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Early detection of movement intention could possibly minimize the delays in the
activation of neuroprosthetic devices. As yet, single trial analysis using non-invasive
approaches for understanding such movement preparation remains a challenging task.
We studied the feasibility of predicting movement directions in self-paced upper limb
center-out reaching tasks, i.e., spontaneous movements executed without an external
cue that can better reflect natural motor behavior in humans. We reported results
of non-invasive electroencephalography (EEG) recorded from mild stroke patients and
able-bodied participants. Previous studies have shown that low frequency EEG oscillations
are modulated by the intent to move and therefore, can be decoded prior to the movement
execution. Motivated by these results, we investigated whether slow cortical potentials
(SCPs) preceding movement onset can be used to classify reaching directions and
evaluated the performance using 5-fold cross-validation. For able-bodied subjects, we
obtained an average decoding accuracy of 76% (chance level of 25%) at 62.5 ms before
onset using the amplitude of on-going SCPs with above chance level performances
between 875 to 437.5 ms prior to onset. The decoding accuracy for the stroke patients
was on average 47% with their paretic arms. Comparison of the decoding accuracy
across different frequency ranges (i.e., SCPs, delta, theta, alpha, and gamma) yielded the
best accuracy using SCPs filtered between 0.1 to 1 Hz. Across all the subjects, including
stroke subjects, the best selected features were obtained mostly from the fronto-parietal
regions, hence consistent with previous neurophysiological studies on arm reaching tasks.
In summary, we concluded that SCPs allow the possibility of single trial decoding of
reaching directions at least 312.5 ms before onset of reach.

Keywords: stroke, self-paced voluntary movement, movement-related potentials, EEG, movement direction, brain-

machine interface

1. INTRODUCTION
Brain machine interfaces (BMI) have been recently used for direct
control of neuroprostheses by patients with different levels of
motor disabilities (Hochberg et al., 2012; Collinger et al., 2013;
Courtine et al., 2013; Leeb et al., 2013). In addition, BMI could
also be used to improve the efficiency of post-stroke functional
training through the use of brain signals to complement impaired
muscle control in movement-assisted rehabilitation therapy (Daly
and Wolpaw, 2008; Ang et al., 2011; Niazi et al., 2012; Biasiucci
et al., 2013; Ramos-Murguialday et al., 2013). Earlier detection of
movement intention could possibly minimize the delays in device
activation, which may result in a more natural coupling between
the motor planning activity in the cortex and the movement-
assisted devices (Krebs et al., 2003; Muralidharan et al., 2011).
This form of therapy has the potential of speeding up recovery
by enhancing the regeneration and reorganization of brain neu-
ronal structures (i.e., brain plasticity) after stroke (Schaechter,
2004; Dobkin, 2007; Kwakkel et al., 2008). For this reason, we
are motivated to study how early before the actual movement,

the intention to reach toward a target (in the form of discrete
direction planning) can be decoded from brain activity. The pri-
mary focus of this paper is on single trial decoding of self-paced
reaching movements by stroke patients and able-bodied subjects.

Different studies in human and non-human primates have
shown the possibility to decode movement parameters from
single unit neural activity—such as hand position, velocity, grip-
ping force and muscular activity—for the control of computer
cursors and robot arms (Wessberg et al., 2000; Serruya et al.,
2002; Taylor et al., 2002; Carmena et al., 2003; Schwartz, 2007;
Ganguly and Carmena, 2009; O’Doherty et al., 2011; Hochberg
et al., 2012; Collinger et al., 2013). A number of recent stud-
ies have proposed the use of non-invasive methods, in par-
ticular the electroencephalography (EEG) signal, for decoding
reaching directions (Mehring et al., 2003; Waldert et al., 2008;
Ince et al., 2010) and continuous trajectories (Wolpaw and
McFarland, 2004; Bradberry et al., 2010). Nevertheless most of
these studies, in particular those focused on decoding movement
direction (Connolly et al., 2003; Mehring et al., 2003; Musallam
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et al., 2004; Rickert et al., 2005; Rizzuto et al., 2005; Hammon
et al., 2008; Waldert et al., 2008; Robinson et al., 2013), rely on
cue-based protocols (i.e., where a “go” cue is used to instruct the
subject to perform the movement at a fixed time). In contrast,
we focus on self-paced reaching, where movements are initiated
by the subject in a spontaneous manner without any external
cue. This form of reaching movement can better reflect natural
motor behavior in humans. Throughout this paper, we define the
state prior to movement onset as the intention to reach. Intention
can be defined as an early plan to move (Andersen and Buneo,
2002) and represents a high level state which specifies the goals of
movements rather than the exact muscle activations required for
execution. Decoding of intention offers the capability to predict
the timing (Niazi et al., 2011; Lew et al., 2012a,b; Xu et al., 2014)
and, as studied in this work, the desired target.

