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Neurogenesis continues well beyond embryonic and early postnatal ages in three areas
of the nervous system. The subgranular zone supplies new neurons to the dentate gyrus
of the hippocampus. The subventricular zone supplies new interneurons to the olfactory
bulb, and the olfactory neuroepithelia generate new excitatory sensory neurons that send
their axons to the olfactory bulb. The latter two areas are of particular interest as they
contribute new neurons to both ends of a first-level circuit governing olfactory perception.
The vomeronasal organ and the main olfactory epithelium comprise the primary peripheral
olfactory epithelia. These anatomically distinct areas share common features, as each
exhibits extensive neurogenesis well beyond the juvenile phase of development. Here we
will discuss the effect of age on the structural and functional significance of neurogenesis
in the vomeronasal and olfactory epithelia, from juvenile to advanced adult ages, in several
common model systems. We will next discuss how age affects the regenerative capacity
of these neural stem cells in response to injury. Finally, we will consider the integration of
newborn neurons into an existing circuit as it is modified by the age of the animal.
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INTRODUCTION
Neurogenesis was initially thought to be restricted to embry-
onic and early postnatal stages in vertebrates. However, the work
of Altman (1962), Kaplan and Hinds (1977), and Graziadei
(Graziadei and Graziadei, 1979a,b) clearly demonstrated that
neurogenesis is not limited to embryonic development, but con-
tinues in specific regions at a significant rate into adulthood.
Today, we recognize that neurogenesis is also subject to the mech-
anisms that govern aging. Neurogenesis occurs in three primary
areas in the nervous system. These areas include: the subgranular
zone, which supplies new granule cells to the dentate gyrus of the
hippocampus; the subventricular zone (SVZ), which supplies new
interneurons to the olfactory bulb; and the olfactory neuroepithe-
lia, which generate new excitatory sensory neurons that send their
axons to the olfactory bulb. The SVZ and olfactory epithelia are
two areas of particular interest as they contribute new neurons to
both ends of a first-level circuit governing olfactory perception.
Due to space constraints, we have chosen to exclude olfactory
ensheathing cells and the rostral migratory stream/subventricular
zone from our discussion, all of which have been considered in
depth in recent reviews (Whitman and Greer, 2009; Mackay-Sim
and St John, 2011; Mobley et al., 2013). We have also restricted
ourselves to vertebrate systems here in order to maintain a rea-
sonable focus. Invertebrate systems are often quite different and
are well reviewed elsewhere (Cayre et al., 2007; Schmidt, 2007;
Faith Kim et al., 2013).

The vomeronasal organ (VNO) and the main olfactory epithe-
lium (OE) comprise the primary peripheral olfactory epithelia.
We are beginning to understand the mechanisms by which neu-
rogenesis is controlled in these areas, but many have yet to be

clearly defined, perhaps because those that govern embryonic,
juvenile, and adult neurogenesis are overlapping but not iden-
tical. In addition, the control of early growth, patterning, and
differentiation of neurons could be distinct from those found
in a regenerating population, and this may well be affected
by age. Interestingly, neurogenesis in the olfactory epithelia is
rarely accompanied by tumor formation (Bailey and Barton,
1975), implying that this regenerative capacity is in fact carefully
regulated.

Stem cells resident in the olfactory epithelia generate sensory
neurons throughout the life of the animal (Brann and Firestein,
2010; Kondo et al., 2010). These sensory neurons, while special-
ized for transducing chemical stimuli, are indeed true neurons
(not specialized epithelial cells) of the Golgi type I, possessing
a long axon forming glutamatergic synapses with mitral cells
in the olfactory bulb (OB) (Firestein, 2001). The VNO and
OE (Figure 1) share many anatomical and functional features.
They are both pseudostratified columnar epithelia composed of
basal cells, immature, and mature sensory neurons, Bowman’s
gland cells, and sustentacular (supporting) cells. Mature sensory
neurons are bipolar neurons, with an elongated dendrite and
elaborate cilia in which odor detection and transduction takes
place.

The vomeronasal epithelium is a wide neuroepithelium and is
found within a paired bony capsule (the vomeronasal bone) at the
base of the anterior septum in the nose; this structure is typically
termed the VNO. An autonomically controlled vascular pump
governs stimulus access to the VNO in rodents (Meredith et al.,
1980). While historically associated with pheromone detection,
the VNO appears to be functionally restricted to the detection
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FIGURE 1 | Organization and zones of the mouse olfactory epithelium.

