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Chemical communication via sex pheromones is critical for successful reproduction but
the underlying neural mechanisms are not well-understood. The goldfish is a tractable
model because sex pheromones have been well-characterized in this species. We
used male goldfish forebrain explants in vitro and performed whole-cell current clamp
recordings from single neurons in the ventral preoptic area (VPOA) to characterize
their membrane properties and synaptic inputs from the olfactory bulbs (OB). Principle
component and cluster analyses based on intrinsic membrane properties of vPOA neurons
(N = 107) revealed five (I-V) distinct cell groups. These cells displayed differences in their
input resistance (Rinpyr: | < Il < IV < lll = V), time constant (TC: I =1l < IV < Il = V),
and threshold current (linreshoid: | > Il = IV > Il = V). Evidence from electrical stimulation
of the OB and application of receptor antagonists suggests that vPOA neurons receive
monosynaptic glutamatergic inputs via the medial olfactory tract, with connectivity varying
among neuronal groups [l (24%), 1l (40%), 111 (0%), IV (34%), and V (2%)].
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INTRODUCTION

Chemical communication plays a vital role in vertebrate repro-
duction. Biologically-active sex pheromones have evolved across
the animal kingdom to convey reproductive information to con-
specifics (Dulac and Torello, 2003). However, in most cases, the
neural circuitry associated with the processing of sex pheromones
is poorly understood. Chemical communication is especially
important in animals like goldfish because they rely on exter-
nal fertilization and often live in turbid waters. These fish have
evolved sex pheromones to synchronize spawning between the
sexes and thus ensure reproductive success. Further, the goldfish
is an attractive model to study the neural substrates of chemi-
cal communication because it is one of the few vertebrates whose
sex pheromones have been fully characterized (Stacey et al., 1989;
Sorensen et al., 1991; Dulka, 1993).

Studies of male goldfish indicate that sex pheromones from
females regulate male sexual behavior and milt production by
inducing the release of luteinizing hormone (LH) from the male
pituitary gland through stimulation of gonadotropin-releasing
hormone (GnRH) in the POA (Stacey, 1983; Kobayashi et al.,
1986, 2002; Trudeau, 1997). The POA controls the release of LH
(Peter et al., 1990; Chang et al., 2000; Trudeau et al., 2000a,b) via
a signaling pathway involving dopamine (DA), which tonically
inhibits both GnRH and LH release (Peter and Paulencu, 1980;
Kah et al., 1987; Sloley et al., 1992; Popesku et al., 2011). Coupled

to the GABAergic inputs this area receives from the ventral telen-
cephali pars ventralis (Vv) (Martinoli et al., 1990; Trudeau et al.,
2000b), the vPOA may be the site where DA suppression of GnRH
is removed to allow increased GnRH levels to elicit LH release and
subsequent spawning.

To characterize the neural pathways underlying the OB and
POA networks, we have developed a novel in vitro explant
preparation of the goldfish forebrain (Trudeau et al., 2000b).
The adult goldfish brain is small and relatively unmyelinated
making it attractive for patch clamp electrophysiology. In addi-
tion, the explant preserves the underlying neural circuitry yet
allows for easy access to neurons on the ventral surface of the
brain.

Here, we first describe the intrinsic membrane properties
of neurons in the vPOA. Based on these properties, we sug-
gest that vPOA neurons comprise five different subgroups. We
then characterized the synaptic projections from the OB to the
vPOA. In the goldfish and the closely related Crucian carp,
the lateral olfactory tract (LOT) transmits food-related odors
(Dulka, 1993; Hamdani et al., 2001a,b) while the medial olfac-
tory tract (MOT) conveys exclusively pheromonal and social
signals (Demski and Dulka, 1984; Sorensen et al., 1991; Hamdani
et al., 2000). Here, we demonstrate that there are functional
glutamatergic projections from the OB to the POA through
the MOT.
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MATERIALS AND METHODS

EXPERIMENTAL ANIMALS

This study was approved by the animal care committee of the
University of Ottawa and carried out in accordance with the
guidelines of Canadian Council on Animal Care. Common gold-
fish (Carassius auratus) weighing 15-40 g were purchased from
a commercial supplier (Aleong’s International Inc., Mississauga,
ON, Canada). Fish were acclimated to 18°C, fed and maintained
on a simulated photoperiod as previously reported (Trudeau
etal.,, 1991). Only male goldfish were used throughout the study.
During spawning season, sexually mature males were easily dis-
cernable by their distinctive tubercles and some readily expressed
milt when their anogenital area was gently pressed. After the
spawning season and during recrudescence, when tubercles are
not always evident, sex was confirmed post-mortem by visual
inspection of the testes.