Reaching is a complex spatial problem where different refer-
ence systems are involved in coding the hand positions directed
toward the target location (Philipona et al., 2003; Beurze et al.,
2006). Information about the upper limb position, eye position,
and target location are combined, coordinated and integrated
into a common distributed spatial representations in order to
perform a successful goal-directed reach. The posterior pari-
etal cortex (PPC) plays an important role in such coordinate
transformation between different reference frames for planning
a movement (Cohen and Andersen, 2002). The role of integra-
tion is played by a network involving the frontal and parietal
cortices for the control and execution of reaching movements,
as shown by studies with non-human primate performing visu-
ally guided movements (Burnod et al., 1999; Battaglia-Mayer
et al., 2003; Gottlieb, 2007). More recently, studies with human
subjects using fMRI have shown a similar frontal-parietal net-
work (Culham and Valyear, 2006; Filimon, 2010). These studies
suggest that brain signals in the frontal and parietal regions carry
the necessary information for decoding visually guided reaching
movements (Blohm et al., 2009; Andersen et al., 2010).

We have previously followed a data-driven approach to inves-
tigate the contribution of EEG slow cortical potentials (SCPs)
in decoding self-paced movement intention (intent to move vs.
intent not to move) of both able-bodied subjects and stroke
patients (Lew et al., 2012a). Similar conclusions were also
obtained by using intracortical recordings (Lew et al., 2012b).
Interestingly, it has also been shown that the amplitude of
motor cortical local field potentials (LFPs) in lower frequencies
(<13 Hz) is modulated with the direction of movement (Rickert
et al., 2005). In this work, we evaluate whether the same approach
based on SCP allows decoding movement directions prior to
actual execution of reaching. We also compare the decoding per-
formance of the EEG activity in different frequency bands. To the
best of our knowledge, there is no previous attempt to decode
directions of self-paced movements from non-invasive signals
before actual movement onset.

2. MATERIALS AND METHODS
We analyzed scalp EEG data recorded from three stroke patients
and two able-bodied subjects. Participants were instructed to
perform a center-out upper limb reaching task. All procedures
were approved by the Ethics Committee of the San Camillo

Hospital before the experiment. Subjects were informed about the
procedures and gave their consent.

Table 1 summarizes the subjects’ particulars, including the
Fugl-Meyer Motor Assessment score for upper extremity (FMA-
UE)—maximum score of 66—for stroke subjects. Patient P1
suffered from a left cerebellar hemorrhagic stroke, also com-
monly known as intracerebral bleed, where the ipsilateral body
part is affected. The second patient P2 suffered from a left nucleo-
capsular stroke caused by lesion in a deeper brain structure, thus
affecting the contralateral limb. The third patient P3 has had an
ischemic stroke caused by lesion in his frontal and left parietal
area, thus affecting his right limb. In general, all patients had
preserved tactile and proprioceptive sensibility of the arm with
normal cognitive abilities at the time of admission to the hospital.
All stroke subjects were able to achieve the reaching task with-
out much difficulty, but with significantly longer average reaching
time in comparison with the able-bodied subjects (c.f., Table 6).

2.1. EXPERIMENTAL PROTOCOLS
Subjects were seated in front of a computer screen holding on
to a haptic manipulandum (PHANTOM Premium 3.0/6DOF,
Sensable Technologies) with their arm resting comfortably on the
table as shown in Figure 1. The reaching task was performed with
both arms and subjects were instructed to move the manipulan-
dum that controls the position of a cursor (a green circle) on
a computer screen [c.f. Figure 1(Bottom)]. The resting position
is the condition when the green circle remains inside the white
box located in the middle of the screen. The task was to bring
the cursor to one of the 4 center-out target locations (up, down,
left, right, projected as white-frame boxes). The distance from the
home position to each target positions was approximately 15 cm.
When the target location was cued, the subject was asked to wait
at least 2 s before initiating the movement at their own pace in
order to induce a self-paced movement. The role of the visual
cue was to ensure equal distribution of target locations during
the recordings. Accordingly, when subjects moved before 2 s (an
immediate reaction, as in cued-based reaction tasks), the trial was
stopped and discarded.

Subjects were asked to stay in a relaxed position during this
idle period before initiating a reaching whenever they wish. For
each subject, there were 3 recordings of 80 trials each (targets
locations were randomly selected), thus resulting in a total of
240 trials for each arm movement. After removing early starts
and artifacts, an average of 230 trials remained for both hands
and subject groups. This is the same experimental protocol where

Table 1 | Particulars of volunteer experimental subjects.

Subject Age Medical Dominant Paretic Time since FMA-UE

condition hand arm Stroke

C1 25 Healthy Right – – –

C2 26 Healthy Right – – –

P1 50 Stroke Right Left 55 days 56/66

P2 61 Stroke Right Right 658 days 43/66

P3 66 Stroke na Right 308 days 53/66
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FIGURE 1 | (Top) Experimental setup and one of the able-bodied volunteer.
(Bottom) Experimental Protocol: Timeline of a complete trial. The circle in
green refers to the cursor being controlled with the manipulandum and the
white squares corresponds to the home (Center) and target (Left)

locations. Movement onset is defined as the time when the green cursor
exits the center square.

we have demonstrated the detection of movement onset (Lew
et al., 2012a). The design of this experiment allows voluntary ini-
tiation of movements, in contrast with most cue-based reaction
time task protocols where there is a go cue that instructs the sub-
ject when to start the movement. It has been reported that there
are neurophysiological differences between internally driven and
externally cued movement (Thut et al., 2000). A similar proto-
col has been used to investigate self-paced arm movements with
electrocorticography (ECoG) signals (Ball et al., 2009).

