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We use the self-tuning Experience Weighted Attraction model with repeated-game
strategies as a computer testbed to examine the relative frequency, speed of convergence
and progression of a set of repeated-game strategies in four symmetric 2 × 2 games:
Prisoner’s Dilemma, Battle of the Sexes, Stag-Hunt, and Chicken. In the Prisoner’s
Dilemma game, we find that the strategy with the most occurrences is the “Grim-Trigger.”
In the Battle of the Sexes game, a cooperative pair that alternates between the two
pure-strategy Nash equilibria emerges as the one with the most occurrences. In the
Stag-Hunt and Chicken games, the “Win-Stay, Lose-Shift” and “Grim-Trigger” strategies
are the ones with the most occurrences. Overall, the pairs that converged quickly ended
up at the cooperative outcomes, whereas the ones that were extremely slow to reach
convergence ended up at non-cooperative outcomes.
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1. INTRODUCTION
Robert Axelrod pioneered the area of computational simulations
with the tournaments in which game-playing algorithms were
submitted to determine the best strategy in the repeated Prisoner’s
Dilemma game (Axelrod, 1984). Axelrod and Dion (1988) went
on to model the evolutionary process of the repeated Prisoner’s
Dilemma game with a genetic algorithm (Holland, 1975). The
genetic algorithm is an adaptive learning routine that combines
survival of the fittest with a structured information exchange
that emulates some of the innovative flair of human search.
Other adaptive learning paradigms are derivatives of either belief-
based models or reinforcement-based models. Belief-based mod-
els operate on the premise that players keep track of the history
of play and form beliefs about other players’ behavior based on
past observation. Players then choose a strategy that maximizes
the expected payoff given the beliefs they formed. Reinforcement-
based models operate according to the “law of effect,” which
was formulated in the doctoral dissertation of Thorndike (1898).
In principle, reinforcement learning assumes that a strategy is
“reinforced” by the payoff it earned and that the propensity to
choose a strategy depends, in some way, on its stock of reinforce-
ment. On the other hand, Camerer and Ho (1999) introduced
in their seminal study a truly hybridized workhorse of adap-
tive learning, the Experience Weighted Attraction (EWA) model.
Despite its originality in combining elements from both belief-
based and reinforcement-based models, EWA was criticized for
carrying “too” many free parameters. Responding to the criticism,
Ho et al. (2007) replaced some of the free parameters with func-
tions that self-tune, while other parameters were fixed at plausible
values. Appropriately labeled, the self-tuning EWA, the model
does exceptionally well in predicting subjects’ behavior in a multi-
tude of games, yet has been noticeably constrained by its inability
to accommodate repeated-game strategies. As Camerer and Ho

(1999) acknowledge in their conclusion, the model will have
to be upgraded to cope with repeated-game strategies “because
stage-game strategies (actions) are not always the most natural
candidates for the strategies that players learn about” (p. 871)1.

In Ioannou and Romero (2014), we propose a methodol-
ogy that is generalizable to a broad class of repeated games to
facilitate operability of adaptive learning models with repeated-
game strategies. The methodology consists of (1) a generalized
repeated-game strategy space, (2) a mapping between histories
and repeated-game beliefs, and (3) asynchronous updating of
repeated-game strategies. The first step in operationalizing the
proposed methodology is to use generalizable rules, which require
a relatively small repeated-game strategy set but may implicitly
encompass a much larger space (see, for instance, Stahl’s rule
learning in Stahl, 1996, 1999; Stahl and Haruvy, 2012). The sec-
ond step applies a fitness function to establish a mapping between
histories and repeated-game beliefs. Our approach solves the
inference problem of going from histories to beliefs about oppo-
nents’ strategies in a manner consistent with belief learning 2. The
third step accommodates asynchronous updating of repeated-
game strategies. The methodology is implemented by building

1A first attempt was undertaken in the study of Chong et al. (2006), albeit the
model proposed was specific to the structure of Trust and Entry games.
2Alternatively, Hanaki et al. (2005) develop a model of learning of
repeated-game strategies with standard reinforcement. Reinforcement learn-
ing responds only to payoffs obtained by strategies chosen by the player
and, thus, evades the inference problem highlighted above. Yet reinforcement
models are most sensible when players do not know the foregone payoffs
of unchosen strategies. Several studies show that providing foregone payoff
information affects learning, which suggests that players do not simply rein-
force chosen strategies (see Mookherjee and Sopher, 1994; Rapoport and Erev,
1998; Camerer and Ho, 1999; Costa-Gomes et al., 2001; Nyarko and Schotter,
2002; Van Huyck et al., 2007).
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on three proven action-learning models: a self-tuning Experience
Weighted Attraction model (Ho et al., 2007), a γ -Weighted
Beliefs model (Cheung and Friedman, 1997), and an Inertia,
Sampling and Weighting model (Erev et al., 2010). The models’
predictions with repeated-game strategies are validated with data
from experiments with human subjects in four symmetric 2 × 2
games: Prisoner’s Dilemma, Battle of the Sexes, Stag-Hunt, and
Chicken. The goodness-of-fit results indicate that the models with
repeated-game strategies approximate subjects’ behavior substan-
tially better than their respective models with action learning.
The model with repeated-game strategies that performs the best
is the self-tuning EWA model, which captures significantly well
the prevalent outcomes in the experimental data across the four
games.