Fish were anesthetized by immersion in 0.05% tricaine
methanesulphonate (TMS) prior to dissection of the brain
explant. Briefly, after severing the spinal cord, the skull was care-
fully opened with surgical scissors to expose the brain. The brain
was dissected out from the skull cavity by cutting the optic nerves,
and then removing the whole brain with olfactory bulbs still
attached. The explant was attached to a Petri-dish ventral side up
at the level of the spinal cord and cerebellum with cyanoacrylate
glue, and placed in a bath with ice-cold artificial cerebrospinal
fluid (ACSF) of the following composition [mM]: 127 NaCl, 1.9
KCl, 1.2 KH,POy, 2.4 CaCl,, 1.3 MgCl,, 26 NaHCOs3, 10 D-
glucose; gassed with carbogen (95 O3, 5% COy); pH adjusted
to 7.4 with NaOH. The ACSF was modified from rats’ ACSF
(Spanswick et al., 1998) and it was similar to others (ACSF)
in other fish such as Apteronotus leptorhynchus (Kotecha et al.,
1997) and C. auratus (Wilkie et al., 2008). When magnesium-free
solution was used, MgCl, was omitted from the ACSE.

The meninges were removed with fine forceps to expose the
ventral telencephalon and access the vPOA; then a transverse cut
using a razor blade was made posterior to the hypothalamus
to free the brain from the dish. The brain was then transferred
carefully to a custom-built recording chamber perfused at room
temperature with ACSF at a rate of 2—4 ml/min. The brain explant
was mounted with the ventral side up and then held between two
custom-made nylon grids where it was allowed to recover for 1h
prior to recordings; all recordings were made in the 7 h following
dissection. Neuroanatomical nomenclature in this study follows
that of Anglade et al. (1993). Our vPOA corresponded to nucleus
preopticus periventricularis as depicted in Plate 43 of the goldfish
brain atlas (Peter and Gill, 1975).

ELECTROPHYSIOLOGICAL RECORDINGS

Electrophysiological recordings were made based on previous
methods for rat spinal cord and hypothalamus (Spanswick et al.,
1998). Whole-cell patch clamp recordings using a Multiclamp
700B amplifier (Molecular Devices) in current clamp mode, were
obtained from vPOA neurons (N = 107) in the in vitro fore-
brain explants at room temperature (~18-20°C) from 120 fish.
Patch pipettes (5-8 M2) were fabricated from borosilicate fila-
ment glass (Sutter Instrument Co., Novata, CA, USA) using a
horizontal pipette puller (P2000; Sutter Instrument Co., Novata,

CA, USA) and filled with intracellular solution of the follow-
ing composition [mM]: 140 K-gluconate, 10 KCI, 1 sucrose, 2
Nay ATP, 1 EGTA-Nay plus 10 HEPES and pH adjusted to 7.4 with
KOH modified from Spanswick et al. (1998).

Using the anterior commissure and optic chiasm as landmarks,
patch electrodes were guided to the vPOA under visual control
of a dissecting microscope. Seal formation was monitored on
an oscilloscope. Once a gigaohm seal (typically > 5GS2) was
achieved, whole-cell access was made by gentle suction. Series
resistance was < 25 M.

To measure synaptic connectivity, a bipolar stimulating elec-
trode was inserted into one of the olfactory bulbs (OBs).
Postsynaptic potentials (PSPs) in the vPOA were elicited by single
pulse electrical stimulation (5-30V, 0.2 ms pulse duration) of the
ipsilateral OB via a stimulus isolation unit (Digitimer Ltd., model
DS2). Data acquisition and experimental control was performed
using pCLAMP 9.2 software (Molecular Devices). Data were low-
pass filtered at 2kHz and acquired at 10 kHz and later analyzed
offline using CLAMPFIT 9.2 software (Molecular Devices).

