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Oxytocin (OXT) is well known for its ability to the milk ejection reflex and uterine
contraction. It is also involved in several other behaviors, such as anti-nociception, anxiety,
feeding, social recognition, and stress responses. OXT is synthesized in the magnocellular
neurosecretory cells (MNCs) in the hypothalamic paraventricular (PVN) and the supraoptic
nuclei (SON) that terminate their axons in the posterior pituitary (PP). We generated
transgenic rats that express the OXT and fluorescent protein fusion gene in order to
visualize OXT in the hypothalamo-neurohypophysial system (HNS). In these transgenic
rats, fluorescent proteins were observed in the MNCs and axon terminals in the PP. This
transgenic rat is a new tool to study the physiological role of OXT in the HNS.
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INTRODUCTION
Oxytocin (OXT), a nine amino acid neuropeptide, was discov-
ered in 1906 as an extract with uterus-contracting effects from
the pituitary (Dale, 1906). In 1953, OXT was the first peptide
hormone to be sequenced and synthesized (du Vigneaud et al.,
1953a,b, 1954). OXT is synthesized primarily in magnocellular
neurosecretory cells (MNC) in the hypothalamic paraventricu-
lar (PVN) and the supraoptic nuclei (SON), which cells project
their axon terminals into the posterior pituitary (PP), where it is
released into the systemic circulation, in the same way as arginine
vasopressin (AVP). OXT is well known for its roles in repro-
duction, especially during and after childbirth. Many previous
studies have shown that OXT is involved in several physiological
functions, such as antinociception, anxiety, feeding, social recog-
nition, and stress responses (Carmichael et al., 1987, 1994; Stock
and Uvnäs-Moberg, 1988; Uvnäs-Moberg et al., 1993; Leckman
et al., 1994; Russell and Leng, 1998).

We recently have reported the generation and characteriza-
tion of rats which faithfully express an AVP-enhanced green
fluorescent protein (eGFP) fusion transgene (Ueta et al., 2005;
Fujio et al., 2006; Shibata et al., 2007; Suzuki et al., 2009;
Maruyama et al., 2010; Todoroki et al., 2010; Iwanaga et al.,
2011; Ohno et al., 2012). Previous studies that used animals
to examine OXT dynamics by fluorescent visualization reported
about OXT-enhanced cyan fluorescent protein (eCFP) transgenic
mice (Young et al., 1999; Zhang et al., 2002). Although we first
generated an OXT-eCFP transgenic rat, the expression of the
transgene was unstable for unknown reasons (Katoh et al., 2010).
Monomeric red fluorescent protein (mRFP) was developed from
DsRed, which is the red fluorescent protein from Discosoma
(Campbell et al., 2002; Long et al., 2005), and we succeeded in
generating transgenic rats bearing an OXT-mRFP1 fusion gene
(Katoh et al., 2011).

In this review, we focus on (1) the distribution of OXT, (2)
the regulation of synthesis and release of OXT, and (3) recent
research about the visualization of OXT in OXT transgenic ani-
mals using a fluorescent protein, which is a new tool to study the
physiological role of OXT in the hypothalamo-neurohypophysial
system (HNS).

DISTRIBUTION OF OXYTOCIN AND OXYTOCIN RECEPTOR
In MNC in the PVN and the SON, OXT neurons project their
axon terminals into the PP. In parvocellular neurosecretory cells
(PNC) in the PVN, OXT neurons project their axon terminals
to the spinal code, including the intermediolateral nucleus and
gelatinous substance, where OXT have some role to modify pains
and sympathetic nervous system (Sofroniew, 1980). OXT cells
also project to the ambiguus nucleus, the nuclei of solitary tract
(NTS), the dorsal motor nucleus of vagus, the Edinger–Westphal
nucleus, circularis nucleus (CN), the parabrachial nucleus, the
hippocampus, the amygdaloid nucleus, and the septulum (Reaves
and Hayward, 1979; Nilaver et al., 1980; Sofroniew, 1980;
Sofroniew et al., 1981; Hatton and Tweedle, 1982; Sawchenko and
Swanson, 1982). Parvocellular OXT cells are found in the preoptic
area and the lateral hypothalamus, whereas accessory magnocel-
lular OXT cells are found scattered across the hypothalamus.