(A) Sagittal schematic of the rodent nose depicting the locations of the
olfactory epithelium and the vomeronasal organ (VNO). (B) The VNO is a
bilaterally symmetrical tubular structure; shown here is one half of a coronal
plane as it would appear through the depth of this structure. The marginal
zones (M) are found at the extreme dorsal (D) and ventral (V) regions of the
VNO. Adjacent to the marginal zones are the intermediate zones (I). In

between the two intermediate zones is the central zone (Ce). OB, Olfactory
bulb; OE, olfactory epithelium; B, blood vessel; C, caudal; L, lumen; R, rostral.
Reprinted with permission from the Journal of Neuroscience (Brann and
Firestein, 2010). (C) The olfactory epithelia are composed of five primary cell
types, including the horizontal basal cell (HBC), globose basal cell (GBC),
immature olfactory sensory neuron (OSNi), mature olfactory sensory neuron
(OSNm), and sustentacular cell (Sus).

of non-volatile odorants (Garrosa et al., 1998) and has been
well established as a primary detector for odor information
concerning social organization and reproductive status, includ-
ing pheromones (Mombaerts, 2006). In addition, in reptilian
species such as the turtle, lizard, and garter snake, the VNO
also detects prey items (Fadool et al., 2001). Odor detection
in the sensory neuron occurs via a large family of G protein-
coupled receptors (GPCRs) termed vomeronasal receptors (VRs)
(Dulac and Axel, 1995; Herrada and Dulac, 1997; Matsunami
and Buck, 1997; Ryba and Tirindelli, 1997). There are two
distinct populations of vomeronasal sensory neurons (VSNs)
characterized by receptor and G-protein expression. Apically
situated neurons express Gαi2 and V1Rs and project to the
anterior accessory OB while basal neurons express Gαo and
V2Rs and project to the posterior accessory OB (Mombaerts,
2004).

The main OE is found posterior to the VNO in the adult
nasal cavity, and covers elaborate cartilaginous turbinates, struc-
tures that serve to increase surface area for greater stimulus access
(Figure 1). The main OE is structurally similar to the VNO in that
the cell types are conserved; however, there do not appear to be
layers of mature neurons such as the apical/basal pattern of VSNs.
Sensory neurons in the OE express odorant receptors (ORs); in
rodents, the family of ORs is quite large (∼1400 different genes)
(Zhang et al., 2007). Each mature sensory neuron expresses Golf,
olfactory marker protein (OMP), neural cell adhesion molecule
(NCAM; Schwob et al., 1994), and projects to a single glomerulus
in the OB (Mombaerts, 2006).

After an odorant is detected by peripheral sensory neurons, the
signal is relayed to the OB in the brain. This portion of the olfac-
tory system, the OB, is also subject to modification by lifelong
neurogenesis. The SVZ lines the lateral ventricles and generates
neurons that migrate via the rostral migratory stream to yield two
cell types, namely the periglomerular and granule cells of the OB.
The function of SVZ neurogenesis is unclear, but may contribute
to cellular plasticity necessary for organisms to adapt to environ-
mental change (Lepousez et al., 2013). For the purposes of this

review, we will not consider neurogenesis in this portion of the
olfactory system, as the cell types generated are inhibitory and
not related to those generated peripherally throughout the life of
the animal.

The stem cells in the olfactory epithelia are capable of gen-
erating neurons as well as supporting (glial) cells (Leung et al.,
2007). The neurons that are generated choose a receptor “iden-
tity”; each sensory neuron usually expresses a single vomeronasal
or odorant receptor, and this gene choice is highly regulated
(Shykind et al., 2004; Lomvardas et al., 2006; Magklara et al.,
2011; Lyons et al., 2013). In addition, the developmental process
of aging regulates olfactory neurogenesis. Hence neurogenesis in
these tissues is a complex phenomenon governed by a series of
molecular regulatory mechanisms.

When one considers the word “age” in the context of neuro-
genesis, there are two interpretations; organismal age, and age of
the progenitor or stem cell. The former is relatively easily defined,
but the latter is more difficult to describe. In this review, we
will discuss the effects of organismal age on neurogenesis, the
effect of organismal age on the regenerative capacity of neuroge-
nesis, and how organismal age may impact the incorporation of
new neurons into existing circuits in the two peripheral olfactory
epithelia.