PHARMACOLOGICAL AGENTS

To characterize the pharmacological properties of the
connectivity from the OB to the vPOA neurons, we used
6-cyano-7-nitroquinoxaline-2,  3-dione  (CNQX;  Tocris),
an  o-amino-3-hydroxy-5-methyl-4-isoxazolepropionic  acid
(AMPA/kainate) receptor antagonist; and D-2-amino-5-phosp-
honopentanoic acid (D-APV; Tocris), an N-Methyl-D-aspartic
acid or N-Methyl-D-aspartate (NMDA) receptor antagonist.
Drugs were made up as stock solutions, CNQX in DMSO
(Sigma-Aldrich) and D-APV in distilled water, then, diluted in
Mg?* free ACSE. The final concentration of DMSO was always <
0.1%. Typically, Mg?* free ACSF and the drugs were applied
sequentially for 10 min each to the recording chamber before any
attempts at recordings to allow sufficient equilibration time.

DATA ANALYSIS

Intrinsic membrane properties of vVPOA neurons were charac-
terized by patch clamp electrophysiology to determine whether
they constituted distinct populations. After achieving whole cell
access, the resting membrane potential (RMP) which is the base-
line potential in the absence of any current stimulus was mea-
sured in current clamp mode (I = 0nA). In addition, properties
related to spontaneous action potential production was measured
(Figure 1A): Spike amplitude (SA) was measured from the shoul-
der of the rising phase (~threshold) to the peak; spike width
(Swidth) was measured at the width of half-maximal from the
peak to the afterhyperpolarization (AHP); AHP was determined
from the threshold to the peak of the hyperpolarization follow-
ing the action potential (note that only the fast component of the
AHP was considered in this study); after-depolarization poten-
tial (ADP) was measured from the hyperpolarization peak to
the ADP peak. For neurons that showed spontaneous activity,
the coefficient of variation of the interspike interval (the interval
between successive spikes) was calculated over a 90 s time window
(CVpikes = SD/mean). Neurons were then stimulated with 1s
hyperpolarizing and depolarizing current steps (2-30 pA) from
a holding potential of —60 mV to measure a number of other
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FIGURE 1 | Traces of some of the intrinsic membrane properties used in
our statistical analyses. (A) Depicts the AHP (after hyperpolarization
potential), APA (action potential amplitude), APD (action potential duration)
and ADP (after depolarization potential). (B) Shows the RD (rebound
depolarization) and RDS (rebound depolarization spikes). (C,D) demonstrate

B Rebound depolarization spikes

| Rebound depolarization

Inset D

Non-rectifying

the current to voltage relationship (IV) where (C) is rectifying as shown by the
arrow at the inflection point (Inset C) and (D) is non-rectifying (Inset D). APA
was measured from the shoulder at threshold shown by the arrowhead. APD
was the width of the AP measured from the shoulder at threshold shown by
the arrowhead. See definitions in Materials and Methods section.

intrinsic membrane properties (Figures 1B-D): current thresh-
old (Tthreshold) is the minimum current required to elicit an action
potential; spike threshold (S¢hreshold) is the number of spikes
elicited by the minimum current i.e., at Iyreshold; the presence or
absence of a rebound depolarization (RD) after a hyperpolarizing
current step; the presence or absence of rebound depolarization
spikes (RDS), rebound spike frequency (RS) is the action poten-
tial frequency during the RD; the presence or absence of H current
(Ig) which is associated with non-selective cation channels; recti-
fication (Rec) refers to a non-linearity in the current-voltage (IV)
relationship (Siegelbaum and Koester, 2000) (compare insets in
Figures 1C,D); the input resistance (Rinput), which is the slope
of the IV curve; membrane time constant (TC) is the time for
the hyperpolarization response to reach two-thirds of its plateau
value; soma membrane capacitance (Csoma) is calculated as TC/
Rinput (Abbud and Smith, 1995).

A principle component analysis (PCA; SPSS Inc.; 2006, v.15)
was used to reduce the set of intrinsic membrane properties to a
number of independent uncorrelated variables. For this analysis,
all properties that were characterized by their presence or absence,
i.e,, RD, RDS, Iy and Rec were assigned binary values (0, 1). The
PCA variables were then used to cluster (SPSS Inc.; 2006, v.15)
the neurons into groups. An unsupervised cluster analysis was
performed to classify neurons, similar to previous studies (Ward,
1963; Krimer et al., 2005; Sosulina et al., 2006; Andjelic et al.,
2009). This method consisted of grouping individual neurons
based on the Euclidean distance between their respective PCA
loadings.