2.2. METHODS
We simultaneously recorded the EEG and electrooculography
(EOG) signals with a portable BioSemi ActiveTwo system using
64 electrodes arranged using an extended 10/20 montage at a
sampling rate of 2048 Hz, then downsampled to 256 Hz. EOG
channels were placed above nasion and below the outer can-
thi of both eyes in order to capture horizontal and vertical
EOG components. To reduce noise contamination, particularly
from eye movement artifacts, we performed our analysis using
a selection of 34 channels that excluded the peripheral chan-
nels and those that exhibited high correlation with the EOG

activity (Lew et al., 2012a). The signals recorded from these 34
electrodes were spatially filtered using the common average ref-
erencing (CAR) procedure to remove the global background
activity (Offner, 1950; Osselton, 1965; Bertrand et al., 1985).

The EEG signals were pre-processed by applying a zero-phase
low-pass Butterworth filter (non-causal filter) with cutoff fre-
quency at 120 Hz. The signals were further downsampled to
128 Hz. In order to evaluate direction-related information in dif-
ferent frequency bands, we applied narrow band filters between
[0.1–1] Hz for extracting SCP, [1–4] Hz for delta band, [4–8] Hz
for theta band, [7–13] Hz for the alpha band, as well as the
ranges [13–20] Hz, [20–30] Hz and [30–45] Hz covering beta and
gamma activity. For signals below 7 Hz, we directly used time
domain features (EEG amplitude). In particular, for the SCP,
Garipelli et al. (2013) have compared various spatial and spectral
filtering methods to enhance the signal to noise ratio (SNR) of
the slow potentials. Their results have shown higher separability
index with the use of narrow pass-band filters between [0.1–
1] Hz. They have also reported that CAR filter seems to be a better
choice than Laplacian filters. For frequency bands above 7 Hz, we
extracted the envelope of the filtered signal by taking the absolute
value of the real part of the analytic signal, computed using the
Hilbert transform. The Hilbert transform is commonly used in
calculating instantaneous amplitude and phase at each time point
of a narrow band signal and non-stationary time series such as the
scalp EEG signal (Huang et al., 1998; Marple, 1999).

To study the temporal characteristics of brain activity preced-
ing movement onset, referred as intention period, we analyzed
sliding windows of 250 ms overlapping every 62.5 ms in the
period from 2 s before the movement onset to 1 s after. In this
paper, the time reported always corresponds to the endpoint of
these sliding windows. For each of these windows, we applied
the Canonical Variant Analysis (CVA), which is a form of feature
selection technique that identifies the most relevant features dis-
criminating among classes, thus significantly reducing the dimen-
sionality of the input vector for the classifier. This technique
has previously been proven advantageous for BCI (Galán et al.,
2007). CVA extracts subject-specific discriminant spatial patterns
that maximizes the difference in variance between the 4 center-
out directions classes. As it remains unclear the exact time when
the intention to reach is made in a self-paced movement, this
method can yield information about movement-related modu-
lations in different brain regions during planning and how they
evolve over time. We used the features selected from the training
dataset (obtained from 5-fold cross validation) to build a classifier
(see below). The feature vector consisted of temporal amplitudes
from the 10 channels with the highest discriminant power (DP)
for each sliding window. We further reduced the data dimension-
ality by subsampling to 16 Hz for classification, thus forming a
vector of 40 features (10 channels × 4 points) within each 250 ms
window.

For classification of movement directions, we relied on Linear
Discriminant Analysis (LDA). We built a LDA classifier for each
time window. LDA is a simple approach to classification where
the samples from each class are modeled with a normal distri-
bution and it is assumed that they have the same covariance
matrix (Duda et al., 2001). The probability that the correct class
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is y given a sample x can be defined using Bayes’ rule:

P(C = y|x) = P(x|C = y)P(C = y)

P(x)
(1)

The classification of a sample x is given by argmaxyP(C = y|x)
over all classes. Data distribution, for all classes P(x|C = y), is
assumed to be normal for each class, and is modeled using the
same covariance matrix, �.

P(x|C = y) = 1

(2π)
p
2 |�| 1

2

e− 1
2 (x − μk)T�−1(x − μk) (2)

Finally, the performance of our method is evaluated using a 5-
fold cross validation procedure by maintaining the chronological
order when partitioning the training and testing data (Lemm
et al., 2006; Bourdaud et al., 2008). This method yields a more
realistic estimation of accuracy than random splitting of trials
from the entire recording session.

The movement direction decoding accuracy (DA) used in this
paper is derived from the confusion matrix, which interprets the
relationship between the actual class labels (i.e., 4-class target
directions) and the classified label (predicted output), where the
sum of the diagonal elements nii refers to the correctly classi-
fied trials (the actual target location). DA is defined as the ratio
between the correct predictions divided by the total number of
trials and measures the sensitivity rate. A value of 1 denotes
perfect separation between the movement directions.

As mentioned above, we want to evaluate how early before
movement onset the movement direction can be predicted. We

calculated the chance level by training several classifiers on a ran-
domized permutation of the labels of the training set (10 × 5 folds
cross validation). The chance level is derived from the average per-
formance of these classifiers. The chance level is always shown as
a red horizontal dotted line in the Results Section.