In this study, our goal is to use the self-tuning EWA model
with repeated game strategies as a computer testbed to exam-
ine the relative frequency, speed of convergence and progression
of a set of repeated-game strategies in the four aforementioned
symmetric 2 × 2 games. Learning with repeated-game strate-
gies is important on many levels (henceforth, for brevity, we
refer to repeated-game strategies as strategies, unless there is a
risk of confusion). First, identifying empirically relevant strate-
gies can help future theoretical work to identify refinements
or conditions that lead to these strategies. The literature on
repeated games has made little progress toward this target thus
far. Second, pursuing an understanding of the strategies that
emerge may also help identify in which environments cooper-
ation is more likely to be sustained. Third, identifying the set
of strategies used to support cooperation can provide a tighter
test of the theory. For instance, we could test whether the
strategies that emerge coincide with the ones that the theory
predicts.

Similar to Ioannou and Romero (2014), in the computational
simulations, we chose to limit the number of potential strate-
gies considered so as to reflect elements of bounded rationality
and complexity as envisioned by Simon (1947). Thus, the play-
ers’ strategies are implemented by a type of finite automaton
called a Moore machine (Moore, 1956). According to the thought
experiment, a fixed pair of players is to play an infinitely-repeated
game with perfect monitoring and complete information. A player
is required to choose a strategy out of a candidate set consisting
of one-state and two-state automata. The strategy choice is based
on the attraction of the strategy. Initially, each of the strategies in
a player’s candidate set has an equal attraction and hence an equal
probability of being selected. The attractions are updated period-
ically as the payoffs resulting from strategy choices are observed.
The new strategy is chosen on the basis of the updated attrac-
tions. Over the course of this process, some strategies decline
in use, while others are used with greater frequency. The pro-
cess continues until convergence to a limiting distribution is
approximated.

In the Prisoner’s Dilemma game, we find that the strategy
with the most occurrences was the “Grim-Trigger.” Moreover,
the pairs that converged quickly ended up at the cooperative
outcome, whereas the ones that were extremely slow to reach
convergence ended up at the defecting outcome. In the Battle
of the Sexes game, a cooperative pair that alternates between

the two pure-strategy Nash equilibria emerged as the one with
the most occurrences. The pairs that alternated were quicker
to reach convergence compared to the ones that ended up at
one of the two pure-strategy Nash equilibria. In the Stag-Hunt
and Chicken games, the “Win-Stay, Lose-Shift” and “Grim-
Trigger” strategies were the ones with the most occurrences.
Similar to the other games, the automaton pairs that converged
quickly ended up at the cooperative outcomes (i.e., the payoff-
dominant equilibrium in the Stag-Hunt game, and the concil-
iation outcome in the Chicken game), whereas the ones that
were slow to reach convergence ended up at non-cooperative
outcomes.

2. THE SELF-TUNING EWA WITH REPEATED-GAME
STRATEGIES

2.1. PRELIMINARIES
To simplify exposition, we start with some notation. The stage
game is represented in standard strategic (normal) form. The set
of players is denoted by I = {1, . . . , n}. Each player i ∈ I has an
action set denoted by Ai. An action profile a = (ai, a−i) consists of
the action of player i and the actions of the other players, denoted
by a−i = (a1, . . . , ai−1, ai+1, . . . , an) ∈ A−i. In addition, each
player i has a real-valued, stage-game, payoff function gi: A → R,
which maps every action profile a ∈ A into a payoff for i, where
A denotes the cartesian product of the action spaces Ai, written

as A ≡ I×
i=1

Ai. In the infinitely-repeated game with perfect moni-

toring, the stage game in each time period t = 0, 1, . . . is played
with the action profile chosen in period t publicly observed at the
end of that period. The history of play at time t is denoted by
ht = (a0, . . . , at−1) ∈ At , where ar = (ar

1, . . . , ar
n) denotes the

actions taken in period r. The set of histories is given by

H =
∞⋃

t = 0

At,

where we define the initial history to the null set A0 = {∅}. A
strategy si ∈ Si for player i is, then, a function si : H → Ai, where
the strategy space of i consists of Ki discrete strategies; that is,

Si = {s1
i , s2

i , . . . , sKi
i }. Furthermore, denote a strategy combina-

tion of the n players except i by s−i = (s1, . . . , si − 1, si + 1, . . . , sn).
The set of joint-strategy profiles is denoted by S = S1 × · · · × Sn.
Each player i has a payoff function π t

i : S → R, which represents
the average payoff per period when the joint-strategy profile is
played for t periods.

2.2. EVOLUTION OF LEARNING
Players have attractions, or propensities, associated with each of
their strategies, and these attractions determine the probabili-
ties with which strategies are chosen when players experiment.
Initially, all strategies have an equal attraction and hence an equal
probability of being chosen. The learning process evolves through
the strategies’ attractions that are periodically updated. Similar
to its predecessors, the self-tuning EWA model consists of two
variables that are updated once an agent switches strategies. The
first variable is Ni(χ), which is interpreted as the number of
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observation-equivalents of past experience in block χ of player i3.

The second variable, denoted as A
j
i(χ), indicates player i’s attrac-

tion to strategy j after the χ th block of periods. The variables

Ni(χ) and A
j
i(χ) begin with some prior values, Ni(0) and A

j
i(0).