THE EMBRYONIC ORIGINS OF THE OLFACTORY EPITHELIA
The rodent VNO and OE arise from the olfactory placode or pit,
the invagination of which forms the nasal cavities early in devel-
opment (Suarez et al., 2012). In the murine OE, the first signs
of cellular differentiation can be observed at embryonic day 10
(E10), when the epithelium already contains dark (embryonic
stem cells; Pax7+; Murdoch et al., 2010) and pale (developing
sensory neurons) cells. At this stage, the proliferation of progen-
itor cells is dependent upon retinoic acid and Six1 (Ikeda et al.,
2010; Paschaki et al., 2013). However, the hallmark layering of the
epithelium is not visible until later in development (E13–E15).
Before this stage, the elongated nuclei of stem cells are present
in both the apical and basal compartments; afterward, the stem
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cells become restricted to the basal compartment, and the api-
cal layer terminally divides to become the sustentacular cells. This
transition is marked by Fezf2 (a zinc finger transcription fac-
tor) restriction to the sustentacular layer in the VNO (Eckler
et al., 2011). Insm1, also a zinc-finger transcription factor, is tran-
siently expressed by progenitors at this stage and may promote
this transition (Rosenbaum et al., 2011). Dendrites of the sen-
sory neurons are first visible at E11, and this is coincident with
first contact of sensory axons with the OB, successful penetra-
tion of which is dependent upon Neurog1/2 (Shaker et al., 2012).
However, functionality is not necessarily implied by anatomy
at this stage, as the underlying vasculature in the basal lam-
ina and Bowman’s glands are not present until E15 and E17,
respectively (Cuschieri and Bannister, 1975). As Cuschieri and
Bannister (1975) point out, it is interesting to note that the
nuclei of the embryonic stem cells differ from that of the “dif-
ferentiated” basal cells found in the early postnatal and adult
mouse. Their conclusion was that perhaps stem cell capacities
were not conserved between the two populations; indeed, they
no longer express Pax7 (Murdoch et al., 2010) or contain nestin-
expressing radial glia-like progenitors (Murdoch and Roskams,
2008), both of which which may indicate a loss of embryonic
pluripotency.

In general, the development of the murine VNO is similar,
although delayed relative to that of the OE. Following placode
invagination, a recess in the medial wall forms the VNO at E11.
By E13, clear mitoses are restricted in the basal layer of the
vomeronasal epithelium. During this time, Notch1-expressing
cells are found throughout the VNO but the expression of Notch1
decreases with development (Wakabayashi and Ichikawa, 2007).
This is consistent with the function of Notch promoting differen-
tiation of progenitor cells in other neurogenic systems. By E19
in the rat (shortly before birth), however, few mature neurons
(as indicated by OMP expression) are observed (Matsuoka et al.,
2002). These data, in combination with observations that archi-
tectural, histochemical, and ultrastructural features of immatu-
rity are still observed at birth (Garrosa et al., 1998; Taniguchi,
2008) indicate the rodent vomeronasal epithelium differentiates
more slowly than the main OE. By the end of the third postnatal
week, the rat VNO is morphologically mature (Garrosa and Coca,
1991).

The structural development of the vomeronasal epithelium
in the garter snake (Thamnophis sirtalis) appears to be more
similar to that of the OE, but by birth the neuronal precur-
sors are restricted to the basal layer (Holtzman, 1998). In the
frog Rana japonica, late VNO development relative to OE for-
mation is also observed; the OE is largely adult-like in tad-
poles 1 month after hatching, but the VNO is not complete until
the end of metamorphosis (Taniguchi et al., 1996). Late VNO
development is also seen in the opossum, Monodelphis domes-
tica, although this marsupial is particularly interesting because
the VNO is in an extreme state of immaturity at birth and
provides an opportunity to examine embryonic-like processes
in an early postnatal animal (Couper Leo and Brunjes, 1999).
Together, these results suggest the OE is functional earlier in
development than the vomeronasal epithelium in most vertebrate
species.

ON THE IDENTITY OF THE ADULT OLFACTORY NEURAL STEM
CELL
From late embryonic to postnatal stages, basal cells are thought
to be responsible for generating sensory neurons. The basal cell
population gives rise to Ascl1+ progenitors and subsequently
Neurogenin-1 and NeuroD1+ immediate neuronal precursors
(Packard et al., 2011a; Suarez et al., 2012). Following this stage,
GAP-43+ immature neurons terminally differentiate into OMP-
expressing mature neurons. This lineage is conserved in both
the VNO and OE. However, in general more is known about
progenitor cell activation in the OE than in the VNO.

Two populations of basal progenitor cells are found in juve-
nile and adult olfactory epithelia, including horizontal basal cells
(HBC) and globose basal cells (GBC). The identity of a sin-
gle juvenile or adult stem cell population remains contentious.
Confounding the matter is the fact that the GBCs in the adult
are similar but may not be identical to the embryonic progeni-
tors, and the HBCs appear in late embryogenesis due in part to
Ascl1, and whose activation is dependent upon �Np63 (Fletcher
et al., 2011; Packard et al., 2011b; Krolewski et al., 2012). Clearly,
the GBC can give rise to all cell types in the OE (Schwartz
Levey et al., 1991; Caggiano et al., 1994; Huard et al., 1998; Jang
et al., 2003; Beites et al., 2005; Schwob and Jang, 2006). Recent
work using powerful genetic tools to perform lineage tracing has
demonstrated that the HBC can also generate all cell types found
in the OE and is also a neuronal stem cell (Duggan and Ngai,
2007; Leung et al., 2007; Iwai et al., 2008; Mackay-Sim, 2010).
Wnt signaling regulates the activation of both GBCs and HBCs
(Sox2+) in early postnatal mouse OE; furthermore, Wnt signal-
ing is required for recovery following chemical lesion in adult
mice (age not stated; Wang et al., 2011b).