In addition to assess the sensitivity rate of our classifiers during
the intention period, [-2, 1] s around movement onset, we also
evaluated its specificity during the idle period where subjects are
supposed not to prepare for the reaching movement, namely from
1 s before the visual target cue to 2 s after the cue.

3. RESULTS
3.1. PREDICTING MOVEMENT DIRECTIONS: ABLE-BODIED SUBJECTS
Figure 2 shows a summary of results obtained from single trial
classification of movement directions from SCPs ([0.1–1] Hz)
for the able-bodied subjects, C1 and C2, when utilizing their
dominant arm (right in both cases). The topographic plots in
Figure 2A depict the selected channels based on the ranking of
the discriminability power at 500, 250, 125, and 0 ms preced-
ing the onset of movement (channels marked in red refers to
the 10 highest ranked channels). These topographic maps show
the brain regions which carried the most directional information.
Figure 2B shows the average and standard deviation (gray shaded
area) of single trial DA of movement direction from time −1.750
to 1 s. We tested if the DA measure is significantly above chance
level (shown as red dotted line) with 95% confidence interval
using the non-parametric Wilcoxon rank-sum test. The green ver-
tical line in this graph shows the first time when the DA value of
a group of five consecutive samples are significantly above chance
level (p < 0.05).

FIGURE 2 | Decoding of movement direction based on the EEG

slow cortical potentials (0.1–1 Hz). Able-bodied subjects, C1 (left)
and C2 (right) performed the reaching with their dominant arm (right
for both). (A) Discriminant channels (marked in red) at different time
windows of 250 ms (ending at 500, 250, 125, and 0 ms before
movement onset), which form a fronto-parietal network. (B) Direction

decoding performances (DA) using time-specific classifiers during the
intention period. t = 0 corresponds to movement onset. (C)

Sensitivity: DA during the intention period obtained using the
time-specific classifier with the highest DA. (D) Specificity: DA during
the idle period. t = 0 corresponds to the presentation of the visual
cue (c.f. Figure 1).
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For subject C1, DA rose above chance level at 687.5 ms before
onset (t = 0 s) using amplitudes of on-going SCPs, where per-
formance consistently increased until onset of movement and
remained at high values afterwards indicating that directional
discriminant neural signatures are continuously decoded during
movement. The most discriminant channels for this subject are
located in the frontal, parietal and ipsilateral regions starting from
time 375 to 0 ms prior to onset.

At this stage of analysis we have built classifiers tuned to
each time window. This allows us to pinpoint the most perti-
nent features for decoding movement direction over time. This
approach is quite challenging due to the fact that the onset of
self-paced movements has a higher variability compared to cue-
based movements. In order to explore an online implementation
of SCP-based approaches, we have identified that the time win-
dow at 62.5 ms before movement onset yielded the highest DA
(0.83 ± 0.05), and contains the most discriminant features for
decoding directions, see Table 2. In this paper, windows after
onset are not taken into consideration as they represent move-
ment execution rather than movement intention. We have then
used the features and classifier associated to the window with
the peak DA to test the decoding performance during the inten-
tion period. Figure 2C illustrates the corresponding DA, which
climbed above chance level as early as 500 ms before onset.
DA increases until 62.5 ms before movement onset, and then
decreases after movement onset.

In addition to aim for high sensitivity (high DA) during the
intention period, it is also desirable to achieve high specificity
(low false positive rate) during the idle period. Figure 2D shows
that the selected SCP-based classifier performs at random level
during the idle period.

Table 2 summarizes the results of the SCP-based direction
decoding for the able-bodied subjects. Regardless of which arm
was used, the best decoding performance for both subjects (con-
sidering only time before onset) occurred at 62.5 ms before move-
ment onset, with a maximal DA of 0.83 for subject C1. The
average DA across folds for each subject was slightly lower for
the non-dominant arm. Performances with time-specific classi-
fiers exceeded chance level before onset, early detection, between
875 ms to 437.5 ms and reached DA values above 0.8 after move-
ment onset. For both subjects performance was significantly
above random level during the intention period and had a rather
low variance. Importantly, performances are quite similar when
using the selected time-specific classifier with the best DA (see
also Figure 2C). In this case, direction was decoded slightly
later—between 500 and 312.5 ms before onset. Also, as shown in

Figure 2D, for both subjects and arms DA was at random level
during the idle period.

Figure 3 depicts the channels selected at the window with
the highest DA. They represent the brain regions with highest
discriminability power to classify the 4 targets, for the left and
right arms of the two able-bodied subjects. Results from both
subjects displayed an evident fronto-parietal network, especially
when reaching with the right arm. For subject C1, this network
is more prone toward the frontal and bilateral central regions
when reaching with the left (non-dominant) arm. For subject
C2, the ipsilateral central-parietal areas are more discriminant
for decoding reaching directions than the contralateral region for
the non-dominant. The localization of brain areas will be further
analyzed in the Discussion Section.