These prior values can be thought of as reflecting pre-game expe-
rience, either due to learning transferred from different games or
due to pre-play analysis. In addition, we use an indicator func-
tion I(x, y) that equals 1 if x = y and 0 otherwise. The evolution
of learning over the χ th block with χ ≥ 1 is governed by the
following rules:

Ni (χ) = φi(χ) · Ni (χ − 1) + 1, (1)

and

A
j
i (χ) =

φi(χ) · Ni (χ − 1) · A
j
i (χ − 1) + I(s

j
i, si (χ) )·

Ri (χ) + δ
j
i(χ) · E j

i (χ)

φi(χ) · Ni (χ − 1) + 1
, (2)

where Ri(χ) is the reinforcement payoff and E j
i (χ) is the expected

forgone payoff to player i for strategy j.
The reinforcement payoff, Ri(χ), is defined as the average

payoff obtained by player i over the χ th block,

Ri (χ) = 1

Ti(χ)

∑
a ∈ h(χ)

gi (a) ,

where h(χ) is the sequence of action profiles played in the χ th
block, and Ti(χ) is the χ th block’s length for player i. In addition,
the forgone payoffs in the self-tuning EWA model with repeated-
game strategies are not as simple as in the case of the self-tuning
EWA model with actions, where the opponent’s action is publicly

observed in each period. To calculate the forgone payoff E j
i (χ)

players need to form beliefs about the current repeated-game
strategy of their opponent. In particular, the expected forgone
payoff for player i of repeated-game strategy j over the χ th block
is the payoff player i would have earned had he chosen some
other repeated-game strategy j given his beliefs about player −i’s
current repeated-game strategy.

We indicate next how beliefs are specified. To determine the
beliefs, let h (t1, t2) = (

at1 , at1+1, . . . , at2
)

for t1 ≤ t2 be the trun-
cated history between periods t1 and t2 (all inclusive). Also, let
h (t, t − 1) = ∅ be the empty history. Let Ti(χ) = ∑χ

j = 1 Ti(j)
be the total number of periods at the end of block χ . Then,
repeated-game strategy s−i is consistent with hTi(χ) for the last t′
periods if

s−i
(
h

(
Ti(χ) − t′,Ti(χ) − t′ − 1 + r

)) = aTi(χ)−t′+ r
−i

for r = 0, . . . , t′ − 1.

3Traditionally, action-learning models require that the updating of a player’s
action set occurs at the end of each period. Instead, the proposed methodology
in Ioannou and Romero (2014) requires that the updating of repeated-game
strategies occurs with the completion of a block of periods, where a block typ-
ically consists of more than 1 period. Furthermore, players’ blocks of periods
vary in length and end at different time-periods (see also Section 2.3).

Define the fitness function F : S−i × N → [0,Ti(χ)] as

F (s−i, χ) = max
{

t′|s−i is consistent with hTi(χ) for the

last t′ periods
}
.4 (3)

Define the belief function B : S−i × N → [0, 1] as

B(s−i, χ) = F(s−i, χ)∑
r ∈ S−i

F(r, χ)
,

which can be interpreted as player i’s belief that the other player
was using repeated-game strategy s−i at the end of block χ .
Therefore, the expected foregone payoff for player i of strategy
j over the χ th block is given by

E j
i (χ) =

∑
s−i∈S−i

π
Ti(χ)
i (s

j
i, s−i|h(s−i,χ)) · B(s−i, χ),

where s−i|h is the continuation strategy induced by history h and

h (s−i, χ) = h (Ti(χ) − F (s−i, χ) ,Ti(χ) − 1)

is the longest history such that s−i is consistent with hTi(χ).
In the original EWA model of Camerer and Ho (1999), the

attraction function consisted of the exogenous parameters δ and
φ. In the self-tuning EWA model, these exogenous parameters
were changed to self-tuning functions δ( · ) and φ( · ), referred
to as the attention function and the decay-rate function, respec-
tively. The attention function δ( · ) determines the weight placed
on forgone payoffs. The idea is that players are more likely to focus
on strategies that would have given them a higher payoff than
the strategy actually played. This property is represented by the
following function:

δ
j
i(χ) =

{
1 if E j

i (χ) ≥ Ri(χ) and s
j
i 
= si(χ)

0 otherwise.

Thus, the attention function enables player i to reinforce only
unchosen strategies with weakly better payoffs. On the other hand,
the decay rate function φ( · ) weighs lagged attractions. When a
player senses that the other player is changing behavior, a self-
tuning φi( · ) decreases so as to allocate less weight to the distant
past. The core of the φi( · ) is a “surprise index,” which indicates
the difference between the other player’s most recent strategy and

4In the context of finite automata (a formal description is provided in
Supplementary Material), let ht

i (χ) be player i’s action in the tth period of
block χ , and s−i = (

Q−i, q0
−i, f−i, τ−i

)
be a potential automaton for player −i.

We say automaton s−i is consistent with h(χ) for the last t′ periods, if accord-
ing to the history, it is possible that the other player played automaton s−i

in the last t′ periods and, given player i’s most recent action, the proposed
automaton is in the starting state. Formally, automaton s−i is consistent
with h(χ) for the last t′ periods if there exists some state qt ∈ Q−i such
that ht

−i(χ) = f−i
(
qt

)
and qt+1 = τ−i

(
qt , ht

i (χ)
)

for all Ti(χ) − t′ + 1 ≤ t ≤
Ti(χ) and qTi(χ)+1 = q0.
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the strategies he chose in the previous blocks. First, define the
averaged belief function σ : S−i × N → [0, 1],

σ (s−i, χ) = 1

χ

χ∑
j = 1

B(s−i, j),

which averages the beliefs, over the χ blocks, that the other player
chose strategy s−i. The surprise index Si(χ) simply sums up the
squared deviations between each averaged belief σ (s−i, χ) and
the immediate belief B(s−i, χ); that is,

Si(χ) =
∑

s−i∈S−i

(σ (s−i, χ) − B(s−i, χ))2.