Postsynaptic potentials (PSP) data were characterized by the
peak amplitude (the height of the evoked PSP measured from
baseline to peak), the latency (the time between the OB stimulus
and beginning of PSP rise), 10-90% rise time (measured from the
shoulder of the rise to the peak) and 90%-10% decay time (deter-
mined from 90% of the peak of the PSP to 10% above baseline)
(Figure 2). To measure variability in the latency and rise time, the
mean, standard deviation (SD) and coefficient of variation (CV);
(SD/mean) was calculated over 4 stimulus trials in each cell.

All data generated by the PCA were tested for normality
and homogeneity of variance, and either an analysis of vari-
ance (ANOVA) or a Kruskal-Wallis (KW) analysis was used for
between group comparisons where appropriate (SPSS Inc.; 2006,
v.15). Post-hoc analyses consisted of paired ¢-tests and Tukey’s
(SPSS Inc.; 2006, v.15). Unless otherwise stated, data are reported
as mean =+ s.e.m.

RESULTS

HETEROGENEITY OF INTRINSIC MEMBRANE PROPERTIES

To characterize the population of vPOA neurons, a number of
intrinsic membrane properties were quantified (see Materials and
Methods). We used a Principle Component Analysis (PCA) to
determine the set of properties that could best distinguish neu-
ronal subgroups. The PCA revealed seven significant properties
(loading factor) [RD (0.92), Ripput (0.87), SA (0.77), Sthreshold
(0.80), RS (0.82), I (0.78), and Rec (0.83)] (Table 1). A subse-
quent cluster analysis of these variables revealed five distinct neu-
ronal subgroups (denoted I, IL, I1I, IV, and V). In the following, we

www.frontiersin.org

June 2014 | Volume 8 | Article 185 | 3


http://www.frontiersin.org
http://www.frontiersin.org/Neuroendocrine_Science/archive

Lado et al.

Electrophysiology of goldfish preoptic neurons

20 mV

200 msec

Rise time (10% - 90%)

Peak
Amplitude { “ iy

Decay time (90% - 10%)

s

i
Stimulus /

artifact
Latency

FIGURE 2 | Samples of a continuous recording showing superimposed
EPSPs evoked in POA neurons following stimulation of the olfactory
bulb under normal (ACSF) conditions and highlighting the properties
of EPSPs measured. Note that evoked EPSPs could give rise to action
potential firing and showed constant latency and rise time, consistent with
a monosynaptic origin.

compare the membrane properties across the different subgroups
(Table 2).

Since the data from our PCA failed the normality test (P >
0.05), it was transformed to its square root equivalent; and statis-
tical analyses performed. Neuronal subgroups were found to dif-
fer in their Rinput [F(4’ 106) = 325.93, P = 0.001], TC [F(4’ 106) =
13.63, P = 0.001] and Ithreshold [F(4, 106) = 3.86, P = 0.006] but
not ADP [F(4, 106) = 1.35, P = 0.25]. Tukey’s post-hoc analyses
showed that Ripue was different in each neuronal cluster with
V =1I > IV > II > I (Figure 3A). Similarly, the TC of neu-
rons in clusters III and V were higher than IV which in turn
was higher than those in clusters I and II (Figure 3B). In addi-
tion, Iihreshold for neurons in cluster I was greater than II which
in turn was greater than for IV greater than III and V neurons
(Figure 3C). Since the rectification (Rec) and RS were categorical
variables, post-hoc comparisons were performed using KW anal-
yses: rectification was not significant [X%‘l) = 1.55; P = 0.818]

nor was RS [x%4) = 10.28; P = 0.036, Bonferroni correction,
P > 0.005].