The central effects of OXT are mediated by OTRs distributed
widely in the brain. OTR mRNAs are distributed in the ven-
tromedial nucleus of the hypothalamus (VMH) and the PVN,
which are involved in steroid-sensitive reproductive behaviors;
in the substantia nigra and ventral tegmental area, which is
involved in maternal behaviors; in the hippocampus, which is
involved in learning and memory; and in the lateral septum,
caudate putamen, amygdaloid nuclei, olfactory tubercle and cin-
gulate, perirhinal, and frontal cortices, all of which are involved in
reinforcement (Ostrowski, 1998).
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REGULATION OF SYNTHESIS AND RELEASE OF OXYTOCIN
OXT is produced in the MNC of the PVN and the SON, and
is released into the systemic circulation from axon terminals in
the neurohypophysis, particularly during parturition, lactation
and in response to osmotic challenges (Burbach et al., 2006).
The structure of the OXT gene was elucidated in 1984 (Ivell and
Richter, 1984). Expression of the OXT gene is stimulated dur-
ing pregnancy and lactation (Van Tol et al., 1988; Zingg and
Lefebvre, 1988). Interestingly, although estrogen or progesterone
alone does not increase OXT synthesis expression of the OXT gene
in the PVN and the SON was increased by the prolonged admin-
istration of estrogen and progesterone, followed by progesterone
withdrawal (Thomas and Amico, 1996). By contrast, OXT gene
expression in the uterine was highly stimulated by the combined
application of estrogen and progesterone (Lefebvre et al., 1994).

OXT is well known for its roles in reproduction, especially
during and after childbirth. The pulsatile OXT release into the
circulation is stimulated by vaginocervical stimulation associated
with labor and the stimulus of suckling on the nipple. The uter-
ine muscle increases its OXT receptors (OTRs) and sensitivity to
OXT during the latter few months of pregnancy. That level of
OXT release from the neurohypophysis is considerably increased
at the time of labor. In lactation, OXT causes milk to be expressed
from the alveoli into the ducts of the breast so that the baby can
obtain it by suckling. The suckling stimulus on the nipple of the
breast causes signals to be transmitted through sensory nerves to
the OXT, secreting neurons in the MNC in the PVN and the SON.
OXT in plasma is carried to the breast, where it causes contraction
of myoepithelial cells that lie outside of and form a latticework
surrounding the alveoli of the mammary glands. In less than a
minute after a baby starts suckling, milk begins to flow.

The sequence of the OTR was reported in 1992 (Kimura et al.,
1992; Kubota et al., 1996). Gonadal steroids play an important
role in mediating the regulation of OTR expression. Most periph-
eral OXT-binding sites, including the pituitary, renal, and uterine,
are upregulated by estrogens (Fuchs et al., 1983; Soloff et al.,
1983; Maggi et al., 1992). The upregulation is accompanied by
OTR mRNA expression, suggesting that the upregulation is a
consequence of a genomic estrogen effect on the OTR gene tran-
scription (Breton et al., 1995; Larcher et al., 1995). Behavioral
studies have clearly shown that a necessary potential of OXT to
elicit maternal or sexual behavior is priming with estrogen alone
or with both estrogen and progesterone (Pedersen et al., 1982;
Fahrbach et al., 1985). This evidence suggests that OTRs are under
the control of gonadal steroids in the central nervous system
(CNS).

OTR gene expression increases during pregnancy and/or at
parturition in the olfactory bulb, medial preoptic area, bed
nucleus of the stria terminalis (BNST), the SON, and in the
medial amygdala in rat (Young et al., 1997; Meddle et al., 2007).
Studies have shown that OTR-binding sites increase in the medial
preoptic area, the BNST, VMH, and the ventral tegmental area on
postpartum day 1 (Insel, 1990; Pedersen et al., 1994; Young et al.,
1997). These changes suggest that OXT and OTR receptors play a
role in both lactation and the regulation of maternal behavior.

OXT is also recognized as having endocrine and paracrine roles
in male reproduction. OXT is synthesized within the mammalian

testis, epididymis and prostate, and OTRs in the reproductive
tract support a local action for OXT (Ivell et al., 1990, 1997; Foo
et al., 1991; Nicholson and Hardy, 1992; Frayne and Nicholson,
1995, 1998; Harris et al., 1996; Filippi et al., 2002; Whittington
et al., 2004). In ejaculation, a burst of OXT is released from
the neurohypophysis into the systemic circulation and stimu-
lates contractions of the reproductive tract for sperm release
(Ogawa et al., 1980; Carmichael et al., 1987; Murphy et al., 1987).
OXT plays a paracrine role in stimulating contractility of the
seminiferous tubules, epididymis and the prostate gland.

Interestingly, OXT is also released from soma and dendrites
during parturition and lactation (Ludwig and Leng, 2006).
Although OXT released from the soma and dendrites of the MNC
in the SON and the PVN may act in a paracrine to activate distant
receptors (Ludwig and Leng, 2006), OXT-like immunoreactiv-
ity (LI) fibers can be found throughout the brain, including the
nucleus accumbens (NAcc), lateral septum, amygdala, and some
areas in the hindbrain, brainstem, and spinal cord (Sofroniew,
1980; Castel and Morris, 1988). A notable reduction of OXT-LI
fibers was observed throughout the brain by the lesioning of the
PVN (De Vries and Buijs, 1983). Although little is known about
the regulation of OXT release from these forebrain projections,
they might contribute significantly to the regulation of behavior.