Thus, the surprise index captures the degree of change of the
most recent beliefs from the historical average of beliefs. Note
that it varies from zero (when there is belief persistence) to two
(when a player is certain that the opponent just switched to a new
strategy after playing a specific strategy from the beginning). The
change-detecting decay rate of the χ th block is then

φi(χ) = 1 − 1

2
Si(χ).

Therefore, when player i’s beliefs are not changing, φi(χ) = 1;
that is, the player weighs previous attractions fully. Alternatively,
when player i’s beliefs are changing, then φi(χ) = 0; that is, the
player puts no weight on previous attractions.

Attractions determine probabilities of choosing strategies. We
use the logit specification to calculate the choice probability of
strategy j. Thus, the probability of a player i choosing strat-
egy j when he updates his strategy at the beginning of block
χ + 1 is

P
j
i (χ + 1) = eλ·Aj

i(χ)∑K
k eλ · Ak

i (χ)
.

The parameter λ ≥ 0 measures the sensitivity of players to
attractions. Thus, if λ = 0, all strategies are equally likely
to be chosen regardless of their attractions. As λ increases,
strategies with higher attractions become disproportionately
more likely to be chosen. In the limiting case where λ → ∞,
the strategy with the highest attraction is chosen with
probability 1.

2.3. ASYNCHRONOUS UPDATING OF REPEATED-GAME STRATEGIES
The probability that player i updates his strategy set in period t,

1
P t

i
, is determined endogenously via the expected length of the

block term, P t
i , which is updated recursively; that is,5

P t
i = P t − 1

i − 1

P t − 1
i

∣∣∣ 1
t − t(χ(t))

∑t − 1
s = t(χ(t)) gi(as

i, as
−i) − E si(χ(t))

i (χ(t))
∣∣∣

ḡ − g
,

5For the interested reader, a detailed exposition to asynchronous updating of
repeated-game strategies can be found in Ioannou and Romero (2014).

where t(χ) is the first period of block χ , and χ(t) is the block
corresponding to period t. In addition, ḡ = maxa1,a2,j gj (a1, a2)

is the highest stage-game payoff attainable by either player, and
g = mina1,a2,j gj (a1, a2) is the lowest stage-game payoff attain-

able to either player. The normalization by 1
ḡ−g ensures that

the expected block length is invariant to affine transformations
of the stage-game payoffs. The variable P t

i begins with an ini-

tial value P0
i . This prior value can be thought of as reflecting

pre-game experience, either, due to learning transferred from
other games, or due to (publicly) available information. The law
of motion of the expected block length depends on the abso-
lute difference between the actual average payoff thus far in the
block and the expected payoff of strategy si. The expected pay-

off for player i, E si(χ(t))
i (χ(t)), is the average payoff that player

i expects (anticipates) to receive during block χ(t) and is cal-
culated at the beginning of the block. The difference between
actual and expected payoff is thus a proxy for (outcome-based)
surprise. As Erev and Haruvy (2013) indicate, surprise triggers
change; that is, inertia decreases in the presence of a surpris-
ing outcome6. In addition, a qualitative control is imposed on
the impact of surprise on the expected block length. Multiplying
the absolute difference by 1

P t−1
i

ensures that when the expected

block length is long, surprise has a smaller impact on the
expected block length than when the expected block length is
short.

3. RESULTS
We study next the relative frequency, speed of convergence and
progression of a set of repeated-game strategies in four sym-
metric 2 × 2 games: Prisoner’s Dilemma, Battle of the Sexes,
Stag-Hunt, and Chicken. The payoff matrices of the games
are illustrated in Figure 1. For the computational simulations,
we chose to limit the number of potential strategies con-
sidered so as to reflect elements of bounded rationality and
complexity as envisioned by Simon (1947). Thus, the players’
strategies are implemented by a type of finite automaton
called a Moore machine. Figure 2 depicts a player’s candi-
date strategy set, which consists of one-state and two-state
automata. A formal description is provided in Supplementary
Material.

In the simulations, players engage in a lengthy process of learn-
ing among strategies. At the beginning of the simulations, each

agent is endowed with initial attractions A
j
i (0) = 1.5 for each

strategy j in Si
7 and initial experience Ni(0) = 1. Players are

matched in fixed pairs and update their attractions at the end
of each block. The play ends when the average payoff of a given
pair converges. More specifically, each simulation is broken up
into epochs of 100 periods. The simulation runs until the aver-
age epoch payoff of the pair has not changed by more than 0.01
from the previous epoch (in terms of Euclidean distance) in 20

6This gap-based abstraction can be justified from the observation that the
activity of certain dopamine-related neurons is correlated with the difference
between the expected and actual outcomes (see Caplin and Dean, 2007).
7The values of the initial attractions are derived from the Cognitive Hierarchy
(CH) model of Camerer et al. (2004).
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FIGURE 1 | Payoff Matrices.