Overall, our analyses showed that only Rinput, TC and Ithreshold
were significantly different between groups (P < 0.05), while rec-
tification and RS were not (P > 0.05). Together, the Rippy,, TC
and Cgoma constitute the passive membrane properties of the cell.
Note that the TC is directly proportional to the product of the
Rinput and Csoma [TC = Rinput. Csoma) (Molleman, 2003). The
calculated Cgoma (after its transformation to the reciprocal of its
square root to normalize the data) was also statistically differ-
ent between neuronal groups [F(4, 106) = 25.89, P = 0.001], with
Tukey’s post-hoc indicating that I > IT > IV > III =V (Figure 3D).
Since capacitance is proportional to membrane area (Hille, 2001),
the differences we observe between neuronal groups can be at
least partially explained by neuronal size.

PROPERTIES OF POSTSYNAPTIC POTENTIALS: INPUTS FROM THE
OLFACTORY BULB

Given these putative subgroups of vPOA neurons, we next set
out to determine their inputs from the olfactory bulb (OB). Of
the 107 vPOA cells tested, 50 received synaptic inputs from the

OB. The ratio of connected to unconnected neurons in each clus-
ter was: I: 59% (12/23); II: 60% (20/38); III: 0% (0/4); IV: 53%
(17/36); and V: 19% (1/6).

The PSPs were reliably evoked with latencies of approximately
90 ms. The small coefficients of variation (CV) of the latency
(1.5%) and rise-time (2.2%) within cells are not consistent with
a multi-synaptic pathway (for which latency is expected to be
more variable). Given the consistency of the synaptic response,
we suggest that these connections are monosynaptic (Spanswick
et al.,, 1998). Since the distance from the OB to the POA is
about 9 mm, a latency of 100 ms suggests an estimated conduc-
tion velocity similar to the slowest conduction velocity (~0.1 m/s)
reported in olfactory nerves of the tench at similar temperatures
(Dubois-Dauphin et al., 1980).

BIOCHEMICAL PROPERTIES OF THE POSTSYNAPTIC POTENTIALS OF
vPOA

To characterize the pharmacological properties of the PSP in
vPOA (N = 13) neurons, goldfish brain explants were perfused
sequentially with normal ACSE, Mg**-free ACSF (MFACSF),
20 uM D-APV and 10 uM CNQX before washing off both drugs
with normal saline. The latency, peak amplitude rise and decay
times of the evoked PSPs were then measured and compared
under the different recording conditions. Figure 4 shows rep-
resentative data from a VPOA neuron. The Mg?*free ACSF
increased the PSP compared to normal saline. The glutamate
antagonist APV partially blocked the evoked response. The resid-
ual response was subsequently blocked completely by CNQX,
indicating that the PSPs had a dual component and were mediated
by glutamate acting on both NMDARs and AMPARs (Figure 4).
Indeed, when AMPARs alone were blocked with CNQX (data not
shown; N = 10), no EPSPs were evoked suggesting that activa-
tion of NMDARSs requires preceding depolarization via AMPARs
to overcome voltage-dependent Mg?* block.

A statistical analysis on data obtained from POA neurons (N =
13) did not find significant differences (P > 0.05) in their PSP
latencies and rise times between the different perfusion media,
but their decay times differed significantly between MFACSF
vs. ACSF [F(1, 12) = 16.11, P =0.002] and MFACSF vs. APV
[F(1, 12) = 16.59, P = 0.002]. Post-hoc analysis indicated that
POA neurons in MFACSF had a longer decay time than in either
ACSE [f(13) = 3.76, p = 0.002] or APV [t(3) = 4.07, p = 0.002]
(Figure 5). These data show that the evoked PSPs had a bipha-
sic response, with APV partially blocking the slower and longer
lasting NMDAR component, revealing a faster and shorter lasting
AMPAR component that was completely blocked by CNQX.

SECTIONING THE LATERAL OLFACTORY TRACT WHILE RECORDING
FROM THE vPOA

To determine if the OB to vPOA projection is mediated through
the MOT, we sectioned the LOT (N = 3) while leaving the medial
tract intact. We found that PSPs evoked in vPOA neurons by OB
stimulation did not differ from those evoked under control con-
ditions for latency, rise time, peak amplitude and decay times
(KW analysis; P > 0.05). Cutting the MOT (N = 10) while leav-
ing the LOT intact did not elicit any response consistent with
studies which have shown that the MOT innervates targets in area
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Table 1| The rotated component matrix of variables used in our principle component analysis.