Neurogenesis in the olfactory epithelia comes in two flavors:
that which is required for ongoing regeneration in an intact
epithelium, and that which is required following injury. GBCs
are likely the progenitor for many of the neurons made during
ongoing neurogenesis and during reconstitution following a mild
injury; most cycle rapidly (Huard and Schwob, 1995) and incor-
porate a marker of DNA synthesis, 5-bromo-2′-deoxyuridine
(BrdU) at a high rate. Recently however a subpopulation of
label-retaining GBCs were shown to cycle slowly, a characteris-
tic previously demonstrated only in HBCs (Jang et al., 2014) and
one that is common to adult stem cells in other tissues (Fletcher
et al., 2011). HBCs are immunoreactive for cytokeratins (K5/K14;
Holbrook et al., 1995; Comte et al., 2004), incorporate BrdU to
a limited degree, divide at a slow rate (Mackay-Sim and Kittel,
1991a), and can be considered quiescent neural stem cells (after
Wang et al., 2011a) that respond to severe injury. The HBC also
has a conserved adhesion receptor expression profile similar to
other stem cells (Carter et al., 2004). However, there remains a dis-
agreement concerning the role of the HBC in ongoing neuronal
turnover and mature neuron-specific injury (via bulbectomy or
the removal of the target of the sensory neurons) vs. its role
in neurogenesis following a severe chemical lesion (commonly
made with methyl bromide or methimazole) that damages all
cell types of the epithelia. Using fate-mapping analysis via an
inducible Krt5-cre in combination with a LacZ reporter line,
Leung et al. found that a severe lesion that disrupts the integrity
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of the epithelium is required to recruit HBCs. A neuron-specific
lesion, namely olfactory bulbectomy (OBX), did not recruit HBCs
(Leung et al., 2007) in their experiments. In direct conflict with
the results of Leung et al. another group found that both normal
neuronal turnover and OBX recruited HBC activity when using
a constitutively active Krt5-cre strain (Iwai et al., 2008). Future
work may clarify these particular results. Here, we conclude that
there are likely two populations of multipotent stem cells com-
petent to generate neurons in the olfactory epithelia, including
both the horizontal and GBC. However, we would point out that
the majority of this work was completed in young animals, and
hence we do not know if the same signaling mechanisms govern
the neurogenic process in aged animals.

THE EFFECT OF ORGANISMAL AGE ON NEUROGENESIS IN
THE OLFACTORY EPITHELIA
The occurrence of neurogenesis in the olfactory epithelia of ver-
tebrates has been well documented for over 50 years. Basal cells
in the VNO and OE clearly retain the capacity to generate new
neurons throughout life. The genetic and molecular determi-
nants of neurogenesis in the olfactory epithelia appear to be
largely conserved between embryonic stages and postnatal stages.
Interestingly, this same process is also conserved amongst epithe-
lia capable of regeneration (auditory and visual, for example; for
a recent extensive review please see Bermingham-McDonogh and
Reh, 2011).

It has been suggested that the neurogenesis observed in the
olfactory epithelia is due to turnover of the population of imma-
ture sensory neurons, rather than due to replenishment of mature
sensory neurons (Hinds et al., 1984; Mackay-Sim and Kittel,
1991b). This implies newborn neurons do not in fact reach a
mature state. However, by 30 days after BrdU labeling in all
ages tested (1–24 months of age), a proportion of BrdU-labeled
cells will also express OMP, a marker of neuronal maturity,
indicating newborn neurons do indeed become mature neurons
(Brann and Firestein, 2010). Whether newborn olfactory sen-
sory neurons form proper synaptic connections in the OB is a

question discussed below; however, retrograde labeling of new-
born VSNs suggests their axons are indeed able to reach the
AOB (Barber, 1981a). Regardless, we do know that the stem cells
in the VNO and OE are capable of reconstituting the epithe-
lia following a lesion (discussed below) and hence the process
of neurogenesis is assumed to be functional in an unlesioned
animal as well.

The bulk of the studies examining neurogenesis thus far have
been done in young adults, not aged adults (24–30 months of age
for mice). More recently we have begun to investigate the role of
organismal age in regulating proliferation in the olfactory epithe-
lia. In the VNO, basal progenitor cells are capable of extensive
neurogenesis although many newborn cells die before becoming
functional neurons (Martinez-Marcos et al., 2005). The major-
ity of neurogenesis in the early postnatal rodent VNO appears to
be due to growth related processes rather than neuronal replace-
ment, and is perhaps an extension of development, as the VNO
matures later than the OE (as discussed above). The vomeronasal
epithelium can be divided into zones; neurogenesis from basal
cells in the marginal zones near the dorsal and ventral aspects of
the VNO is predominantly responsible for growth, while that in
the central zone is associated with neuronal replacement (Barber
and Raisman, 1978a; Wilson and Raisman, 1980; Weiler et al.,
1999; Giacobini et al., 2000; Martinez-Marcos et al., 2000; Weiler,
2005; De La Rosa-Prieto et al., 2009; Brann and Firestein, 2010).
While the level of proliferation in rodents is high at birth, as
assessed by either 3H-thymidine or BrdU incorporation, these
levels fall precipitously over first month of life. However, by
sexual maturity, i.e., ∼2 months of age through advanced ages
(over 20 months of age), proliferation has leveled out to roughly
10% of the level observed at birth (Figure 2A; authors’ calcu-
lations from (Wilson and Raisman, 1980; Weiler et al., 1999;
Weiler, 2005; Brann and Firestein, 2010). This is paralleled by Gγ8
expression, a GTP-binding protein whose function in neurogen-
esis is unclear, but may signify a switch from the developmentally
expressed subunit to a mature G-protein (either Gαo or Gαi2)
as newborn neurons mature (Ryba and Tirindelli, 1995). The