3.2. PREDICTING MOVEMENT DIRECTIONS: STROKE PATIENTS
We evaluated our SCP-based method to decode movement direc-
tion when stroke patients performed the reaching task, notably
with their paretic arm (see Figure 4). As for able-bodied subjects,

FIGURE 3 | Selection of channels (in red) from CVA yielding the

highest DA for able-bodied subjects C1 and C2 for left and right arm

reaching movements. For both subjects and arms, channels were
selected on the window ending at 62.5 ms before movement onset.

Table 2 | Summary of decoding performances before movement onset for able-bodied subjects.

Subject Arm Highest DA Time of Early detection (ms) Early detection (ms)

ID before onset highest DA (ms) time-specific classifiers selected classifier

C1 Right 0.83 ± 0.05 −62.5 −687.5 −500.0

Left 0.75 ± 0.08 −62.5 −437.5 −375.0

C2 Right 0.68 ± 0.05 −62.5 −812.5 −312.5

Left 0.66 ± 0.08 −62.5 −875.0 −312.5

Time corresponds to the endpoint of the sample window with respect to movement onset (t = 0 ms)
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FIGURE 4 | Decoding of movement direction based on SCPs. Stroke patients P1, P2, and P3 performed the reaching with their paretic arm. (A–D) as in
Figure 2.

we first built time-specific classifiers and then selected the best
one (highest DA before movement onset) to test sensitivity
and specificity. For patient P1, first panel, the channels selected
from SCPs preceding onset were strongly focused at the centro-
parietal regions (Figure 4A), with bilateral activation of motor
areas toward the time of movement execution. DA of time-
specific classifiers (Figure 4B) started to exceed chance level at
1000 ms before onset of movement. The maximum DA was 0.51
at time 250 ms before onset. Using the selected classifier dur-
ing the intention period (Figure 4C), DA crossed chance level
at 1475 ms before onset. However, DA decreased to random
level short after and it exceeded chance level again at 550 ms

and steadily increased until onset of movement. Thereafter, DA
remained above chance till 500 ms after onset. This selected
classifier performed at random level during the idle period
(Figure 4D).

For patient P2, second panel, CVA selected channels located
mainly in the lateral parietal region starting from 500 ms before
onset (Figure 4A). Time-specific classifiers reached a peak DA of
0.45 at time 62.5 ms before movement onset, while DA exceeded
chance level at 1750 ms before onset (Figure 4B). However, when
using the selected classifier, DA crossed chance level at 625 ms
before onset (Figure 4C). This selected classifier also performed
at random level during the idle period (Figure 4D).
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Patient P3, third panel, exhibits similar DA trends to the other
patients, although discriminant features were found mostly on
the central and frontal areas (Figure 4A). Note that P3 had a
frontal and left parietal area lesion. Using time-specific classifiers
DA rose above exceeds chance level at 1062.5 ms before onset,
peaking at 125 ms before onset with a value of 0.46 (Figure 4B).
The selected classifier climbed over chance level at 312.5 ms
before movement onset (Figure 4C), while never above random
performances during the idle period (Figure 4D).

Table 3 summarizes the results of the SCP-based direction
decoding for the stroke patients. The DA values obtained for the
paretic arm were above 0.45 for all subjects. This performance was
reached between 250 ms to 62.5 ms before onset. Once movement
started, DA reached values in between 0.51 and 0.73. Regarding
early detection—i.e., when DA exceeded chance level—, time-
specific classifiers did it earlier than the selected fixed classifiers
(in between −1750 and −1000 ms vs. −625.0 and −312.5 ms,

respectively). As for able-bodied subjects, performance was sig-
nificantly above random level during the intention period and
had a rather low variance, for both time-specific and selected
classifier. Also, DA was at random level during the idle period.
In summary, patients achieved a lower performance than able-
bodied subjects, but early detection happened at similar times.

3.3. DIRECTION-RELATED SPECTRAL AND PHASIC MODULATIONS OF
EEG ACTIVITY

We evaluated direction-specific modulations in several EEG fre-
quency bands, comprising SCPs (0.1–1 Hz), delta (1–4 Hz), theta
(4–8 Hz), alpha (7–13 Hz), beta (13–20 Hz), high beta (20–
30 Hz) and low gamma (30–45 Hz). Figure 5 shows the DAs for
both left and right arm movements of the able-bodied subjects.
The x-axis of each plot corresponds to the endpoint of each
decoding window with respect to the movement onset (time =
0 s) and the y-axis provides the frequency bands. We observed

Table 3 | Summary of decoding performances before movement onset for stroke patients, paretic arm.

Subject Paretic arm Highest DA Time of Early detection (ms) Early detection (ms)

ID before onset highest DA (ms) time-specific classifiers selected classifier

P1 Left 0.51 ± 0.13 −250.0 −1000.0 −1437.5 (−550.0)

P2 Right 0.45 ± 0.04 −62.5 −1750.0 −625.0

P3 Right 0.46 ± 0.08 −125.0 −1062.5 −312.5

Time corresponds to the endpoint of the sample window with respect to movement onset (t = 0 ms)

FIGURE 5 | Comparison of average DAs for different EEG frequency bands for able-bodied subjects who executed left and right hand reach

movements. Both able-bodied subjects (first row: C1, second row: C2) are right-handed. t = 0 corresponds to the movement onset.
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direction-specific modulations in both SCPs and delta band activ-
ity. In all cases, SCPs showed DAs above chance level before
movement onset, although DAs were higher during movement
execution. Moreover, narrow band filtered SCPs [0.1–1] Hz seem
to provide information that may allow earlier decoding of move-
ment directions as compared to the wider band SCPs. We also
observed performances exceeding chance level when signals fil-
tered in the delta band, which has been studied by Waldert et al.
(2008) using signals below 4 Hz.