Property/Loaded factors 1 2 4 5 6 7

RMP (mV) -0.247 0.151 —0.075 -0.014 -0.217 0.692 -0.314
TC (msec) 0.224 0.769 0.210 —0.065 0.120 —0.160 0.228
Rinput (GR) —-0.113 0.870 0.030 0.026 —0.151 0.041 —0.035
AHP (mV) —-0.320 0.152 0.664 —0.081 0.000 —0.085 —0.240
SA (mV) 0.209 0.003 0.770 —-0.104 0.033 —0.261 0.159
lthreshold (PA) —0.056 —0.368 0.057 0.794 —0.001 —0.238 0.120
Sthreshold (H2) 0.228 0.299 0.037 0.797 —0.057 0.122 -0.073
Swidth (Ms) —0.061 —0.043 —0.784 —0.340 0.043 —0.189 —0.092
Ccv —0.038 0.285 -0.172 0.218 —0.720 —0.086 —0.225
RS 0.171 0.086 —0.079 0.056 0.782 -0.018 —0.126
ADP (mV) 0.397 -0.397 0.223 —-0.173 —0.409 —0.051 —0.148
I 0.041 -0.184 —0.058 —0.053 —0.094 0.783 0.305
Rec —0.134 0.135 0.031 0.031 0.039 0.044 0.819
RD 0.916 —0.066 —0.002 0.040 0.076 —0.093 0.032
RDS 0.877 0.136 0.007 0.136 0.135 —0.035 -0.179

Loaded factors in bold show measurements that were subsequently used for our cluster analysis. See definitions in Materials and Methods section and Figure 1.

Extraction Method.: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. Rotation converged in 8 iterations.

Table 2 | Intrinsic membrane properties of POA neurons measured in ACSF.

Property/Clusters | [} 1] v \)
(N =23) (N = 38) (N =4) (N = 36) (N =6)

RMP (mV) —56.5+2.2 -b8.2+1.4 —57.1+45 —-b6+1.4 —b4.34+2.1
TC (ms) 47.6+5.2 47.0+2.7 92.9+15.3 66.24+3.9 110.34+10.8
Rinput (GS2) 0.42+0.04 1.0+£0.03 3.7+0.15 2.0+0.07 5.9+0.04
Csoma (pF) 144.3+24 458+2.8 249+3.7 34.3+3.4 19.24+2.8
AHP (mV) 122+1.3 10.2+0.8 13.7+5.8 11.0+1.0 15.44+3.7
SA (mV) 56.1+2.7 52.6+2.3 60.7+5.7 53.1+1.9 54.3+4.5
lthreshold (PA) 13.0+2.0 8.24+1.2 3.94+0.8 6.0+0.7 3.34+0.8
Sihreshold (H2) 3.3+0.6 24403 2+04 3.54+0.4 53+1.0
Ccv 1.1+£0.1 1.1+0.1 1.0+£0.1 1.1+£0.1 2.3+0.6
ADP (mV) 1.4+04 1.6+04 - 0.6+0.2 0.12+0.0

RMP (resting membrane potential); TC (membrane time constant); Ry (input resistance); Cm (membrane capacitance); AHP (after hyperpolarization potential);
APA (action potential amplitude); Tl (action potential threshold current); ST (number of spikes at threshold current); APD (action potential duration); CV (coefficient

of variation); ADP (after depolarization potential). Not shown are variables for rectifying and RS. See definitions in Materials and Methods section and Figure 1.

dorsalis and area ventralis while the LOT projects only to area
dorsalis (Levine and Dethier, 1985). Furthermore, pharmacolog-
ical manipulations influenced the recorded EPSPs in similar ways
for both cut and intact LOTs for latency, rise time, peak ampli-
tude and decay times (KW analysis; P > 0.05). Sectioning both
the medial and LOTs abolished the PSPs completely. This con-
firms that the pathway we describe from OB to POA is via the
MOT.

DISCUSSION

Female sex pheromones regulate reproduction in male gold-
fish through the olfactory system (Partridge et al., 1976;
Sorensen et al., 1991; Dulka, 1993; Stacey et al, 2003;
Chung-Davidson et al, 2008). Previous anatomical stud-
ies have shown direct neuronal pathways from the OB to
POA in the teleost brain (Forlano and Bass, 2011). With

whole-cell patch clamp recordings, we show for the first
time that these connections are functional and glutamater-
gic. In addition, we show that these synapses involve both
N-methyl-D-aspartate (NMDAR) and o-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptors (AMPAR). We also
provide evidence, with a thorough characterization of electro-
physiological properties, that neurons of the vPOA comprise
several subgroups.