FIGURE 2 | The effect of organismal age on the rate of

neurogenesis. (A) The number of cells incorporating BrdU per mm in
the rodent declines precipitously over the first month of life, but
reaches a steady-state level in the adult that does not appear to be
profoundly affected by aging. Graph of the authors’ calculations from
Wilson and Raisman (1980); Weiler et al. (1999); Weiler (2005); Brann
and Firestein (2010), normalized to peak value reported. (B) The

neurogenic response of the OE following lesion (bulbectomy). Figure is
adapted from Kastner et al. (2000). Cell number (blue dashed line, filled
circles), number of apoptotic cells (black dashed line, filled squares),
and cells incorporating 3H-thymidine (red solid line, triangles) in the
olfactory epithelium of mice expressed relative to their respective
maxima. The levels of mitotic cells (red) peak 5 days post-surgery,
while total cell number (dotted line) is at its lowest following surgery.
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decline in neurogenesis with age may be due in part to a decline
in the number of basal cells (Garrosa and Coca, 1991); indeed
Notch1 expression is largely restricted to the marginal zones by
4–5 months of age (Wakabayashi and Ichikawa, 2007). However,
there remain a few basal cells in the central zone of the VNO,
which can be reactivated by injury (discussed below; Brann and
Firestein, 2010). Regardless of the decline in rate with age, neu-
rogenesis yields both V1R and V2R expressing populations in a
similar proportion, indicating stochastic production of VSNs (de
la Rosa-Prieto et al., 2010). The decline in “normal” proliferative
levels is observed in other species, for example the opossum (Jia
and Halpern, 1998) and snake (Holtzman, 1998) and is likely to
be a feature common to all vertebrates.

In the OE of rodents, continuous neurogenesis also occurs
throughout life (Graziadei and Monti Graziadei, 1978; Hinds
et al., 1984). Long-lasting neurogenesis occurs in humans as well;
when OE was isolated from middle aged and elderly postmortem
OE and grown in vitro, some newborn cells did express OMP,
albeit at a low rate (Hahn et al., 2005). However, as in the VNO,
the rate of proliferation in the OE also declines with age [mouse
(Loo et al., 1996); guinea pig (Nakamura et al., 1998); and dog
(Hirai et al., 1996)]. Similar to the VNO, during the first year of
life in the rat OE, neurogenesis was shown to contribute largely
to growth rather than replacement (Weiler and Farbman, 1997).
That is, the OE continued to grow by adding new cells for up to
1 year postnatal, i.e., well into middle age. Proliferation decreased
dramatically over early postnatal ages (from 151 cells/mm at P1,
postnatal day 1, to 24 cells/mm at 3 months of age) to a low of 8
cells/mm at 1 year of age. This occurred as the total surface area
of the rat MOE increased with age (Weiler and Farbman, 1997,
1998a). During the same period, the proliferation of supporting
cells also declined with age. At early postnatal ages (P1, postnatal
day 1) the proliferation rate was high (80 cells/mm) but declined
quickly to 12 cells/mm by P21, and even further by 1 year of
age to 0.4 cells/mm (Weiler and Farbman, 1998b). The decline in
proliferation parallels the decline in apoptosis (Mackay-Sim and
Kittel, 1991a; Fung et al., 1997; Kondo et al., 2010) as well as the
decline in Ascl1, a proneural gene required for the generation of
olfactory sensory neurons, with advancing age (Guillemot et al.,
1993; Cau et al., 2002; Watanabe et al., 2007). However, the time
required to generate a new neuron, from birth to maturation, is
similar at all ages (Kondo et al., 2010). Advanced age ultimately
is associated with deficits in epidermal growth factor signaling
in the OE (Enwere et al., 2004), decreased olfactory sensitivity,
and impaired olfactory discrimination learning [mice (Fantana
et al., 2008); rat (Schoenbaum et al., 2002); primate (Aujard and
Nemoz-Bertholet, 2004); human (Doty and Kamath, 2014)], a
curious outcome for a tissue capable of regeneration.