consecutive epochs8. The simulations use an intensity parameter
λ = 4 in the logit specification9. The initial value of P0

i is set to

8The maximum length in each of the simulation runs was set to 100,000 peri-
ods. The average payoff of the pair converged in 1000 × 4 − 47 = 3953 out
of the 4000 total simulations. In 47 simulations, all in the Battle of the Sexes
game, the average payoff of the pair did not converge; players were playing
their preferred outcome most of the time, but there was too much noise for
the average payoff of the pair to converge. In all other simulations, the average
payoff of the pair converged. The median length for convergence was 10,750
periods in the Prisoner’s Dilemma game, 11,400 periods in the Battle of the
Sexes game, 2750 periods in the Stag-Hunt game, and 3300 periods in the
Chicken game. Given the convergence criterion, the minimum length of peri-
ods for a simulation run is 20 × 100 = 2, 000 periods. This implies that, for
instance in Stag-Hunt, a pair of players who arrives at convergence in a median
length of 2750 periods has reached the convergence point after 7.5 strategy-
updates (a pair of players arrives at convergence point in 7.5 × 100 = 750
periods, given that P0

i is set to 100).
9The calibration is based on a grid search. We consider a simple goodness-of-
fit measure to determine how far the predictions of the model are from the
experimental data. The dataset used is from Mathevet and Romero (2012).
Subjects were instructed that the continuation probability for an additional
period was 0.99; this was common knowledge in all experiments conducted.
We compare the average payoffs over the last 10 periods of the computational
simulations to the average payoffs over the last 10 periods of the experimental
data. To calculate the measure, we first discretize the set of possible payoffs by
using the following transformation:

D (π) = ε
⌊π

ε

⌉
,

where π is the payoff, ε is the accuracy of the discretization and D(π) denotes
the transformed payoff. Note that the symbolic function �·� rounds the frac-
tion to the nearest integer. For example, if ε = 0.5, then the payoff pair
(π1, π2) = (2.2, 3.7) would be transformed to (D (π1) , D (π2)) = (2, 3.5).
We then construct a vector consisting of the relative frequency of each of the
transformed payoffs given some ε. We do the same for the experimental data.

100 periods10. The results displayed in the plots are averages taken
over 1000 simulated pairs. At the start of the simulations, each
of the strategies in a player’s candidate strategy set has an equal
attraction and hence an equal probability of being selected. This
phase is a lengthy learning process that ends when the average
payoff of a given pair of automata converges. We elaborate next
on the results of the computational simulations.

3.1. RELATIVE FREQUENCY AND SPEED OF CONVERGENCE
The payoff matrix of the Prisoner’s Dilemma game is indicated
in Figure 1A. The cooperative action is denoted with the letter
“A,” whereas the action of defection is denoted with the letter
“B.” Each player’s dominant strategy is to play B. Figure 3 dis-
plays the results of the simulations in the Prisoner’s Dilemma.
Figure 3A shows the relative frequency of automaton pairs played
over the last 1000 periods. The relative frequency of an automa-
ton pair is the number of times the automaton pair occurred
normalized by the total number of occurrences of all automaton
pairs. Automaton 6, which implements the “Grim-Trigger” strat-
egy, was the one with the most occurrences. It is important to
note that the cooperative outcome (A, A) is sustained in a pair
consisting of Grim-Trigger automata. This finding is confirmed
in Figure 3B, which plots the relative frequency of the payoffs.
Crucially, even though the majority of automaton pairs converged
to the cooperative payoff (3, 3), there, still, exists a small num-
ber of automaton pairs, which chose to defect repeatedly and thus
earned a payoff of (2, 2). Finally, the plot in Figure 3C provides
information on the speed of convergence. The red dotted line
denotes the Empirical Cumulative Distribution Function (ECDF)
for convergence. The blue solid line and the green dashed line
provide information on the payoffs (right axis) of the automa-
ton pairs when averaged over the last 1000 periods. The blue solid
line represents the average payoff of the automaton pair ( g1+g2

2 ).
The green dashed line represents the absolute payoff difference
of the automaton pair (

∣∣g1 − g2
∣∣ ). Points on the blue solid and

the green dashed line are sorted according to the correspond-
ing point on the red dotted line. About 20% of the simulations
converged quite quickly in less than 3000 periods. At this point
in time, the blue solid line signifies that the average payoff of
the automaton pairs was 3. Given the convergence criterion, we
can deduce that about 20% of the automaton pairs started off
by cooperating and maintained cooperation until convergence.
The next 70% of the simulations were (roughly) uniformly dis-
tributed across the range of 3000 − 27, 000 periods. The last 10%
of the simulations converged in the range of 27, 000 − 34, 000

To determine how far the predictions of the model are from the experimen-
tal data, we calculate the Euclidean distance between the model’s vector and
the vector of the experimental data. If the predictions match the experimental
data perfectly, then the distance will have a value of 0. The maximum value
of distance is

√
2 for each game. This value is attained if only one payoff is

predicted by the model, only one payoff is observed in the experiment, and
the two payoffs are different. Crucially, for a given discretization parameter
ε, we define the best goodness of fit model as the one whose parameter value
minimizes the sum of Euclidean distances across the four games studied.
10An upper bound of 60 periods was set on the fitness function for compu-
tational efficiency; that is, a player can use a maximum of 60 periods when
formulating beliefs.
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FIGURE 2 | One-state and two-state automata.

periods. Looking at the green and blue lines, we observe that the
pairs that were converging in less than 27,000 periods ended up at
the cooperative outcome, while the pairs that converged at 31,000
periods and beyond converged to the defecting outcome. After
31,000 periods, the automaton pairs that did not attain cooper-
ation experienced short expected block lengths, which prompted
them to constantly update the strategies in a manner similar to
action-learning models hence converged to the defecting out-
come. Pairs that converged between 27,000 and 31,000 periods
ended up in either the cooperating or the defecting outcome.