The POA is an important hypophysiotropic center that reg-
ulates reproduction in vertebrates. Electrical stimulation of this
area has been shown to elicit sperm release (Demski, 1983; Dulka
and Demski, 1986; Dulka, 1993; Dominguez, 2009); sexual call-
ing (Schmidt, 1968); nest-building and courtship (Demski and
Knigge, 1971) in several vertebrate models. Conversely, lesion-
ing the POA impairs reproduction in male goldfish thereby
underscoring the importance of this neural system (Hart et al.,
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FIGURE 4 | Evoked EPSPs in a POA neuron under different recording 1989), GnRH (Peter et al., 1990, 2003; Parhar et al., 2001), y-
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CNQX (in Mg?*tfree ACSF) for 10 min each before recordings.

tocin (Parhar et al., 2001) and tyrosine hydroxylase (Hornby et al.,
1987). Thus, this heterogeneity in electrophysiological profiles
may reflect functionally diverse classes of vPOA neurons. Further
work is required to determine if these electrophysiological “signa-
tures” correspond to chemical phenotypes, exhibiting differential
HETEROGENEITY OF NEURONAL ELECTRICAL PROPERTIES projections and functional roles.

We recorded from neurons in the vPOA while stimulating the

OB. Our analysis revealed five subgroups of vPOA neurons, each  PROPERTIES OF POSTSYNAPTIC POTENTIALS: INPUTS FROM

with distinct intrinsic membrane properties and variable connec-  OLFACTORY BULB

tivity to the OB. Indeed, the POA has been shown to contain a  Electrical stimulation of the OB evoked PSPs in vPOA neurons.
plethora of cells immunoreactive to substance P (Sharma et al., These PSPs gave rise to action potentials at the peak of their

1973; Kyle and Peter, 1982; Kyle et al., 1982; Koyama et al., 1984;
Sorensen et al., 1991; Dulka, 1993).
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responses in some cases. The evoked excitatory PSPs (EPSPs) had
consistent and constant latencies and rise times with small coef-
ficient of variation suggesting they arise through monosynaptic
inputs from the OB (Spanswick et al., 1998). The conduction
velocities of the inputs from the OB to the POA were similar to
those found previously in other systems (Gasser, 1956; Potapov
and Gusel’nikova, 1976b). The relatively slow conduction is con-
sistent with propagation through unmyelinated olfactory fibers
(Westerman and Wilson, 1968; Potapov and Gusel’nikova, 1976a;
Farbman, 1992). The conduction velocity of the inputs from the
OB to the vPOA was estimated to be 0.1 m/s, which was simi-
lar to the pike (Gasser, 1956) and slower, by four times, than that
reported by Kandel (1964) in the goldfish for the larger POA mag-
nocellular neurons projecting to the neural lobe of the pituitary
gland when stimulated antidromically.

BIOCHEMICAL PROPERTIES OF THE SYNAPTIC CONNECTIONS
Anatomical connections between the OB and vPOA have
been established previously through tract-tracings (Levine and
Dethier, 1985; Anglade et al., 1993), but their functional nature
remains unclear. To investigate the possible role of glutamate in
chemical communication, we perfused the goldfish brain explant
sequentially with ACSE, APV, and CNQX in Mg**free ACSF
while stimulating the OB to measure the latency, amplitude, rise
time, decay time and duration of the evoked potentials in the
vPOA (Figure 4). Mg?Tfree ACSF enhanced the evoked EPSPs
compared to normal ACSE. The NMDAR antagonist APV par-
tially blocked the EPSPs leaving a fast acting and short lasting
component that was subsequently completely blocked by CNQX,
suggesting that the evoked PSP was mediated by glutamate act-
ing on NMDARs and AMPARSs, respectively. Receptors for AMPA
may therefore be required to depolarize the cells (from their rest-
ing state) sufficiently to relieve the Mg?* blockage of NMDARs
(Gotz et al., 1997; Spanswick et al., 1998). Bath application of
drugs allows for the possibility that the observed effects are indi-
rect and involve peripheral pathways. However, given that the
latency and rising phase of the evoked response is very consis-
tent and remains so during drug application, the effects are likely
direct.

