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Whole brain functional connectomes hold promise for understanding human brain activity
across a range of cognitive, developmental and pathological states. So called resting-state
(rs) functional MRI studies have contributed to the brain being considered at a macroscopic
scale as a set of interacting regions. Interactions are defined as correlation-based
signal measurements driven by blood oxygenation level dependent (BOLD) contrast.
Understanding the neurophysiological basis of these measurements is important in
conveying useful information about brain function. Local coupling between BOLD fMRI
and neurophysiological measurements is relatively well defined, with evidence that
gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes
during cognitive processing. However, it is less clear how whole-brain network interactions
relate during rest where lower frequency signals have been suggested to play a key
role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics
with high spatio-temporal resolution. We utilize these measurements to compare the
connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this
multi-modal information requires the development of an appropriate statistical framework.
We relate the covariance matrices of the Hilbert envelope of the source localized
EEG signal across bands to the covariance matrices derived from rs-fMRI with the
means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA).
Subsequently, we identify the most prominent connections that contribute to this
relationship. We compare whole-brain functional connectomes based on their geodesic
distance to reliably estimate the performance of the prediction. The performance of
predicting fMRI from EEG connectomes is considerably better than predicting EEG from
fMRI across all bands, whereas the connectomes derived in low frequency EEG bands
resemble best rs-fMRI connectivity.
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band limited power

1. INTRODUCTION
Large scale networks with correlated time courses have been
consistently identified in the resting brain with functional
Magnetic Resonance Imaging (fMRI) (Beckmann and Smith,
2004; Varoquaux et al., 2010b), and electroencephalography
(EEG) (Tagliazucchi et al., 2012) and magnetoencephalography
(MEG) (Brookes et al., 2011a,b). Spontaneous neural fluctua-
tions exhibit consistent correlation structures over a wide range
of spatial and temporal scales and they constitute a prominent
energy-consuming feature of the brain (Schölvinck et al., 2013;
Smith et al., 2013). Several studies highlight their significance in
modulating brain function and task efficiency (Bonnelle et al.,
2012). Furthermore, abnormalities of resting-state (rs) connec-
tivity have been also implicated in several neurological diseases,
including epilepsy, schizophrenia, attention deficit hyperactivity
disorder, Alzheimers disease, stroke and traumatic brain injury
(Zhang and Raichle, 2010).

Multi-modal approaches and in particular combined elec-
trophysiological measures with fMRI offer the opportunity to

observe neurophysiological events in high temporal and spatial
resolution. fMRI data are acquired as series of volumetric images,
typically obtained every few seconds, that represent blood oxy-
gen level-dependent (BOLD) contrast. This mechanism is related
to the delivery of blood to active neuronal tissue and hence it
allows indirect inference on brain function. This places a limit on
the temporal resolution of neuronal fluctuations observed with
rs-fMRI and complicates the interpretation of the estimated con-
nectivity. On the other hand, in EEG, multiple electrodes are
placed on the scalp to measure spontaneous electrical activity.
Although temporal resolution of EEG is on the scale of mil-
liseconds, the localization of the signal involves sophisticated
algorithms and a priori models for both the source and the vol-
ume conductor and yet it only achieves accuracy in the range of
1–2 cm (Kaiboriboon et al., 2012).

To fully exploit the advantages of combining multi-modal
information, we need to understand the relationship between the
underlying modalities as well as and their neurophysiological ori-
gins (Laufs et al., 2008). Pioneering intracranial recordings have
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established a link between the local BOLD signal and the under-
ling neuronal activity (Logothetis et al., 2001; Logothetis, 2003;
Mukamel et al., 2005; Magri et al., 2012; Chang et al., 2013).
However, these studies do not capture the cooperative processes
underpinning brain function that involves whole brain organi-
zation. Furthermore, they are invasive and their application is
limited in animals and in specific patient cohorts with neurologi-
cal abnormalities. We are interested in examining the relationship
of brain connectomes derived from simultaneous recordings of
fMRI and EEG in rest.

