taking advantage of the prior feature, to verify the correctness of
simulators against one another. Galluppi et al. (2012) provide fur-
ther information on the implementation of PyNN for SpiNNaker,
and Sharp and Furber (2013) use PyNN to demonstrate the peak
performance of SpiNNaker and show that the simulator produces
correct results with respect to Brian and NEST.

Although SpiNNaker is able to simulate arbitrary models, in
this work we use the leaky integrate-and-fire neuron because
it allows us to analytically determine desirable parameters, as

discussed below. Membrane-potential dynamics for the model are
given by

av
Tm—— = EL — V 4+ Ryl (1)
dt
where t,,, is the membrane time-constant, Ey is the equilibrium
potential, R, is the membrane resistance, and I is the synaptic
current. We use a synapse model with first-order linear kinetics,
such that the current from each set of synapses with common
time-constants is given by

dI L
TSE :_I+§Wi§)8(t_tij) (2)

where # is the number of synapses in the set, m; is the number of
spikes received on the ith synapse, s is the synaptic-current time-
constant, w is the weight of the synapse, 8(x) is the discrete-time
Dirac delta function that returns 1 when x = 0 and 0 otherwise,
and t; is the time of the jth spike onto the ith synapse. Sharp
etal. (2011b) describe the methodology of simulating this model
in more detail.

2.2. MODELING PARAMETERS

The average rat barrel column contains 18,000 neurons in a
tangential area of 0.12mm squared and a depth of 1.84 mm
(Meyer et al., 2010a). The literature provides data on the sizes
of constituent populations, the probability of projections and the
physiology of both. Table 1 lists population sizes for the thalamus
and the cortex, which were found by Oberlaender et al. (2011) and
Meyer et al. (2010a) using automated counts of NeuN-positive
cells in slices and the assumption that 15% of cortical neurons are
inhibitory. Table 2 presents physiological properties of the model
neurons, according to results of paired intracellular recordings
performed by Lefort et al. (2009); synaptic-current time constants
were taken from Kyriazi and Simons (1993) and Sun et al. (2006).
Lefort et al. (2009), Avermann et al. (2012), Sun et al. (2006), and
Meyer et al. (2010b) report on the connectivity patterns between
cell types in the barrel.

The function of the whisker barrel has been investigated by
electrophysiological recording in vivo from neurons in a par-
ticular barrel column while applying a mechanical “ramp and
hold” stimulus to the corresponding principal whisker of that
barrel. By comparing responses in the thalamus to those in the
cortex, Simons and Carvell (1989) showed that the whisker bar-
rel exhibits four response transformations on thalamic input,
namely: thalamic neurons have greater levels of spontaneous spik-
ing than cortical excitatory neurons; cortical excitatory neurons

Table 1 | Neurons per barrel column (Meyer et al., 2010a; Oberlaender
et al., 2011).

Population Exci. Inhi.
Layer 2/3 4507 795
Layer 4 3471 613
Thalamus 285 -
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respond to deflection of an adjacent whisker, unlike thalamic
neurons; the response of excitatory neurons to principal-whisker
deflection is suppressed if it is immediately preceded by deflection
of an adjacent whisker; and cortical excitatory neurons respond
with different numbers of spikes to the onset and offset of whisker
deflection, whereas thalamic neurons do not. Pinto et al. (2003)
hypothesized that the latter transformation is a result of the rate
of onset of thalamic stimuli, and proceeded to reproduce such
behavior in a dynamical model of the whisker barrel, as shown
in Figure 1.

Table 2 | Neuron-model parameters for each layer of the barrel
column (Lefort et al., 2009).

Parameter Unit L2/3E L4E
E, mV -72 —66
Vieset mV -72 —66
Vo mV —40 —-40
Tm ms 30 35
Rm MQ 190 300
Tse ms 5 5
Tsi ms 15 15
Refrac. ms 10 10

Although the membrane properties of excitatory and inhibitory neurons are
known to be different, we used identical parameters for both types of cell to
simplify the analytical determination of synaptic weights.
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FIGURE 1 | Peristimulus time histogram of excitatory spiking in the
barrel cortex in response to whisker deflection onset and offset, as
shown by Pinto et al. (2003). Panel (A) shows responses recorded in vivo
and panel (B) shows a simulated reproduction in a simple dynamical model.