The payoff matrix of the Battle of the Sexes game is indi-
cated in Figure 1B. In this game, there are two pure-strategy
equilibria: (A, B) and (B, A) . Figure 4 shows the results of the
simulations. In particular, Figure 4A shows the relative frequency
of automaton pairs played over the last 1000 periods. The plot
covers a large number of automata although Automaton 12 and
Automaton 18 show up most frequently. Automaton 12 switches
actions every period unless both players choose B in the previous
period. Automaton 18 switches actions every period unless both

players choose A in the previous period. Therefore, a pair consist-
ing of Automaton 12 and Automaton 18 would end up alternating
between the two pure-strategy Nash equilibria of the stage game.
Each automaton would thus earn an average payoff of 3. This is
shown in Figure 4B. Arifovic et al. (2006) indicate that standard
learning algorithms have limited success in capturing the alterna-
tion between the two pure-strategy Nash equilibria in the Battle
of the Sexes game. Yet in the proposed model, automata predomi-
nantly converge on alternating behavior between the two actions.
Finally, a few pairs converged to one of the two pure-strategy Nash
equilibria. Figure 4C provides information on the speed of con-
vergence. The automaton pairs can be classified into two groups:
(1) those which converged to alternations, and (2) those which
converged to one of the pure-strategy Nash equilibria. The pairs
that converged to alternations are denoted by the green dashed
line at a payoff of 0 (i.e., players within the pairs earned the same
payoff). These pairs converged in less than 28,000 periods. On
the other hand, the pairs which converged to one of the two pure-
strategy Nash equilibria are denoted by the green dashed line at
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FIGURE 3 | Prisoner’s Dilemma. Notes: Figures 3–6 follow the same
structure. (A) Shows the relative frequency of play across the 262 automaton
pairs over the last 1000 periods. The relative frequency of an automaton pair
is the number of times the automaton pair occurred normalized by the total
number of occurrences of all automaton pairs. The relative frequency of a
given pair is denoted by a square located on the coordinates that correspond
to that pair; the darker (more red) the square, the higher the (relative)
frequency of that pair. In addition, the relative frequency (as a percentage
rounded to the nearest integer) is displayed for each pair that appeared at
least once in the simulations. If the relative frequency is <0.5% it shows as a
0. (B) Shows the relative frequency of each payoff combination over the final
1000 periods and the set of feasible payoffs. The radius of the circle is

r =
√

RF
2 , where RF is the relative frequency. Note that this is a concave

function which emphasizes points with small relative frequency. (C) Provides
information on the speed of convergence. The left axis indicates the
probability and the red dotted line denotes the Empirical Cumulative
Distribution Function (ECDF) for convergence. On the other hand, the blue
solid line and the green dashed line correspond to the right axis and provide
information on the payoffs of the automaton pairs when averaged over the
last 1000 periods. The blue solid line represents the average payoff of the
automaton pair ( g1 + g2

2 ). The green dashed line represents the absolute
payoff difference of the automaton pair ( |g1 − g2| ). Points on the blue solid
and the green dashed line are sorted according to the corresponding point on
the red dotted line.

a payoff of 2. The latter pairs took between 28,000 and 34,000
periods to converge.

The payoff matrix of the Stag-Hunt game is indicated in
Figure 1C. In this game, there are two pure-strategy Nash equi-
libria: (A, A) and (B, B). However, outcome (A, A) is the Pareto
dominant equilibrium. Figure 5 shows the results of the simu-
lations. The relative frequency of automaton pairs in Figure 5A
suggests that a relatively small set of automata was chosen.
Automaton 5, which implements the “Win-Stay, Lose-Shift” strat-
egy, and Automaton 6, which implements the “Grim-Trigger”
strategy were the ones with the most occurrences. Other automata
that were chosen frequently included: Automaton 1, Automaton
3, Automaton 4, and Automaton 26. It is important to note that
with the exception of Automaton 26, any pair combination from
this small set of automata yields a payoff of 3 as both players

choose (A, A) repeatedly. Automaton 26 paired with Automaton
26 corresponds to alternating between the two pure-strategy Nash
equilibria, which yields an average payoff of 2. Figure 5B con-
firms that the most likely outcome is for both players to choose
A repeatedly. Note that there is also a small number of pairs
that converged to (2, 2). Figure 5C shows that convergence in the
Stag-Hunt game was quite fast. More specifically, 90% of the pairs
converged within only 6000 periods. The blue solid line oscil-
lates mostly between an average payoff of 3 and an average payoff
of 2, while the green dashed line indicates that, in either case, the
average payoff difference of the automaton pairs was 0.