In the case of the stroke group (see Figure 6), SCPs yield higher
DAs than other frequency ranges. As with the able-bodied sub-
jects, discriminant modulations were observed in SCPs, although

the delta band displayed random performance. The DA for
the stroke group reached DA values above chance before the
able-bodied group during the intention period.

The use of phase-based features has remained unexplored for
decoding movement direction. However, this information has
been used in classifying motor imagery-based BCI (Wang et al.,
2006; Hamner et al., 2011), auditory target selection (Ng et al.,
2013) and decoding continuous movement trajectories (Hammer
et al., 2013). We used the instantaneous phase computed using
Hilbert transform to explore the decoding power of these features.
Figure 7 shows that the DA of phase-based decoding exceeds
chance level approximately 250 ms before movement onset for

FIGURE 6 | Comparison of average DAs for different EEG frequency bands for stroke patients who executed reach movements with their paretic arm,

(A) P1, (B) P2, and (C) P3.

FIGURE 7 | The use of instantaneous phase features across frequency bands for able-bodied subjects (first row: C1, second row: C2).
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both able-bodied subjects. However, the maximal DA values were
lower than when using SCP amplitudes. Analysis from stroke
patients showed random decoding performances. Despite this
less promising results, the use of phase information can be fur-
ther explored by studying amplitudes and frequency coupling,
as well as entrainment. Indeed, high gamma amplitudes coupled
with the phase of low-frequency alpha and theta during waiting
(pre-movement) periods in a cued grasping task have been previ-
ously used to predict movement types (Yanagisawa et al., 2012).
Similarly, Miller et al. (2012) found increased beta-phase entrain-
ment from ECoG signals recorded during the no movement
periods in finger flexion.

4. DISCUSSION
This preliminary study demonstrates the feasibility of decoding
directions of self-pace arm reaching before movement execution
from EEG slow cortical potentials. This is also the first time that
such a possibility is shown in stroke patients.

Results show good sensitivity (decoding accuracy, DA, signif-
icantly above chance level during intention period) and good
specificity (DA at chance level during idle period), which are key
requirements for its potential use in real-time rehabilitation inter-
ventions. This level of specificity indicates that decoding is due
to direction-related features from SCPs appearing before onset
and not generated by the visual cue. Although promising, the
results achieved with stroke patients must be replicated with a
larger population. Based on the comparison of different EEG fre-
quency bands (i.e., SCP, delta, theta, alpha, beta, and gamma), we
have observed that movement directions can be decoded signifi-
cantly above chance level using signals filtered at low frequencies
(<4 Hz), with SCP yielding the best performance in terms of
accuracy and early detection. We have used a systematic approach
(previously tested for detecting onset of self-paced movements
from invasive and non-invasive recordings) to select discrimi-
nant features for decoding reaching movements to four directions
at different times before movement onset. The outcome of this
feature selection process is used to identify the relevant neural
signatures associated to the intention to reach targets at differ-
ent directions. Consistently with existing literature, we observed
a frontal-parietal pattern of activity in the able-bodied group, and
a more parietal pattern for the stroke group.

4.1. ON THE ROLE OF FRONTO-PARIETAL NETWORKS IN THE
PREPARATION OF REACHING MOVEMENTS

For both able-bodied subjects, the time-resolved channel selec-
tion (Figure 2A) presented a change from an initial bilateral
pattern to a dominant ipsilateral activation between 500 and
250 ms prior to movement onset, coinciding with the increase
in decoding performance. Activation of the ipsilateral primary
motor area seems to be required for the execution of challenging
unimanual motor tasks in normal subjects (Roland et al., 1980;
Kim et al., 1993; Kobayashi et al., 2003). The selected classifiers
contain such ipsilateral primary motor features (Figure 3).

More prominently, our results showed that in the period pre-
ceding the movement onset, there is a discriminative pattern
involving frontal and/or parietal areas for both able-bodied sub-
jects and stroke patients. Our findings are in agreement with a

number of studies, with both humans and non-human primates,
where the fronto-parietal brain region seems to play a critical role
in planning a reach movement. In a center-out task, Musallam
et al. (2004) and Quian Quiroga et al. (2006) studied neural sig-
nals related to the goals (direction) of movement from electrodes
implanted in the parietal reach region (PRR) of monkeys. Using
the memory period activity in a cued paradigm (reflecting mon-
keys’ intent before the “go” signal) from eight PRR neurons, four
targets were correctly decoded with 64.4% accuracy.