2.3. MODELING PRINCIPLES

In a model composed of excitatory and inhibitory populations
with recurrent projections, an important factor in spiking activ-
ity is the density and weight of synaptic connections. Should
the number and strength of excitatory synapses outweigh those
of inhibitory synapses, for example, recurrent excitation will
dominate and the network will become hyperactive. Should inhi-
bition dominate, the network will become inactive. An important
principle of cortical function seems to be that excitation and inhi-
bition are in balance (Shadlen and Newsome, 1994; van Vreeswijk
and Sompolinsky, 1996). Brunel (2000) derives quantitative con-
ditions for such balance in networks of leaky integrate-and-fire
neurons. He considers a model comprising N, excitatory and N;
inhibitory neurons, driven by external input, where each neuron
receives a synapse from any other neuron with equal probabil-
ity p. The number of synapses formed within the network is
Pp(N, + N;)? so the ratio of excitatory to inhibitory synapses is
N./N;. Given some arbitrary excitatory synaptic weight w,, a
significant relationship to the inhibitory weight w; is described by

N,
w; = bweﬁ (3)
1

where b is a balance coefficient. Brunel observes the firing rate
of the model as a function of b and shows that excitation drives
hyperactivity when b is less than one, that inhibition causes
hypoactivity when b is greater than one, and that the two forces
counterbalance when b is exactly one. Thus, the Brunel equation
is useful for analytically determining the parameters of a stable
model of the whisker barrel, since the barrel has been described
as two populations, one excitatory and one inhibitory, driven by a
sole thalamic input (Kyriazi and Simons, 1993; Pinto et al., 2003).
Kyriazi and Simons use varying synaptic-current time constants
for excitatory and inhibitory synapses in their model, and we wish
to reproduce this feature. The charge imparted by a single postsy-
naptic current of the type we model with amplitude w and time
constant Ty is

/oow exp(—t/ts) dt = wt; (4)
0

So we can extend the Brunel equation to consider the balance
between postsynaptic currents thus:

N,
WiTg = bWeTse— 5
1vs1 ESeNi ()

3. RESULTS

We conducted three sets of simulations to demonstrate vari-
ous capabilities of SpiNNaker and to test that the SpiNNaker
barrel-model performed correctly. To this end, we firstly ran
parameter-sweeping simulations to verify that the model satis-
fies the relationship between excitatory and inhibitory balance
described analytically by Brunel; secondly, we reproduced the
thalamocortical response transformations observed and simu-
lated, respectively, by Simons and Carvell (1989) and Kyriazi
and Simons (1993); and finally we simulated a chain of five
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barrel columns in parallel to show the scale of models feasible on
SpiNNaker.

3.1. PARAMETER SWEEPING

We first simulated one barrel, consisting of dual populations of
excitatory and inhibitory neurons, driven by a common thalamic
input. We simulated thalamic neurons as Poisson spike trains and
cortical neurons with the leaky integrate-and-fire model, and set
population sizes and neuronal biophysical parameters according
to Tables 1, 2. We connected thalamic neurons to cortical ones
with a probability of 0.25 and chose thalamocortical weights to be
the minimum needed to elicit firing in a model without intracor-
tical projections under stimulus from 6 Hz Poissonion thalamic
firing (Bruno and Sakmann, 2006). We set all intracortical pro-
jection probabilities to 0.1, fixed the excitatory synaptic weight
at 0.1 nA, and determined the inhibitory weight by Equation (5),
with b varying from 0.1 to 10 in successive trials. In each trial,
we instantiated and loaded the model once and then simulated
it 10 times with varying seeds for the Poisson spike source; we
recorded the average excitatory firing rate during each one-second
simulation, and took the mean and standard deviation of these 10
numbers as ultimate result of the trial. Using PyNN, we specified
and executed these simulations with a single Python program: a
simulation function specified a network, triggered a simulation
and retrieved results (all the mechanics of which were hidden
behind the PyNN interface) and a controller function called the
simulation function in a loop over varying b-values and analyzed
the collated results.

