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A commentary on

Wild-type neural progenitors divide and
differentiate normally in an amyloid-rich
environment
by Yetman, M. J., and Jankowsky, J. L.
(2013). J. Neurosci. 33, 17335–17341. doi:
10.1523/JNEUROSCI.1917-13.2013

Hippocampal neurogenesis is often
thought to be necessary to maintain
hippocampus-dependent cognitive abil-
ities (see references in Deng et al., 2010).
Most investigations using transgenic ani-
mal models of Alzheimer’s disease (AD)
report a reduction in hippocampal neu-
rogenesis (see references in Mu and Gage,
2011) giving rise to the idea that impaired
neurogenesis has an important role during
the onset and progression of the dis-
ease. In many animal models of AD with
familial-type mutations, this decrease in
neurogenesis is associated with the pres-
ence of toxic amyloid beta peptides (Aβ42)
(Haughey et al., 2002). Nevertheless, some
works with transgenic animals have shown
that amyloid deposition increases neuro-
genesis (Jin et al., 2004a; Lopez-Toledano
and Shelanski, 2007; Yu et al., 2009).
There was also a work with no conclusive
results in this regard (Ermini et al., 2008).
Still, the most general view in the field is
that AD related neuropathology damages
hippocampal neurogenesis and in conse-
quence impairs cognition. Therefore, it
is surprising that in a recent study pub-
lished in The Journal of Neuroscience,
Yetman and Jankowsky (2013) show that
strong overexpression of mutated human
amyloid precursor protein (hAPP) has

no impact on hippocampal neurogene-
sis when hAPP expression excludes the
proliferative region of the dentate gyrus.

Despite a large amount of data gen-
erated from studies employing animal
models of AD, how hippocampal neu-
rogenesis responds to AD in humans
remains unclear. Some available data sug-
gests that human AD is associated with
a marked increase in the proliferation
and survival of new neurons (Jin et al.,
2004b; Perry et al., 2012). This works
showed increased expression of neuroge-
nesis markers not only during the onset
but also during the middle and advanced
stages of AD. Conversely Crews et al.
(2010) reported a reduction in immature
neurons during severe AD, although this
data is not as comprehensive as the work
Perry et al. (2012). Nevertheless, some
researchers suggest that this effect is merely
an artifact of disease-induced changes to
endothelial cells (Boekhoorn et al., 2006),
or that this new neurons may substitute for
neurons lost due to AD (Kuhn et al., 2007;
Baron et al., 2008).

Yetman and Jankowsky (2013) aimed
to determine whether neurogenesis deficits
observed in animal models of AD are
due to changes intrinsic to progenitor
cells, changes extrinsic to progenitor cells,
or both. So, they generated a transgenic
mouse model of AD in which mature glu-
tamatergic cells overexpress mutant hAPP,
resulting in the deposition of amyloid
plaques formation only in the granule
cell layer. After 6 months of gene activa-
tion, amyloid plaques appeared through-
out the forebrain. In the dentate gyrus,
many amyloid plaques were observed in

the molecular layer and hilus but not
in the granule cell layer or the pro-
liferative zone. Furthermore, there were
no changes in the level of hippocampal
neurogenesis (Figure 1). This finding of
unchanged neurogenesis differs radically
from findings of reduced neurogenesis in
other transgenic models in which amyloid
protein production is not restricted to spe-
cific cell types. Consequently, Yetman and
Jankowsky (2013) suggest that the neuro-
genesis deficits observed in other trans-
genic models are due to toxicity resulting
from hAPP directly produced by progen-
itor cells and immature cells. Therefore,
conflicts found in transgenic animals lit-
erature could be clarified exploring the
patters of expression of hAPP. Humans
with AD, however, do not exhibit reduced
hippocampal neurogenesis (Perry et al.,
2012). In addition, there is no evidence
of APP expression in human neurogenic
niche. Therefore, the transgenic mice used
by Yetman and Jankowsky may be the cur-
rently existing animal model that most
closely resembles human neuropathology.