Not only is the rate of proliferation regulated by aging, but the
end result of neurogenesis appears to be as well. The gene expres-
sion profile of odorant and VRs has been observed to change
from early postnatal to advanced ages (Zhang and Firestein, 2002;
Zhang et al., 2004, 2010; Lee et al., 2009; Rodriguez-Gil et al.,
2010), such that receptor gene expression is turned on and off
at different ages during the lifetime of the animal. However, this
work has recently been challenged (Khan et al., 2013) using new
NanoString technology, so future work is needed to clarify these

patterns. In addition, while the lifespan of an OSN in young
adult animals is generally reported to be approximately 30 days
(Graziadei and Graziadei, 1979b), other experiments indicate that
OSN lifespan may be as long as 90 days (Wilson and Raisman,
1980; Mackay-Sim and Kittel, 1991b) or even a year (Hinds et al.,
1984). Recent evidence supports the idea that neuronal turnover
in aged animals is even lower than that in young animals, and
therefore the life a mature OSN may be even longer as animals
age (Kondo et al., 2010).

The cell cycle of active proliferative cells in the OE has been
estimated to be 17 h (Huard and Schwob, 1995). However, there is
evidence that this too is regulated by aging; in juvenile guinea pigs,
the rate of division was measured to be faster than that observed
in adults (Higuchi et al., 2005). Interestingly, the regulation of
cell cycle genes was particularly prominent in a common aging
model, the senescence-accelerated mouse (SAM) when examined
by microarray analysis (Getchell et al., 2003). In summary, it is
now well established that neurogenesis continues into adulthood
in the VNO and OE but slows with age. Aging may ultimately
disrupt the structure of the epithelia (Rosli et al., 1999) and the
expression of regulators of the cell cycle (Legrier et al., 2001) in
the OE, but perhaps a larger question is that of the “age” of the
stem cell itself, and whether the regenerative capacity of this stem
cell is regulated by developmental stage or advanced age.

THE EFFECT OF ORGANISMAL AGE ON THE REGENERATIVE
CAPACITY OF NEUROGENESIS IN THE OLFACTORY
EPITHELIA
The regenerative capacity of the vomeronasal and olfactory
epithelia has been probed quite extensively with several lesion
paradigms. Some of these methods selectively target the mature
neuronal population, such as removal of the OB (OBX) or sev-
ering the olfactory nerve (axotomy or nerve transection). Both
of these techniques result in the initial degeneration of sen-
sory neurons, followed by a massive upregulation of proliferation
of mitotic progenitor cells. Other perturbations include sen-
sory deprivation (naris occlusion) and olfactotoxicants (chemical
ablation). Methyl bromide gas or methimazole are examples of
chemical ablation; these typically evoke the most severe lesions,
resulting in the loss not only of sensory neurons but other
cell types (supporting, GBC) as well. More recently, genetically
mediated lesion techniques have proven useful in dissecting the
neurogenic process (Chen et al., 2005).

The literature on recovery following lesion in the VNO is rela-
tively sparse. In the rodent VNO, the robust regenerative capacity
of the stem cell population was demonstrated by Barber and
Raisman (1978a,b); sensory neurons degraded within 8 days,
and proliferation was significantly increased when examined 10–
20 days following nerve transection or removal of the accessory
OB (Barber and Raisman, 1978b). These results were verified in
rat (Yoshida-Matsuoka et al., 2000), mouse (Wakabayashi and
Ichikawa, 2007), hamster (Ichikawa et al., 1998), opossum (Jia
and Halpern, 1998), and garter snake (Wang and Halpern, 1988).
However, most of this work was performed primarily in young
animals (or the age of the animals is not explicitly stated and may
be assumed to be in young animals). Recently, we have shown
that the regenerative response following injury (in this case, OBX)
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is considerable, even out to advanced ages (24 months of age in
mice; (Brann and Firestein, 2010), implying the stem cell found in
aged mice is quite capable of undergoing extensive neurogenesis.
In addition, seasonal additions to the VNO such as those seen in
lizards and salamanders support the idea that these stem cells have
a resilient regenerative capacity (Dawley et al., 2006; Delgado-
Gonzalez et al., 2011). An unanswered question concerns whether
recovery from a lesion to the VNO is incomplete (Ichikawa et al.,
1998); however, in the case of bulbectomy studies, this is reason-
able as new neurons send their axons to the now absent target,
die, and another wave of neurogenesis is triggered.