The payoff matrix of the Chicken game is indicated in
Figure 1D. In this game, there are two pure-strategy Nash equilib-
ria: (A, B) and (B, A). Recall that in the Chicken game, the mutual
conciliation outcome of (A, A) yields higher payoffs than the
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FIGURE 4 | Battle of the sexes.

average payoffs for each of the players when alternating between
the pure-strategy Nash equilibria. Figure 6 shows the results of
the simulations. The results in plots (a) and (b) confirm that
game-play converged to a small set of automata: Automaton
3, Automaton 4, which implements the “Tit-For-Tat” strategy,
Automaton 5, which implements the “Win-Stay, Lose-Shift” strat-
egy, and Automaton 6, which implements the “Grim-Trigger”
strategy. In addition, a very small number of pairs converged to
one of the two pure-strategy Nash equilibria. The simulations
work in a similar manner to those in the Prisoner’s Dilemma
game. The automaton pairs, which converged quickly to the con-
ciliation outcome are those that started off by conciliating. Some
other automaton pairs that did not establish conciliation from the
beginning managed eventually to attain the conciliation outcome.
Finally, the rest ended up in one of the two pure-strategy Nash
equilibria. The latter observation is evident by the blue line, which
indicates an average payoff of 2.5 for the pairs that converged
toward the end.

In summary, the extension of the self-tuning EWA model from
actions to a simple class of repeated-game strategies improves pre-
dictions in two distinct ways. First, it allows for convergence to
non-trivial sequences, such as alternation in the Battle of the Sexes
game. Second, the richer set of strategies allows the emergence
of sophisticated strategic behavior, which not only incorporates
punishments and triggers, but also anticipation of punishments

and triggers. Such sophisticated behavior is instrumental in cap-
turing cooperative behavior in the Prisoner’s Dilemma game and
mutual conciliation in the Chicken game, precisely, because the
threat of punishment may drive a selfish player to conform to
cooperation and conciliation in the two games. An alternative
approach could be to assume a mixture of adaptive and sophis-
ticated players. An adaptive player responds to either the payoffs
earned or the history of play, but does not anticipate how oth-
ers are learning, whereas a sophisticated player responds to his
forecasts using a more sophisticated forward-looking expected
payoff function and a mental model of an opponent’s behavior
(see Camerer et al., 2002; Chong et al., 2006; Hyndman et al.,
2009, 2012). Yet such teaching models’ inability to both execute
and anticipate sophisticated behaviors, impedes the delivery of
cooperation and conciliation in the Prisoner’s Dilemma game and
the Chicken game, respectively. Take, for instance, learning in the
Prisoner’s Dilemma game. Assume that there exists a population
of agents, which consists of sophisticated players and adaptive
players á la Camerer et al. (2002). An adaptive player always
chooses to defect, regardless of his belief about the opponent’s
action, because defection is a strictly dominant action. On the
other hand, a sophisticated player is able to anticipate the effect
of his own behavior on his opponent’s actions. However, this is
not sufficient to drive a sophisticated player paired with an adap-
tive player to cooperative behavior because the adaptive player
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FIGURE 5 | Stag-hunt.

will choose to defect, as defection is always his best response.
Consequently, the sophisticated player will also respond with
defection, and, thus, the pair will lock themselves into an endless
string of defections. Analogous arguments hold for the Chicken
game; that is, a teaching model with sophisticated and adap-
tive players would predict the Nash equilibrium-not, the mutual
conciliation outcome.

3.2. PROGRESSION
Figures 7–10 display information about the progression of play
relative to the periods until convergence for the Prisoner’s
Dilemma, Battle of the Sexes, Stag-Hunt and Chicken games,
respectively. Figure 7 displays information about the progression
of play for the Prisoner’s Dilemma game. Figure 7A confirms
that Automaton 6, which implements the “Grim-Trigger” strat-
egy, was the one with the most occurrences. In the same panel, we
also observe that in the earlier periods, Automaton 14 was played
almost as frequently as Automaton 6. Automaton 14 plays A one
time, and plays B from then on. Automaton 14 is gradually phased
out. Figure 7B indicates that pairs are playing the uncoopera-
tive outcome (B, B) around 70% of the time before convergence;
eventually, the pairs learn to play the cooperative outcome (A, A).

Figure 8A shows that in the Battle of the Sexes game, the pairs
that take a long time to converge predominately play the preferred

action B. Eventually pairs learn to play automata that alternate
between the two pure-strategy Nash equilibria. Figure 8B shows
that 5000 periods before convergence about half of the time pairs
are playing the non-equilibrium outcome (B, B) and half of the
time pairs are playing one of the two pure-strategy Nash equilib-
ria. Pairs rarely ever play the (A, A) outcome11. Eventually pairs
either play one of the two pure-strategy Nash equilibria or alter-
nate between the two pure-strategy Nash equilibria. Furthermore,
by the time convergence is reached, only a small percentage of
pairs are stuck in an inefficient war-of-attrition outcome.

11There are several reasons why automata favor action B over action A. First,
if the co-player is selecting an action at random (i.e., selects each action with
probability 0.5), then one is better off selecting the most preferred choice; that
is, action B. Second, if one is trying to set a precedent on preferred choice,
they may continually select the preferred choice to make the co-player believe
that there is no intention to switch to the other action. In such a case, the
co-player may eventually concede and start best-responding to the player’s
preferred action. However, if a pair is unwilling to concede, then, this will lead
to a war-of-attrition outcome where the pair repeatedly goes to their preferred
choice. Consider, for example, a pair using Automaton 12, which is the most
commonly used automaton in the Battle of the Sexes simulation. Recall that
Automaton 12 switches actions every period unless both players choose B in
the previous period. Thus, a pair using Automaton 12 will mostly alternate
between the two pure-strategy Nash equilibria, also play a few times the war-
of-attrition profile, but will almost never play the (A, A) outcome.
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FIGURE 6 | Chicken.