With respect to human studies, ventral areas of the pre-
frontal cortex seem to encode spatial information. Intracranial
EEG recordings during a memory task allowed decoding left
vs. right target in single-trial movements using either temporal
evoked activity or spectral activity with performance between 70
and 80% (Rizzuto et al., 2005). On the other hand, neuroimag-
ing studies showed activation in the PRR, potentially encoding
information related to the subject’s intention to make a move-
ment toward a particular spatial location (Connolly et al., 2003).
Furthermore, using fMRI, Naranjo et al. (2007) showed an evo-
lution of the cortex activation during movement preparation
starting from frontal and parietal areas, slowly becoming more
focused on the frontal cortex 500ms before movement. Gallivan
et al. (2011) decoded grasping top or bottom direction (2-class
task) from BOLD signal with accuracy of 55%, which suggested
brain activation of the parietal and frontal regions during plan-
ning. Most of these studies employed a cue-based paradigm. A
similar self-paced study with human ECoG signals has shown
a steep rise in decoding accuracy starting from 200 ms before
movement onset, peaking at 500 ms post movement (67%), based
on spectral amplitude modulations in low frequencies and high
gamma band from M1 and pre-motor cortex (Ball et al., 2009).
An EEG study on visuomotor adaptation during self-initiated
center-out hand movements have shown the involvement the
fronto-parietal regions in healthy subjects (Contreras-Vidal and
Kerick, 2004). In apparent contrast with our observations, based
on the findings from Nenadic et al. (2007) with human intracra-
nial EEG from supplementary motor and parietal areas, the signal
in the period 500 ms after the appearance of the target stimulus
can be decoded with accuracies of 20% higher than the period
before onset in a cue-based protocol.

4.2. PERFORMANCE COMPARISON WITH PREVIOUS EEG STUDIES IN
DECODING MOVEMENT DIRECTION

To the best of our knowledge, all previous works aiming at
decoding movement directions from non-invasive brain signals
(EEG mainly) utilized cue-based protocols. Also, these studies
were performed with able-bodied subjects (c.f., Table 4). Column
Type refers to when decoding was attempted, either before onset
(Intention) and/or during movement (Execution).

In relation to the brain region involved in the execution
of reaching movements, Waldert et al. (2008) showed that the
motor-related areas are responsible for the execution of reaching
from magnetoencephalography (MEG). The other works listed in
Table 4 emphasize that decoding of movement direction before
onset is correlated to activity in the frontal and parietal areas.
Reaching direction planning was decoded using the first 500 ms
right after the visual stimulus presentation with performances

www.frontiersin.org August 2014 | Volume 8 | Article 222 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Neuroprosthetics/archive


Lew et al. Predicting self-paced reaching directions

between 57 and 59% for 4 directions and 80.25% (Hammon
et al., 2008) for 2 directions (Wang and Makeig, 2009). Recently,
Robinson et al. (2013) reported maximum decoding accuracy of
80% for 4 directions using features extracted from low frequency
components of EEG taken from the entire [-1 1]s windows with
respect to onset (i.e., including the signal during movement exe-
cution). As in our case, they also pointed out to the contribution
of SCPs (in particular, motor-related potentials or MRPs)—
already known to capture preparation-related modulations—for
such decoding.

4.3. ROLE OF SCPs IN UNDERSTANDING SPATIAL INTENTION
Our results showed that narrow-band SCPs contain informa-
tion that may allow earlier decoding of movement directions
as compared to broad-band SCPs. Such a level of decoding
requires proper pre-processing techniques (Garipelli et al., 2013)
to enhance the SNR of SCPs through the use of spectral and
spatial filters. This finding is consistent with previous works on
detection of movement intention (Lew et al., 2012a) and move-
ment execution (Niazi et al., 2012; Robinson et al., 2013; Xu
et al., 2014), which showed the advantage of low frequency EEG
components.

Surface EEG consists of electrical activity generated by differ-
ent sources in the active intracranial tissue and negative SCPs
reflect the unspecific thalamo-cortical activation of a cortical
area (Birbaumer, 1999). The first use of SCPs in BCI was through
self-regulation of cortical excitability by a completely paralyzed
patient (Kuebler et al., 1998). In recent years, a growing number
of studies utilized slow potentials, also known as low frequency
component (LFC) of measured neuronal population signals, such
as for decoding movement trajectories (Bradberry et al., 2010)
and for detecting movement intention (Niazi et al., 2011; Xu et al.,
2014). LFCs have also been used in invasive studies exploiting
LFPs (Rickert et al., 2005) and ECoG for decoding movement
parameters (Milekovic et al., 2012; Hammer et al., 2013). As
thalamic activation can be regarded as the allocation of atten-
tional or processing resources toward a specific cortical region,
this view has instigated the use of SCPs for studying retention
of working memory under the viewpoint of attention (Bosch
et al., 2001). The authors reported that retention of spatial loca-
tions in working memory was associated with a combination
of slow waves over frontal and parietal-occipital sites. Within
the framework of our experimental protocol, it seems likely that
there were a form of memory retention after the initiation of
the visual cue, in the form of spatial memory. A debatable ques-
tion that follows is the role of working memory in our task and
how to better elicit internally-driven intention to prevent the

confound of decoding memory retention of the spatial location.
This can be accomplished by modifying the experimental design
to a self-initiated target selection in order to exclude any form
of memory retention. On the other hand, we could explore the
feasibility to decode spatial memory retention from EEG signals.

A potential limitation of SCPs for real-time implementation
is the significant group delays introduced by filtering, which
may be a problem for applications requiring prompt response.
Xu et al. (2014) has successfully shown their use in a closed-
loop online implementation with true positive rate of 79% at a
latency of 315 ms. Further studies could be done to assess this
speed-accuracy trade-off for real-time implementation.