Figure 2 shows mean and standard deviation of excitatory fir-
ing rate in the barrel as a function of the balance coefficient.
The results follow the expected curve closely: as b sweeps from
less than to greater than one, the firing rate transitions from
near-maximum to near-minimum through a tight sigmoid curve
centered upon b = 1. The exception to the expected results is for

100 T T T T T T T T T

Mean firing rate (Hz)

1 1 | | |

Il il
0.11 0.14 0.17 0.24 0.38 1.00 2.60 4.20 5.80 7.40 9.00

Balance coefficient, b

FIGURE 2 | Barrel firing rate as a function of the balance coefficient, b.
The solid blue line represents the 10-trial mean and the shaded area
represents one standard deviation over the same 10 trials.

values of b less than 0.25. Here, at firing rates close to 100 Hz each
processor (performance must be considered on a per-processor
basis, because network performance is inexhaustible relatively)
receives approximately 400 spikes per millisecond, each of which
innervates on average 10% of the 256 neurons simulated on the
processor. This rate of synaptic events (afferent spikes multi-
plied by innervated synapses) exceeds peak throughput (Sharp
and Furber, 2013) so some spikes are lost. Consequently, for val-
ues of b less than 0.25 the standard deviation grows as a result
of trial-to-trial performance variability and the mean falls corre-
spondingly because the variance causes only the loss, not gain,
of spikes. The problem of modeling high firing rates in mono-
lithic, recurrently connected populations on SpiNNaker can be
mitigated by splitting them into smaller subpopulations, relaxing
the real-time performance schedule, or modeling fewer neurons,
and therefore fewer synapses, per processor.

Figure 3, where blue denotes the activity of excitatory cells and
red the inhibitory activity, shows the barrel firing asynchronously
at a realistic rate of approximately 1 Hz when just the inhibitory-
to-excitatory weights are multiplied by 1.5 to control excitatory
firing rate.

3.2. THALAMOCORTICAL RESPONSE TRANSFORMATIONS

We simulated this same barrel, with the excitatory-inhibitory
balance used to generate Figure 3, to examine thalamocortical
response transformations in the model. The two transformations
we considered were the lower firing rate of layer 4 excitatory
neurons with respect to thalamic neurons and the differential
response of excitatory neurons to onset and offset stimuli. Bruno
and Sakmann (2006) show that, under the experimental con-
ditions of the data that we are considering, thalamic neurons
spontaneously spike at an average rate of 6 Hz, so we set the model
thalamic cells to fire spontaneous Poisson trains at this rate. As
discussed above and shown in Figure 1, Pinto et al. (2003) show

Neuron ID

Firing rate (spikes/second/neuron)

Time (ms)

FIGURE 3 | Asynchronous, irregular spiking in the barrel model. Blue
represents excitatory neurons and red represents inhibitory neurons. The
left y-axis gives the ID of the spiking neurons in the scatter plot. The right
y-axis gives the average firing rate of the excitatory and inhibitory
populations, denoted by the solid lines.
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that the thalamic responses to whisker-deflection onset and offset
differ principally in terms of onset rate, and we varied the firing
rate of the thalamic spike trains to mimic this: onset stimuli trig-
gered a stimulus triangle rising from 6 to 30 Hz in 5 ms and then
decaying back to 6 Hz in 30 ms; offset stimuli triggered a stimu-
lus triangle of equal amplitude and opposite rise and decay times.
These patterns of thalamic stimuli can be seen in the green trace
in the lower panel of Figure 4. In our simulations, each stimu-
lus battery comprised one whisker deflection onset and one offset
separated by 150 ms, preceded by a 500-ms rest period. We instan-
tiated 10 barrel models and delivered 25 stimulus batteries to
each. Again, the function and loop constructs inherent in Python
made the specification and execution of multiple trials simple.