Specific EEG features from the scalp, such as occipital alpha
and beta bands have been related to RSN observed with fMRI
(Laufs et al., 2003; Moosmann et al., 2003). These studies have
revealed networks with a large degree of commonality with rest-
ing state networks such as the default mode and attentional
networks. Investigating neuronal activity in different frequency
bands has attracted considerable attention because it is hypothe-
sized to subserve different roles and originate from anatomically
separated but functionally related brain regions. For instance,
band-limited gamma effects have been linked to enhanced neu-
ral communication, while alpha oscillations have been related
to functional inhibition (Scheeringa et al., 2011). These stud-
ies along with studies of seed-based analysis (de Pasquale et al.,
2010; Brookes et al., 2011a) provided insight on the relationship
of BOLD fMRI and EEG within specific networks. One major
limitation of methodologies based on the topographic electro-
physiological signatures of RSN is that the agreement between
RSN observed with fMRI and EEG relies on the spatial relation-
ship of the extracted networks (Razavi et al., 2013). This process
depends on thresholding and it does not provide information
about the intra-cerebral location of the EEG signal nor about the
relationship between specific RSN connections and EEG rhythms
(Jann et al., 2010).

Recently, Brookes et al. derived resting state networks in a
range of band-limited power (BLP) frequency ranges using MEG
and investigated their relationship with the rs-fMRI (Brookes
et al., 2011a,b). They used a beamforming source localization
to map the MEG signal from sensor space to source/voxel
space. Source localization provides spatial information that allows
one to draw direct regions’ correspondence across subjects.
Subsequently, temporal independent component analysis (ICA)
of the Hilbert envelope of the MEG signal highlighted brain net-
works that closely resemble known rs-fMRI networks (Brookes
et al., 2011b). This confirmed further the neurophysiological ori-
gin of the resting-state networks that emerge in fMRI data (Smith
et al., 2009).

However, these comparisons were based on the spatial agree-
ment between the temporal ICA components estimated across
MEG frequency bands and the spatial ICA components derived
from the analysis of rs-fMRI data (Brookes et al., 2011b). This
approach is limited in that it uses non-simultaneous acquisition
of MEG and fMRI data without any guarantee that differences
in these environments (e.g., motion, auditory input) would not
affect the outcome. Furthermore, temporal and spatial ICA can
have diverging results, depending upon the spatiotemporal char-
acteristics of the underlying sources. Whereas spatial agreement
between the two maps is reassuring, further information about

how the covariance structure between EEG and fMRI signals dif-
fer is needed to fully understand their relationship. In particular
knowledge of the key connections that contribute to the predic-
tion of one connectome from the other may give insight into the
parts of the network that are frequency specific and common to
each modality.

We develop a statistical framework to learn the relation-
ship between connectomes derived from rs-fMRI and the BLP
spectrums of simultaneous source-localized EEG recordings. To
achieve this we relate the covariance structure of the Hilbert
envelope of the source localized electrophysiological signal to the
covariance matrices derived from rs-fMRI. A key methodological
principle of this work is that the covariance structure of both the
Hilbert envelopes of the EEG signal and the fMRI signal lie on
a hypercone of symmetric positive matrices (SPD). In this man-
ifold, the geodesic distance between covariance matrices can be
estimated precisely. This provides a principled way of comparing
multimodal weighted whole-brain networks/graphs within and
across subjects.

Statistical inference has been shown to be a useful tool in
examining the relationship between brain connectivity variables
because it establishes a link between different modalities and it
allows the generalization of the results from a sample set to the
general population (Deligianni et al., 2010, 2011b, 2013). We
use statistical inference based on sparse Canonical Correlation
Analysis (sCCA) (Witten et al., 2009a; Witten and Tibshirani,
2009b) to link EEG and fMRI rs connectomes. Subsequently, sub-
ject specific EEG connectomes can be predicted from previously
unseen fMRI connectomes and vice-versa. The predicted and
measured functional connectomes are compared based on their
geodesic distance and a prediction error is estimated based on
leave-one-out cross validation. This allows us to statistically assess
the information context of fMRI and EEG brain connectomes
across bands.

This approach provides a rigorous multivariate statistical
framework to quantify the importance of each connection in
maximizing the relationship between EEG and fMRI connectivity.
To this end, we extend the sCCA framework with the princi-
ple of randomized Lasso (Meinshausen and Buhlmann, 2010)
to identify the most prominent connections that contribute to
this relationship. This assigns a probability to each connection
to be selected, and it offers a principled way to control for false
positives. The sCCA loadings provide a data-driven weighting
that minimizes the influence of noisy and unrelated connections,
which do not contribute to the relationship between EEG and
fMRI. This also provides a quantitative assessment of the overall
accuracy of source localization in deep-gray matter regions.