The regenerative capacity of the OE has by comparison been
investigated much more thoroughly. In most reported tech-
niques, anatomical (Schwob et al., 1995) and functional (Blanco-
Hernandez et al., 2012) recovery is evident within ∼45 days and
odorant receptor expression patterns are reestablished within 90
days (Iwema et al., 2004). Chemical ablation of the OE (by com-
pounds such as zinc sulfate, methyl bromide, and methimazole)
or lesion following removal of the OB is followed by rapid prolif-
eration of basal cells (Matulionis, 1975; Hurtt et al., 1988; Genter
et al., 1995, 1996; Williams et al., 2004) producing more than 8–
10 million new neurons in total (Carter et al., 2004; Suarez et al.,
2012), demonstrating how remarkably robust neurogenesis can
be in these epithelia. In lesioned rodent epithelia, degeneration
occurs quickly (Figure 2B) via apoptotic cell death, followed by
a steep increase in proliferation. Mature neurons (as indicated by
OMP expression) are visible 8–10 days after lesion.

There have been several demonstrations that the olfactory
epithelia, when damaged by lesion techniques that do spur neu-
rogenesis, often fail to completely recover as measured by cell
density and epithelial thickness (Costanzo and Graziadei, 1983;
Schwartz Levey et al., 1991; Suzukawa et al., 2011). These results
raise the possibility of a limit to the regenerative capacity of the
neural stem cell, perhaps a phenomenon aging may exacerbate.
However, while we know much about cell dynamics of the regen-
erative process in early postnatal and young adult animals [mice
(Suzuki et al., 1998); teleost fish (Bettini et al., 2006); primates
(Graziadei et al., 1980)], we do not currently know much about
how the aged epithelium contends with regeneration following
injury. Indeed, recovery from zinc sulfate lesion was less effi-
cient in adult (6 month old) mice than in young (1 month old)
mice (Ducray et al., 2002a), but functional recovery occurred
even in the adult group (Ducray et al., 2002b). However, chemical
lesions are not equivalent in the amount of damage they cause
(Bergman et al., 2002). Using a different lesion method (3,3′-
iminodipropionitrile; IDPN), Genter and Ali (1998) demon-
strated that there is an age-related susceptibility to damage caused
by IDPN, perhaps confounding the interpretation of chemical
lesion results in aged mice (Bovetti et al., 2011). Recent work by
Suzukawa et al. (2011) investigated the efficacy with which the
aged OE responded to methimazole-induced lesion and found
that the numbers of proliferative cells in aged (16 month old)
animals post-lesion were much lower than either their 3 month
or 10 day old counterparts, the number of immature neurons
were lower, and ultimately, the number of mature neurons (OMP
expressing) in aged mice were approximately a third of that
observed in the young groups (Suzukawa et al., 2011).

THE EFFECT OF ORGANISMAL AGE ON THE INTEGRATION
NEW NEURONS INTO EXISTING CIRCUITS
Neurogenesis and regeneration is a complex task for a sensory sys-
tem to accomplish, particularly in the case of the olfactory system.
This system has not one, but two components continually sub-
ject to modification by neurogenesis. How is a sensory percept
maintained in the face of such plasticity? Clearly communication
occurs between the components of the olfactory system regard-
ing the status of neurogenic activity. For example, the function
of mitral cells in the OB affects the number of sensory neurons
surviving in the epithelium (Weiler and Farbman, 1999; Cavallin
et al., 2010), while ablation of the OB not only modulates neuro-
genesis in the OE, but also causes cell death in the piriform cortex,
the target of mitral cell axons (Leung and Wilson, 2003).

Neurogenesis is a multistep process; the generation of new
neurons from progenitor populations not only requires sequen-
tial onset of basic helix loop helix transcription factors such as
Sox2, Pax6, and Hes1, but expression of Ascl1, a proneural gene
involved in neuronal differentiation. Additionally, the axons of
the newborn neurons must successfully reach their targets in
the OB, and form appropriate synapses. Two previous studies
indicated that VSNs perhaps do not reach the AOB (Barber,
1981b; Matsuoka et al., 2002). However, both of these studies
used a nerve transection technique that can cause scarring, leav-
ing open the possibility the growing axons from newborn neurons
could not efficiently traverse the damaged tissue. More recently,
∼60% of newborn VSN axons in young (2–4 months of age)
mice were found to reach the AOB, as assessed by combinatorial
BrdU pulse labeling and iontophoretic injections of dextran con-
jugated tetramethylrhodamine into the AOB (de la Rosa-Prieto
et al., 2011). Similar results have been obtained in other species
where newborn neurons re-establish connections to the main OB
as well [hamster (Costanzo and Graziadei, 1983); mouse (Burd,
1993); rat (Schwob et al., 1999); zebrafish (Iqbal and Byrd-Jacobs,
2010)], although functional recovery may precede morphological
recovery (Hurtt et al., 1988).

While these experiments support the idea that newborn neu-
rons can successfully target and integrate into circuits in the OB,
whether neurons generated in aged animals are able to accomplish
this task is unclear. We also do not know if the process of out-
growth, targeting, and successful synapse formation is different
in an intact system vs. a lesioned epithelium. There is some evi-
dence that olfactory sensory neurons are able to accomplish this
in the face of a lesion challenge. In hamster, axons from newborn
olfactory sensory neurons, generated following OBX in aged ani-
mals, are able to reconnect with the OB (Morrison and Costanzo,
1995). This may not hold true for other rodent or other model
systems, and it is unknown if more severe lesions would result in
a different outcome.