Figure 4 shows the barrel spikes resulting from one stimulus
battery and the mean firing rates across all of the 25 batteries
to all 10 model instances. For clarity the stimulus battery is cen-
tered in the figure. The barrel model clearly reproduces the two
response transformations discussed by Simons and Carvel and
Pinto et al.: firstly, excitatory neurons fire asynchronously at a
mean rate much lower than that of thalamic neurons; and sec-
ondly, onset stimuli elicit greater firing rates in excitatory neurons
than offsets.

3.3. MULTIPLE BARREL COLUMNS
Whereas recurrent connectivity in layer 4 is almost entirely
confined to each individual barrel, there are more extensive

interbarrel connections in the supragranular layers, which are
important for the lateral spread of neural activity across the
cortex (Petersen and Diamond, 2000; Civillico and Contreras,
2006). Investigating this spread of activity requires a large-scale
multi-barrel model.

To develop the large-scale modeling capabilities of SpiNNaker,
we built a chain of five inter-connected barrel columns each
consisting of a granular and a superficial layer. Figure 5 depicts
one such column. Each layer contained one excitatory and one
inhibitory population, which were connected recurrently and to
one another. The thalamus fed simulated whisker signals to both
populations of the granular layer, and the excitatory granular neu-
rons relayed signals to the supragranular layers. Supragranular
populations formed lateral projections with their immediate
neighbors in the chain. We did not address edge effects at the
ends of the chain because we only sought to show a unidirectional
propagation of activity through the supragranular layers.

We set supragranular population sizes according to Table 1. As
with the granular layer, we set all intracortical projection prob-
abilities in the supragranular layer to 0.1, fixed the excitatory
synaptic weight at 0.1 nA, and determined the inhibitory weight
by Equation (5), adding 50% to the inhibitory-to-excitatory
weight to keep firing rates in a biologically plausible range.
Between layers, we tuned projection parameters to elicit a base-
line firing rate of around 1 Hz: we set the projection probabil-
ity from the excitatory granular neurons to both supragranular

4000 fo “oe ¥ %, .
e

3500 |, e %0 oo ?

3000

2500

2000F - - ° :

Neuron ID

1500 « -, .

. o
1000f-.  °.

.
¥ I .
H

500 [ .l

O

(=)
|
Pe

.

w
(&3}

[ N N w
&3] o a1 o
T T T T

[y
(=)
T

Firing rate
(spikes/second/neuron)

\

— Excitatory
— Inhibitory H
— Thalamus

0 100 200

Time (ms)

FIGURE 4 | Thalamocortical response transformation in the whisker barrel. The top panel shows the spikes from a single trial; the bottom panel shows
average firing rates across all 25 stimulus presentations to all 10 model instances.
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FIGURE 5 | Architecture of the barrel-column model. Circles represent
discrete populations. Solid and dotted arrows represent intra- and
interbarrel synaptic projections, respectively.

populations to 0.1, consistent with the other intracortical projec-
tions, and set the synaptic weight of both projections to 0.2 nA.
Between columns, we formed lateral projections between exci-
tatory populations of the supragranular layers, with probability
0.1 and synaptic weight of 0.1nA. We specified columns as
Python objects with PyNN populations and projections as their
attributes, again taking advantage of basic Python features to sim-
plify the simulation of these complex networks. We instantiated
five columns, forming a model of 5- 10* neurons and 5 - 107
synapses to be simulated across 200 processors on 13 chips.

We defined one stimulus battery as five repetitions at 10 Hz of
the whisker-deflection onset and offset used above, preceded by
a 500-ms rest period. We delivered five batteries to the leftmost
column while supplying the others with only baseline stimulus.
Figure 6A shows the peristimulus time histogram in spikes per
second per neuron, averaged across all stimulus-presentations,
again centered upon the stimulus battery. The thalamic stimu-
lus activates barreloid 0, which in turn excites neurons in the
corresponding barrel. Neurons in the other barreloids and barrels

receive no external drive and hence show no evoked response.
The activated granular layer in barrel 0 excites the corresponding
supragranular layer, from which the firing apparently propagates
along the chain of columns. Figure 6B shows the spike counts of
every neuron, summed across 25-ms windows following the onset
of each of the 25 whisker deflections. Excitatory cells in layer 4
represent the stimulus with sparse firing into layer 2/3, which in
turn shows a much denser response in the proximal column and
sparser responses in the distal neighbors. These models, compris-
ing some 50 million synapses, are to-date the largest recurrent
networks simulated in real-time.