The increase in hippocampal neuro-
genesis observed in humans with AD
may possibly be due to disease-related
inflammation. Variations in levels of
inflammatory factors may affect neuro-
genesis by changing patterns of pro-
liferation or survival of new cells. In
particular, a strong inflammatory factor
present in AD, transforming growth fac-
tor beta 1 (TGFβ-1), increases the num-
ber of granule neurons (Martinez-Canabal
et al., 2013b) and enhances neurogen-
esis (Battista et al., 2006). Two other
molecular players may also contribute
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FIGURE 1 | Amyloid plaques affect neurogenesis differently in animal

AD models and human AD. (A) No plaques are present in wild-type
mice. Progenitor cells divide asymmetrically, leading to the formation of
new progenitor cells (1) and neuroblasts (2). Neuroblasts become
immature neurons (3) that migrate to their final positions and extend
dendrites and axons. (B) Common animal model of AD with hAPP
overexpression and plaque formation in the granule cell layer and
proliferative area of the dentate gyrus, which may directly affect the cell

population from which new neurons are born. Normally, the number of
immature neurons in transgenic mice is lower than that in wild-type mice.
(C) In the animal model created by Yetman and Jankowsky (2013),
plaques deposit mainly in the molecular layer of the dentate gyrus, and
levels of neurogenesis are similar between transgenic and wild-type mice.
(D) In human AD, there are plaques in the molecular layer but not around
the granule cell layer or proliferative area of the dentate gyrus, and
hippocampal neurogenesis is elevated (3).

to an increase in neurogenesis—hyper-
phosphorylated tau (pTau) and mutated
PS-1. Therefore, a hypothetical triple
transgenic mouse (with hAPP, pTau, and
PS-1 mutations) in which only hAPP is
excluded from the dentate gyrus could
provide clearer insights into how hip-
pocampal neurogenesis is altered during
AD. However, there might be several other
unknown factors, both internal, related to
molecular malfunction, or external, due
to environmental effectors. The perfect
model, closely resembling the real dis-
ease, seems to be challenging, but a closer
approach is necessary to avoid the previ-
ous conflicts between existing models and
the human disease regard neurogenesis.

Although the relevance of hippocam-
pal neurogenesis to cognitive impairments

in AD remains under debate, the assump-
tion that disease-related neurogenesis loss
is a key contributor to cognitive impair-
ments could be fundamentally wrong. The
evidence shows contradictory information
about the aging decrease of neurogenesis
and its impact on cognitive performance.
Some studies support this view (Drapeau
et al., 2003; Wati et al., 2006), but more
recent works report no relation between
neurogenesis decay with age and mem-
ory retention and retrieval (Merrill et al.,
2003; Martinez-Canabal et al., 2013a,b).
Therefore, there might be no reason
for which age-related decreased neuro-
genesis implicates cognitive impairment.
Rather than insufficient neurogenesis,
excessive neurogenesis in pathological
circumstances could lead to cognitive

impairment by altering hippocampal cir-
cuits (Lee et al., 2012; Martinez-Canabal
et al., 2013b). Therefore, to understand
the role of hippocampal neurogenesis
in AD-related memory impairment, we
need additional transgenic models that
exhibit neuropathology more similar to
that occurring in humans. In addition, it
is critical to understand if AD-associated
neurogenesis yields properly connected
and functional neurons that can support
memory circuits. Immature neurons com-
pared to mature, have different plastic
characteristics that could lead to different
memory roles. It would be important to
understand the memory roles that neu-
rons generated during AD if any, could
develop (Ge et al., 2008). Although Yetman
and Jankowsky’s mouse model is close to
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the current needs of the field, we urgently
need something closer, such as an animal
model in which the expression of AD-
related transgenes drives the production of
new hippocampal cells.
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