The complete blockage of the evoked PSPs by the gluta-
matergic antagonists suggests that glutamate plays an important
role in mediating chemical communication between the OB and
vPOA. Since the POA is important for the regulation of repro-
ductive behaviors, it may receive pheromonal cues from the OB
to integrate milt release and spawning in male goldfish (Kyle
and Peter, 1982; Kyle et al., 1982). The use of glutamate sig-
naling through NMDA receptors may therefore be a mechanism
to induce the sustained neuronal firing required to trigger an
LH surge when sex pheromones are detected. To our knowl-
edge, this is the first pharmacological characterization of sec-
ond order neurons in the teleost olfactory system linked to
reproduction.

A monosynaptic glutamatergic connection from the OB to
the vVPOA complements and extends our understanding of the
neural circuitry involved in the control of goldfish reproduction.
Previously, Trudeau et al. (2000b) demonstrated the existence
of monosynaptic GABAergic projections from the Vv to the

vPOA. Indeed, GABA plays a central role in male goldfish repro-
duction by suppressing the DAergic inhibition of LH release
(Trudeau et al., 1993). This suggests that there are interactions
between diverse sets of neurotransmitters and neurohormones
that regulate reproduction in male goldfish. The Vv may there-
fore modulate the glutamatergic inputs from the OB to the vPOA
to regulate some aspects of reproductive behavior or hormone
release.

ROLE OF GLUTAMATE IN GOLDFISH REPRODUCTION

Previous studies have shown that intraperitoneal injections of
male goldfish with either monosodium glutamate (MSG) (Sloley
etal., 1992) or NMDA (Trudeau et al., 2000b) or AMPA (Trudeau
et al., 2000b; Popesku et al., 2011) rapidly induces LH release.
Furthermore, in rainbow trout it has been shown that the LH
response to NMDA is blocked by APV or a GnRH receptor antag-
onist, indicating that glutamate modulates LH release through
stimulation of GnRH (Flett et al., 1994), similar to the situ-
ation in mammalian models (Kocsis et al., 2003). Moreover,
Peter et al. (1980) has shown that MSG injections in goldfish
causes cellular degeneration in the POA, demonstrating excito-
toxic actions of glutamate on POA neurons. Additionally, in rats it
has been shown that glutamate injections in the POA or electrical
stimulation of the POA decreases the latency between intro-
missions thereby increasing ejaculation frequency (Dominguez,
2009). Glutamate in the POA therefore plays an important role in
vertebrate reproduction.

SECTIONING THE LATERAL OLFACTORY TRACT

We employed olfactory tract sectioning to determine if the glu-
tamatergic projection to the vPOA was via the MOT or the LOT.
The EPSPs recorded in vPOA cells in explants with a transected
LOT had the same amplitude and duration as those with the LOT
intact. These EPSPs were modulated by APV and CNQX in the
same way as in intact preparations. In other experiments, section-
ing the MOT while leaving the LOT intact did not elicit PSPs in
vPOA neurons indicating that the OB to vPOA projection we have
studied is via the MOT and not the LOT. This supports previous
studies indicating unequivocally that sex pheromones signals in
goldfish are mediated exclusively by the MOT indeed tract tracing
studies have shown that while the MOT projects to area dorsalis
and area ventralis of the telencephalon the LOT only innervates
targets in the area dorsalis (Levine and Dethier, 1985; Sorensen
etal., 1991).

CONCLUSION

We describe an electrophysiological basis for classifying neurons
of the vPOA. Further, we provide evidence that the synaptic
connections from the OB to the vPOA are monosynaptic and
glutamatergic. These connections from the OB to vPOA may
play a role in facilitating spermiation and steroidogenesis (Peter
and Paulencu, 1980; Peter et al., 1980; Kyle and Peter, 1982).
While speculative at this point, the olfactory glutamatergic pro-
jections we identified may represent pathways that integrate
pheromonal signals from females that stimulate reproductive
hormone release and male sexual behavior in the spawning
period.
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