4. DISCUSSION

Simulating neural circuits is a promising approach to improv-
ing our understanding of brain function. However, the ner-
vous system is enormously complex in structure and simulating
even small neural circuits is still a difficult problem. Evaluating
the membrane potentials of many thousand of model neurons
requires great computational parallelism, and communicating
action potentials between these neurons requires programmable
communications.

General-purpose supercomputers do meet these requirements.
Markram (2006) describes the hardware and software architec-
ture of the Blue Brain Project, which intends to use 217 proces-
sors in an IBM Blue Gene/L computer to simulate 10* cortical
neurons and their 5- 107 synapses in great physiological detail.
Ananthanarayanan et al. (2009) use 2!¢ processors in an IBM Blue
Gene/P machine to simulate 10° simpler, single-compartment
(Izhikevich, 2003) neurons and 10'® synapses, arguing that this
portends full-scale real-time simulations of the human cortex.
However, the power requirements of conventional supercomput-
ers render this vision impossible; Sharp et al. (2012) estimate that
the simulations proposed by Ananthanarayanan et al. would draw
approximately 10 gigawatts.

Graphics processing units (GPUs) contain tens or hundreds
of arithmetic units that can execute a single instruction stream
on many data elements simultaneously. Many authors have
exploited this property of GPUs to simulate up to tens of thou-
sands of neurons in parallel (Nageswaran et al., 2009; Bhuiyan
et al., 2010; Fidjeland and Shanahan, 2010; Han and Taha,
2010; Pallipuram et al., 2011; Nere et al., 2012). More recently,
Beyeler et al. (2014) and Minkovich et al. (2014) have pre-
sented GPU simulations of hundreds of thousands of neurons
and tens of millions of synapses. Beyeler et al. use an off-the-
shelf GPU to simulate 40 million synapses in real-time, and
Minkovich et al. approach the significant and previously unad-
dressed problem of multi-GPU simulations, thereby promising
very large-scale simulations across many processors. However,
SpiNNaker retains some advantages over current GPU studies. As
we tend toward brain-scale simulations power-efficiency becomes
increasingly important, and Sharp et al. (2012) have shown that
SpiNNaker outperforms conventional architectures in this regard,
whereas high-performance GPUs tend to be very power-hungry.
SpiNNaker also outperforms conventional multiprocessors for
neural-circuit simulations when compared on a basis of equal
multiply-accumulate operations per second (Sharp and Furber,
2013); the “like-for-like” performance of GPUs remains unclear,
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FIGURE 6 | Activity of the barrel-column chain. (A) Excitatory peristimulus
spike counts of whole populations, showing signal propagation through the
chain of barrel columns. The top, middle, and bottom panels represent the
supragranular, granular and thalamic populations, respectively, and the five
traces in each panel from bottom to top represent the five columns from left
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to right. Note the varying y-scale bars on each panel. (B) Post-stimulus
spike-counts of every cell in the simulation. Each column of panels belongs to
one barrel column, and each row corresponds to the populations of the
barrel. The heat-map colors in each row are normalized to the highest spike
count of that row.

however, as GPU speedups are often reported on the basis of com-
parison between disparate architectures (Lee et al., 2010). Finally,
the communications architecture of SpiNNaker is designed to
handle the dense, highly divergent synaptic connections observed
in the cortex (Sharp and Furber, 2013) but such connections still
present a challenge for GPU communications, as suggested by the
low synaptic densities achieved by Beyeler et al. and Minkovich
et al. about 250 and 100 per neuron, respectively.