TRANSGENIC ANIMAL OF OXYTOCIN
OXT DEFICIENT MICE
Previous studies have generated mice carrying a deletion of the
OXT-coding region using homologous recombination in embry-
onic stem cells (Nishimori et al., 1996; Young et al., 1996). Mice
lacking OXT are both viable and fertile. Males do not have any
reproduction behavioral or functional defects in the absence
of OXT. Similarly, females have no obvious deficits in fertility
or reproduction, including gestation and parturition. Although
OXT-deficient females demonstrated normal maternal behavior,
all their offspring died of starvation shortly after birth, because
OXT-deficient mothers were unable to nurse. After injections of
OXT to OXT-deficient mothers, milk ejection was induced and
the offspring survived. OXT-deficient male mice fail to develop
social memory (Ferguson et al., 2000). A measurement of both
olfactory foraging and olfactory habituation tasks has indicated
that olfactory detection of non-social stimuli is intact in OXT-
deficient male mice, and treatment with OXT reinstates social
memory in those mice. These data indicate that OXT is necessary
for the normal development of social memory in mice and sup-
port the hypothesis that social memory has a neural basis distinct
from other forms of memory.

OXTR DEFICIENT MICE
OXTR-deficient mice were viable and had no obvious deficits
in fertility or reproductive behavior, the same as OXT-deficient
mice (Takayanagi et al., 2005). OXTR-deficient dams mice exhib-
ited normal parturition but demonstrated defects in lactation
and maternal nurturing. Infant OXTR-deficient males emit-
ted fewer ultrasonic vocalizations than their wild-type litter-
mates in response to social isolation. Adult OXTR-deficient
males also showed deficits in social discrimination, and demon-
strated increased aggressive behavior. OXT-deficient males from
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OXT-deficient but not from heterozygote dams showed high
levels of aggression. These data suggest a developmental
role for the OXT/OXTR system in shaping adult aggressive
behavior.

ANIMALS BEARING FLUORESCENT FUSION TRANSGENES
Previous studies have shown the placement of the eGFP coding
sequence (Young et al., 1999; Zhang et al., 2002) or chloram-
phenicol acetyltransferase (CAT) reporters at various locations
within an OXT transgene (Jeong et al., 2001) (Table 1). We gen-
erated rats bearing an OXT-eCFP fusion transgene designed from
a murine construct previously shown to be faithfully expressed
in transgenic mice (Katoh et al., 2010) (Table 1). However,
the expression of the transgene was unstable for unknown
reasons.

The mRFP was developed from DsRed, which is the red flu-
orescent protein from Discosoma (Campbell et al., 2002; Long
et al., 2005). We have succeeded in generating transgenic rats
bearing an OXT-mRFP1 fusion gene (Katoh et al., 2011) (Table 1)
(Figure 1). Interestingly, when the brains of these rats were
mounted on a slide, the mRFP1 fluorescence was visible in the
ventral part of the SON and in the PP without cutting. We could
observe the mRFP1 fluorescence throughout the SON, especially
in the dorsal parts. We could observe abundant mRFP1 fluores-
cence in the magnocellular division of the PVN and scattered
mRFP1 fluorescence in the parvocellular division of the PVN.
We also observed mRFP1 fluorescence in the internal layer of the
median eminence (ME) and in the PP. In situ hybridization histo-
chemistry showed mRFP1 mRNA localized in the SON and in the
magnocellular and parvocellular divisions of the PVN. In com-
paring male and female transgenic rats under normal conditions,
there were no differences in the expression of mRFP1 mRNA in
the SON and the PVN. In comparing nontransgenic and trans-
genic rats under normal conditions, there were no differences
between them in plasma osmorality, sodium, OXT, AVP, and the
expression of the endogenous OXT gene and AVP gene in the SON
and the PVN.

Previous studies have reported that OXT transcripts signifi-
cantly increased in the rat hypothalamus after chronic osmotic
stimuli, such as salt loading (Lightman and Young, 1987; McCabe
et al., 1990; Yue et al., 2008). In our OXT-mRFP1 trans-
genic rats, the fluorescence of mRFP1 was remarkably increased

by 5 to 7-fold throughout the SON and in the PVN, ME,
and PP after salt loading for 5 days (Katoh et al., 2010)
(Figure 1). In situ hybridization histochemistry showed dramat-
ically increased the expression of the mRFP1 mRNA in the
SON and the PVN after salt loading. Comparing nontransgenic
and transgenic rats after salt loading, there were no differ-
ences in plasma osmorality, sodium, OXT, AVP, and the expres-
sion of the endogenous OXT gene and AVP gene in the SON
and the PVN.