Figure 9A shows that in the Stag-Hunt game, the small per-
centage of pairs that took more than 5000 periods to converge
predominately play automata which alternate between the two
pure-strategy Nash equilibria. This is confirmed in plot (b) as
the frequency of the two Nash equilibria is roughly the same.
However, this is only a small percentage of the data since about
80% of the pairs converged quickly in less than 5000 periods.
Those pairs that converge quickly appear to pick one of the coop-
erative automata (1, 3, 4, 5, 6) from the beginning, which leads to
the Pareto-dominant Nash equilibrium.

Figure 10A shows that in the Chicken game, the pairs that
took a long time to converge overwhelmingly select Automaton
17. This automaton starts off by playing the preferred action B.
It continues to do so as long as the co-player plays A; otherwise,
it switches to A. A pair of such automata are quite infrequent,
whereas the relative frequency of the other three action profiles is
about the same. This is what is observed in Figure 10B. However,
analogous to the Stag-Hunt game, the majority of pairs converge
to the cooperative outcome in less than 5000 periods and quickly
learn to play one of the cooperative automata.

4. CONCLUSION
Recently, Rabin (2013) proposed a research program that called
for the portable extension of existing models with modifications

that would improve the models’ psychological realism and eco-
nomic relevance. In Ioannou and Romero (2014), we applied this
program of research by building on three leading action-learning
models to facilitate their operability with repeated-game strate-
gies. The three modified models approximated subjects’ behav-
ior substantially better than their respective models with action
learning. The best performer in that study was the self-tuning
EWA model with repeated-game strategies, which captured sig-
nificantly well the prevalent outcomes in the experimental data.
In this study, we use the model as a computer testbed to study
more closely the relative frequency, speed of convergence and pro-
gression of a set of repeated-game strategies in four symmetric
2 × 2 games: Prisoner’s Dilemma, Battle of the Sexes, Stag-Hunt,
and Chicken. In the Prisoner’s Dilemma game, the strategy with
the most occurrences was the “Grim-Trigger.” In the Battle of
the Sexes game, a cooperative pair that alternates between the
two pure-strategy Nash equilibria emerged as the one with the
most occurrences. Furthermore, cooperative strategies, such as
the “Grim-Trigger” strategy and the “Win-Stay, Lose-Shift” strat-
egy, had the most occurrences in the computational simulations
of the Stag-Hunt and Chicken games. Finally, we find that the
pairs which converged quickly ended up at the cooperative out-
comes. On the other hand, the pairs that were extremely slow to
reach convergence ended up at non-cooperative outcomes.

Frontiers in Neuroscience | Decision Neuroscience July 2014 | Volume 8 | Article 212 | 10

http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience/archive


Ioannou and Romero Self-tuning EWA with repeated-game strategies

FIGURE 7 | Prisoner’s Dilemma. Notes: Figures 7–10 follow the same
structure. The plots display information about the progression of play relative
to the periods until convergence. The far right of all plots (labeled as “0” on
the x-axis) is the point of convergence. (A) Shows the progression of the
relative frequency of play across the 26 automata over the last 30,000
periods. The automata are ordered starting from Automaton 1 and moving up
to Automaton 26. The height of a region at a certain x-value denotes the
relative frequency with which an automaton was played at a given number of
periods before convergence. We display in color only those automata with a

relative frequency of at least 10% in the 30,000 periods before convergence;
the remaining automata are represented by the white regions. (B) Shows the
progression of play of each of the four action profiles. (C) Displays the
percentage of pairs that took longer than the given x-value to converge. For
example, we observe in (C) that roughly 25% of the pairs took more than
20,000 periods to converge (and 75% of the pairs took less than 20,000
periods to converge). Thus, the corresponding x-values in (A) and (B) only
reflect 25% of the pairs. All plots are smoothed by taking the average over
the previous 2000 periods of play.

FIGURE 8 | Battle of the Sexes.

Recently, Dal Bó and Fréchette (2013) required subjects to
directly design a repeated-game strategy to be deployed in
lieu of themselves in the infinitely-repeated Prisoner’s Dilemma
game. Dal Bó and Fréchette find that subjects choose common

cooperative repeated-game strategies, such as the “Tit-For-Tat”
strategy and the “Grim-Trigger” strategy. The “Grim-Trigger”
strategy is also predicted in the simulations of the Prisoner’s
Dilemma game. We hope that in the near future similar studies
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FIGURE 9 | Stag hunt.

FIGURE 10 | Chicken.

will be carried across other symmetric 2 × 2 games to confirm
the ability of the self-tuning EWA model with repeated-game
strategies to capture well subjects’ behavior in the laboratory.
Finally, it would be interesting to determine the influence of
small errors on repeated-game strategies. Currently, the only
stochasticity of the model enters through the logit decision rule
in the early periods before repeated-game strategies accumu-
late high attractions, which result in near deterministic strategy
choice. We know from the received literature (Miller, 1996; Imhof
et al., 2007; Fudenberg et al., 2012; Ioannou, 2013, 2014) that

the likelihood and type of errors can affect the degree of coop-
eration and the prevailing strategies. Thus, a fruitful direction
for future research would be to test the susceptibility of the
results to small amounts of perception and/or implementation
errors.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fnins.
2014.00212/abstract
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