4.4. COMPARING DETECTION OF MOVEMENT INTENTION AND
PREDICTION OF MOVEMENT DIRECTION

Table 5 compares the early detection times (when DA exceeds
chance level with performance evaluated using the best clas-
sifier) of both the intention to initiate the self-paced move-
ment (Lew et al., 2012a) and the predicted direction. Which
component should be detected earlier remains an open ques-
tion. For all subjects but C1, movement intention was detected
earlier than direction. For subject C1, however, detection only
differs by 25 ms. Subject P1 deserves an additional comment.
Although early detection of direction appeared at −1437.5 ms,
decoding was not stable and rapidly decreased to random level.
Only at −550 ms direction decoding remained above chance level
until movement onset. It seems then that discriminant infor-
mation about movement onset shortly precedes direction-related
information.

As a future direction, we will explore the the use both
decoders, either in parallel or sequentially, to enhance the reli-
ability of upper-limb neuroprostheses. Fusion of both kind of

Table 5 | Comparison between detection of movement intention and

prediction of movement direction.

Subject Hand Time above chance level (ms)

Movement intention Direction prediction

detection

C1 Right −475.0 −500.0

C2 Right −450.0 −312.5

P1 Left −600.0 −550.0

P2 Right −725.0 −625.0

P3 Right −500.0 −312.5

Table 4 | Non-invasive methods used for decoding movement directions.

References Type Directions Features Frequency band Areas Performance

Waldert et al., 2008 Execution 4 PSD, time-domain <3 Hz MRP Motor MEG: 67.0%, EEG: 55.0%

Hammon et al., 2008 Both 3–4 Time, PSD, wavelet, ICA High Gamma Frontal EEG: 57.0–59.0%

Wang and Makeig, 2009 Intention 2 ICA <30 Hz PPC EEG: 80.25%

Robinson et al., 2013 Both 4 LFC ≤6 Hz Midline
parietal, motor

EEG: 80.0%
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Table 6 | Time to complete reaching movements and onset time

(interval between target cue presentation to start of movement).

Subject Movement time (ms) Onset time (ms)

C1 578.09 ± 151.96 3180.53 ± 1439.37

C2 660.40 ± 156.99 2880.47 ± 941.35

P1 3182.64 ± 1129.40 5062.50 ± 3427.20

P2 2333.98 ± 368.24 2728.32 ± 679.00

P3 1169.62 ± 403.50 2810.21 ± 1233.11

Able-bodied subjects: dominant arm; stroke patients: paretic arm.

decoders can be also applied during online operation of the
neuroprosthesis so as to achieve continuous control. Another
extension is to incorporate eye movements tracking into the tra-
jectory model for decoding directional reaches (Corbett et al.,
2012).

4.5. STROKE PATIENTS AND ABLE-BODIED SUBJECTS
Our results show differences in decoding performance between
able-bodied subjects and stroke patients. A reason that could
explain this difference is the time required to complete the reach-
ing movement (see Table 6). Able-bodied subjects completed the
reaching movement in less than 700 ms, while stroke patients
took more than 1000 ms when using their affected limb. These
differences were statistically significant (p < 0.001, two-tailed
Student’s t-test). These behavioral differences are in line with
other studies comparing motor deficits after stroke (Cirstea and
Levin, 2000). Despite marked differences in execution times, fur-
ther analysis showed that trajectories were similarly smooth for
able-bodied subjects and stroke patients.

Besides the difference in reaching speed, the age difference
between the able-bodied and patient groups could also potentially
be a reason for lower decoding performance of approximately
30% by the stroke patients. The issue on age-related differences
in BCI performance has been investigated in some studies (Vesco
et al., 1993; Friedman et al., 1997; Allison et al., 2010), which
reported differences in amplitudes, latencies and scalp topogra-
phy. Therefore, a fair comparison between able-bodied subjects
and stroke patients is only possible using age-matched groups in
order to avoid potential confounds. In addition, there are plenty
of references to EEG abnormalities caused by cerebrovascular dis-
ease (CVD) (Niedermeyer, 1982; Pfurtscheller et al., 1984). These
differences are caused by the location, size of damage and time
elapsed between stroke and EEG recording, thus resulting in dis-
tinct motor-related potentials as compared to able-bodied people
(Colebatch, 2007).

Robot-assisted therapy for stroke patients with moderate-to-
severe upper-limb deficits has shown promising results in terms
of improving motor functional recovery compared to traditional
therapy (Kwakkel et al., 2008). Ang et al. (2014) have shown
that motor gains obtained with BCI-based therapy were com-
parable to those attained with intensive robotic therapy. The
method proposed in this paper can be further verified in an online
implementation to control a robotic arm and, later, in combina-
tion with rehabilitation robotics (Krebs et al., 2003) for motor

recovery of spinal cord injury and stroke patients1. For this pur-
pose, it is important to assess the stability of brain patterns across
days (i.e., to determine how MRPs change during the process
of functional recovery). Furthermore, in a realistic scenario, it
is also important to study the effect of feedback generated by
the robot-assisted passive movement on the stability of the brain
patterns.
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