The BrainScaleS architecture presents a promising solution
to these problems (Schemmel et al., 2010). BrainScaleS intends
to enable the kind of parameter-sweeping, scalable, multi-trial
simulations demonstrated here using a large-scale implemen-
tation of the established, exceptionally energy-efficient practice
(Mead, 1989) of simulating neurons using the subthreshold
dynamics of transistors. Furthermore, BrainScaleS aims to solve
the existing problem of spike-communications in analog cir-
cuits using an auxiliary, digital packet-switched network, similar
to SpiNNaker’s. However, the project still faces the problem
that analog circuits are difficult to tune for particular behaviors
(Briiderle et al., 2011). This problem grows with the number of
neurons simulated, so that it may difficult to build a population
with homogeneous, or particular distributions of, parameters.

SpiNNaker is a digital computer architecture that emulates
the structure and function of neural computation, using very
many low-power processors and an interprocessor communica-
tion mechanism inspired by axonal arbors, to efficiently simulate
neural tissue. SpiNNaker differs from conventional supercom-
puters in that the processors eschew high clock-speeds and

floating-point units in favor of energy efficiency, the communica-
tions infrastructure contains little hardware specifically for system
control and debugging, and there is little processor time and
memory available for monitoring and debugging processes. This
does present some challenges to using the architecture. Firstly, we
must compute all neuron and synapse states in fixed, rather than
floating, point arithmetic; this increases program complexity a
little, but does not have any significant effect on the accuracy of
the simulator (Sharp and Furber, 2013). Secondly, we must load
data structures for simulation to each processor over the packet-
switched network, which is costly (Sharp et al., 2011a) although
the loading time may be significantly shortened by compression
methods that we are currently developing. Finally, we must debug
programmes with little information relative to the scale of the sys-
tem. This last problem is likely common to all massively-parallel
architectures, but it remains the most significant outstanding
challenge for SpiNNaker.

Nevertheless, this paper demonstrates the success of proto-
type, thousand-processor SpiNNaker hardware using a software
stack orientated to the interests of computational neuroscien-
tists. In these simulations, we have demonstrated that a complex,
massively-parallel machine can be used to rapidly simulate neural
circuits using a simple declarative library for Python. We believe
SpiNNaker may hence contribute to research in computation
neuroscience in three ways.

Firstly, parameter-sweeping experiments are useful because
analytical descriptions of complex network behaviors are rare. To
determine, for example, the excitatory-inhibitory current balance
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of networks more complex than Brunel considers, researchers
may simulate models at each point in the parameter space. This
approach requires either great sequential performance or great
parallelism. SpiNNaker offers both, in that it simulates in real-
time and may run many model instances in parallel. The coupling
of declarative PyNN with imperative Python allows researchers to
specify, in a single concise program, a model to be simulated and
a procedure to follow for multiple parameters, trials and model
instances.

Secondly, multiple runs of simulations are necessary to estab-
lish the statistical significance of modeling results. For the same
reasons as above, and using the same methods, SpiNNaker is
useful in such procedures.

Finally, certain research questions may be answered by large-
scale simulations. In order to explain the effect of attentional
signals on stimulus-response in the visual cortex, Wagatsuma
etal. (2011) model columns in the visual cortex containing some
80,000 neurons. Phoka et al. (2012) model a smaller circuit com-
prising a single barrel column, but with computationally expen-
sive STDP, to examine the effect of whisker stimuli on the synaptic
state of the network. To explore the high-level computational
functions of cooperating neural systems, Eliasmith et al. (2012)
present a model encompassing more than two million neurons
in brain areas from visual input through processing to motor
output. In all cases, simulations may be accelerated by special-
ized computing hardware. In support of this argument, we have
demonstrated here that SpiNNaker can efficiently simulate some
part of the rodent barrel cortex. We modeled five barrel columns
using 200 processors of a prototype SpiNNaker board and a soft-
ware stack designed to simplify the use of the machine. We created
a Python class to represent a single barrel of PyNN populations
and projections, and then created instances of this class to form a
model of around 50,000 neurons and 50 million synapses. These
demonstrations are a significant step toward tractable simula-
tions of entire cortical areas on the million-processor SpiNNaker
machines in development.
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