CONCLUSIONS
Understanding the regenerative capacity of the brain through-
out its lifespan is an important goal for many neuroscientists in
the hopes that the mechanisms governing neurogenesis might
be exploited to repair neuronal loss caused by aging, injury, or
neurodegenerative disease. The process of neurogenesis therefore
understandably fascinates many of us. One conundrum of this
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process is the “why”—why is neurogenesis necessary? What func-
tions does it fulfill? Is it merely a holdover of a developmental
process, or is it necessary for optimal organismal function? While
the answers are becoming perhaps more clear regarding the role
of SVZ neurogenesis in learning (Mandairon et al., 2011; Moreno
et al., 2014), we are only just beginning to understand the role
of neurogenesis, and the effects of organismal age upon it, in the
olfactory epithelia.

The function, potency, or perhaps the replicative cycles
remaining, of the majority of stem cell types, neural or other-
wise, typically declines with increasing age (Signer and Morrison,
2013). The aging phenotype is thus likely due to accumulated
mutations in addition to compromised stem cell function as an
organism ages. This results the loss of neurons, aberrant func-
tion, increased neuronal longevity (and additional opportunities
for accumulation of mutations), or a lack of regenerative capacity
following injury. The stem cells resident in the vomeronasal and
olfactory epithelia exhibit a profound resistance to the types of
cellular aging observed in other tissues, and provide insight into
the regulation of stem cells beyond embryonic or early postnatal
stages.

The idea that stem cells are influenced by the environment
in which they reside is not new; however, recent developments
indicating that the environment might be more influential than
previously thought are worthy of consideration. For instance, the
neural stem cell in the OE is relatively active when compared to
neural stem cells in the remainder of the proliferative postnatal
and adult brain; does this indicate that the stem cells in this tissue
are under a constant source of stress? What is causing the nor-
mally continually proliferative mode of the stem cells in the OE
vs. the remainder of the nervous system? What molecular signals
cause aged tissues to exhibit less proliferation than young animals,
but are clearly altered during regeneration? Genomic and pro-
teomic expression profiling may provide answers. Getchell et al.
addressed this by performing gene expression analysis of the OE
in the SAM and normal aging mouse, highlighting genes involved
in the stress response in particular as being regulated by aging
(Getchell et al., 2004; Poon et al., 2005). Recent work by Schwob
et al. has identified a cohort of genes whose expression is specific
to GBCs in young adult mice; future analysis may reveal whether
this transcriptional profile is altered with aging (Krolewski et al.,
2013). As we look toward the future, as Graziadei observed
many years ago (Graziadei and Monti Graziadei, 1983), studies
of the olfactory system’s regenerative capacity “could contribute
to the understanding of the phenomena related to the control of
neurogenesis, plasticity of connections, and target recognition.”

We have discussed neurogenesis throughout the lifespan of
vertebrates, considering embryonic, early postnatal, juvenile and
aged animals, in a system that undergoes lifelong neurogenesis.
A question for future research concerns whether neurogenesis in
aged animals is in fact a recapitulation of embryonic mechanisms,
or if the stem cell has become restricted in some way. Recent work
by Heron et al. (2013) demonstrated that gene expression patterns
in young adult mice during neurogenesis following bulbectomy
were indeed similar to embryonic processes, but future work is
needed to ascertain whether this applies to the aged epithelia, or
epithelia recovering from a chemical lesion. A second question is

whether there is an overarching homeostatic balance between the
numbers of glia and neurons in the VNO and OE. Evidence indi-
cates that the relationship between neurons and glia is reciprocal
(Tolbert et al., 2004) and thus may play a role in regulating neu-
rogenesis in these tissues from adult and aged animals. Finally,
an interesting future question may concern circadian rhythms,
which are disrupted with aging (Goergen et al., 2002; Campos
Costa et al., 2013). Circadian rhythms also regulate neurogene-
sis (Schnell et al., 2014) and OB activity (Granados-Fuentes et al.,
2006); hence, a disregulation of clock genes such as Per1 and Per2
may be a source of explanation for the decline in proliferation
observed with aging in the olfactory epithelia.

Finally, we would affirm that neurogenesis in the adult olfac-
tory system has a role beyond simple anatomical growth, and
is likely a necessary strategy to combat environmental damage.
Perhaps of most utility is to recognize the proliferative nature of
these neural stem cells so that we may exploit them for their ther-
apeutic potential. After all, one thing is clear; clinical applications
may be vast if we pursue a more thorough understanding of the
processes regulating this repository of accessible neural stem cells
(Schwob and Jang, 2006; Delorme et al., 2010; Wetzig et al., 2011;
Mackay-Sim, 2012).
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