The peripheral administration of cholecystokinin (CCK) -8
stimulated secretion of OXT but not AVP (Verbalis et al., 1986;
Ueta et al., 2000; Hashimoto et al., 2005), and excited OXT-
secreting magnocellular neurons in the SON and the PVN in rats
(Hamamura et al., 1991; Ueta et al., 1993, 2000; Hashimoto et al.,
2005). CCK-8 stimulates gastric vagal afferents and activated
noradrenergic neurons in the nucleus of the tractus solitarius
(Luckman, 1992). It is postulated that these noradrenergic inputs
activate OXT-secreting neurons in the SON and the PVN and
cause the secretion of OXT into the systemic circulation in rats
(Hamamura et al., 1991). Recently, we have developed a novel
transgenic rat that enables the trivial visualization of c-fos expres-
sion using an eGFP tag (Katoh et al., 2014). These rats express
a transgene consisting of c-fos gene regulatory sequences that
drive the expression of a c-fos-eGFP fusion protein. Moreover, we
generated a double transgenic rat that expresses both the c-fos-
eGFP and an OXT-mRFP1 fusion gene. In these double transgenic
rats, nuclear eGFP fluorescence appeared in OXT-mRFP1 neu-
rons in the SON and the PVN 90 min after i.p. administration
of CCK-8 (Figure 2). Three-dimensional reconstruction imag-
ing enables the visualization of nuclear eGFP in the cytoplasm of
OXT neurons illuminated and identified by virtue of their expres-
sion of mRFP1. In these neurons, abundant OXT granules in the
cytoplasm are clearly visible by a plane image obtained from a
higher magnification by confocal laser microscopy (Katoh et al.,
2014).

CONCLUSIONS
We did not observe any fluorescence of mRFP1 in the ectopic
area of OXT in the OXT-mRFP1 transgenic rats. The OXT
neuron has the same proper response to physiological stimu-
lation in the OXT-mRFP1 transgenic rats as in nontransgenic
rats. Using OXT-mRFP1 rats, we can identify the OXT neuron

Table 1 | Oxytocin transgenes.

Transgenesis Transgene Reporter gene Specificity expression in HNS Ectopic expression References

From To

Mouse Mouse AI-02 eGFP None None Young et al., 1999

Mouse Mouse AI-01 eGFP Few None Young et al., 1999

Mouse Mouse AI-03 eGFP + None Young et al., 1999

Mouse Mouse JL-01 IRES-eGFP + None Young et al., 1999

Mouse Mouse OT-3-CAT-3.5 CAT + None Jeong et al., 2001

Mouse Rat AI-03 eCFP + None Katoh et al., 2010

Rat Rat OXT-mRFP1 mRFP1 + None Katoh et al., 2011, 2014

HNS, hypothalamo-neurohypophysial system.
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FIGURE 1 | The mRFP1 fluorescence was clearly observed in ventral parts

of the supraoptic nucleus (SON) (A,B) and in the PP (C,D) without cutting.

Endogenous florescence of mRFP1 in the SON (E), the paraventricular nucleus
(PVN) (F), the median eminence (ME) (G), and the posterior pituitary (PP) (H).

Effects of salt loading for 5 days on the mRFP1 fluorescence of the SON (I), the
PVN (J), the ME (K), and the PP (L). Under light (A,C) and fluorescent (B,D–L).
Scale bars, 1 mm (A–D,H,L) and 0.1 mm (E–G,I–K). OT, Optic tract; 3V, third
ventricle. Modified with permission from Figure 1 in Katoh et al. (2011).

FIGURE 2 | Effects of i.p. administration of cholecystokinin-8 on the

endogenous fluorescence of monomeric red fluorescent protein 1

(mRFP1) (A,D) and nuclear enhanced green fluorescent protein (eGFP)

(B,E) in the supraoptic nucleus (A–C) and the paraventricular nucleus

(D–F). The merged view of fluorescence of mRFP1 and eGFP was seen as a
yellow color (C,F). Scale bars shown in white represent 10 µm in (C,F). The
scale bar shown in black = 40 µm. Modified with permission from Figure 3 in
Katoh et al. (2014).

easily and see changes in the neuron’s activity and release of
OXT in realtime. Moreover, we can see smaller changes that
we had not been able to see before, because OXT-mRFP1 tran-
scription is more sensitive than endogenous OXT transcrip-
tion to the same stimulation. The OXT-mRFP1 transgenic rats
are a useful animal model to study dynamic changes in OXT
in the HNS.
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