2. MATERIALS AND METHODS
2.1. IMAGING
Simultaneous resting-state EEG-fMRI was acquired from 17 adult
volunteers (11 males, 6 females, mean age: 32.84± 8.13 years).
The subjects had their eyes open and were asked to remain
awake and fixate on a white cross presented on a black back-
ground. Subjects were asked to remain still and their head
was immobilized using a vacuum cushion during scanning.
Scalp EEG was recorded during the MRI scanning using a 64
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channel MR-compatible electrode cap (BrainCap MR, Gilching,
Germany) at native frequency of 1000 Hz. The electrodes were
arranged according to the modified combinatorial nomenclature,
referenced to FCz electrode. The electrocardiogram (ECG) was
recorded, and EEG and MR scanner clocks were synchronized.
Imaging data was acquired in a Siemens Avanto 1.5 T clinical
scanner using a self-shielded gradient set with maximum gra-
dient amplitude of 40 mTm−1 and standard 12 channel head
receiver coil. Resting-state fMRI data were acquired based on
a T2∗-weighted gradient-echo EPI sequence with 300 volumes,
TR/TE =2160/30 ms, 30 slices with thickness 3.0 mm (1 mm
gap), effective voxel size 3.3 × 3.3 × 4.0 mm, flip angle 75◦,
FOV 210 × 210 × 120 mm. A T1-weighted structural image was
also obtained. Ethical approval has been obtained from the UCL
Research Ethics Committee (project ID:4290/001) and informed
consent has been obtained from all subjects.

2.2. PREPROCESSING
T1-weighted images were processed with Freesurfer to obtain
gray matter (GM) 68 cortical regions and 14 subcortical regions
(Desikan et al., 2006) (Table S1). Comparisons between two net-
works are easier to interpret when both are derived from the same
set of nodes. Atlas-based parcellation allowed us to define cor-
responding nodes in both fMRI and the source-localized EEG
signal. We propagate the anatomical labels from T1 space to native
fMRI space using affine registration (Modat et al., 2010) to avoid
erroneous warping of the image due to the drop out of gradi-
ent echo EPI images that result from local magnetic susceptibility
effects. Anatomical labels are also propagated to MNI space, for
the analysis of EEG, using non-rigid registration (Modat et al.,
2010).

The first five volumes of rs-fMRI data are removed to avoid T1
effects and preprocessing of the functional data involves motion
correction, high pass filtering (0.01 Hz) and spatial smoothing
(5 mm) with FSL (Smith et al., 2004). To construct correspond-
ing functional networks the fMRI signal is averaged across voxels
within each GM ROI derived from the parcellation. The signal in
WM and cerebrospinal fluid (CSF) is also averaged and along with
the six motion parameters provided from FSL is linearly regressed
out from the averaged time-series within each GM ROI.

EEG was corrected offline for scanner (Allen et al., 2000)
and cardiac pulse related artifacts (Allen et al., 1998) using
Brain Vision Analyzer 2 (Brain Products, Gilching, Germany).
Subsequently, it was down-sampled to 250 Hz and exported to a
standard binary format, which is supported by SPM12b (www.fil.
ion.ucl.ak.uk) (Friston, 2007). The pre-processed EEG signal was
also visually reviewed and noisy channels due to low impedances
(≤100 kOhm) were excluded from the main analysis.

2.3. ANALYSES OF THE EEG SIGNAL
Further analysis of the EEG signal is carried out with SPM12b.
This involves the following steps also shown in Figure 1:

• Bandpass filtering: The signal is filtered into five bands: δ

(1–4 Hz), θ (4–8 Hz), α (8–13 Hz), β (13–30 Hz), and γ

(30–70 Hz). Phase delays are minimized by using zero-phase
forward and reverse second order butterworth filter. Note
that band-pass filtering is performed prior to source localiza-
tion. Spatial resolution in beamforming is data dependent and
thus it exhibits frequency dependent and time-variant magni-
tude characteristics (Barnes and Hillebrand, 2003). Traditional

FIGURE 1 | Main steps toward deriving functional brain networks from the preprocessed EEG signal.
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beamforming methods focus on narrow band signals because
they approximate frequency independent of spatial selectivity.
• Segmentation into epochs: The signal is segmented into (fMRI)

TR epochs (2.16 s).
• Definition of a head model: The standard template head model

in SPM is used and the electrode positions are spatially trans-
formed to match the template head. This provide reasonable
co-registration of the original sensor positions to the MNI
coordinate system of the template structural MRI image, even
if individual subjects heads are considerably different from the
template.
• Definition of forward model: The three-shell boundary ele-

ment method (BEM) model is used for forward modeling and
the lead fields are estimated using the Sarvas formulas for each
point on the canonical cortical mesh.
• Source localization: EEG data is projected into source space

using beamforming as implemented in SPM12b (Brookes et al.,
2011a, 2012). Source localization allows spatial correspondence
across subjects and modalities. It has also the potential to
remove signal artifacts, which cannot be explained by the scalar
beamformer. For each GM cortical region, the EEG signal is
projected from sensor space to points randomly drawn from
the region, independently for each subject. The region’s center
is always included whereas the number of points is propor-
tional to region’s volume. In Figure 1, the red dots on the
3D head model indicate the true density of random points
drawn in cerebral cortex, which is around 0.7 points/cm3.
These points have been picked randomly for each subject. Note
that this approach of projecting the encephalography signal
to specific brain locations has been used before to estimate
thalamo-cortical coupling in MEG (Roux et al., 2013).
• Estimation of Hilbert envelope: We use two approaches to esti-

mate the EEG time series and we produce results independently
for each case: (a) We estimate the Hilbert transform across
the whole down-sampled time series (WTS). Therefore, con-
nectivity matrices are estimated based on the down-sampled
time resolution of the EEG signal. (b) The EEG time-series are
estimated as the average of the absolute value of the Hilbert
transform within each epoch (AWE). This results in EEG
time-series with corresponding time samples to the fMRI time-
series. This approach provided the best agreement with the
fMRI signal in Brookes et al. (2011a).
• Region average: Finally, within each region the Hilbert-

transformed, source localized signal is averaged across the
randomly distributed voxels to produce an EEG time-series per
region. Note that similarly to the fMRI preprocessing, the first
five epochs are not included in the average.

2.4. ESTIMATION OF FUNCTIONAL BRAIN CONNECTOMES
Once both EEG and fMRI average time-series have been esti-
mated for each cortical region, we seek to derive the covariance
structure of these signals. This assumes that the brain activity
patterns are described by a Gaussian multidimensional station-
ary process. In this case, the covariance matrix characterizes
fully the statistical dependencies among the underlying signals
(Sporns et al., 2000). We use the inverse covariance, normalized to
unit diagonal to characterize functional connectivity. The inverse

covariance, also called the precision matrix, is directly related
to partial correlation, which provides a measure of connectivity
strength between two regions once the influence of the others
has been regressed out. The correlation coefficient cannot dis-
tinguish between a direct signal transfer from node A–C from a
signal transfer through other nodes, as for example from A to B
to C. Partial correlation is the simplest approach in estimating
direct connections. Furthermore, it offers a reasonable approxi-
mation of network structure for a scale of networks of up to few
hundred of nodes, which is what is used in practice. This simpli-
fies the problem of associating EEG with fMRI brain connectivity.
Hence, there is no need to consider indirect signal transfer from
one region to another via others (Deligianni et al., 2011a). To pro-
duce a well-conditioned, symmetric positive definite, (Sym+p ),
sample covariance matrix we use the shrinkage estimator (Krämer
et al., 2009):

�̂λ = λT̂+ (1− λ)�̂ (1)

where the sample covariance matrix �̂λ is estimated as a convex
linear combination of the unrestricted sample covariance matrix
�̂ and the estimator T̂, which is the identity matrix I. In this
case, the optimal regularization parameter λ ∈ [0, 1] is deter-
mined analytically based on the Ledoit-Wolf theorem (Ledoit and
Wolf, 2004). This approach provides a systematic way to regular-
ize the sample covariance matrix and it has been shown to greatly
enhance inference of gene association networks (Schäfer and
Strimmer, 2005), where the number of variables n is much greater
than the number of observations p. This approach allows one to
estimate a well-conditioned covariance structure even when the
number of connections grow quadratically with the number of
ROIs without any prior information.

2.5. PREDICTIVE MODEL BASED ON SPARSE CANONICAL
CORRELATION ANALYSIS (SCCA)

Canonical correlation analysis (CCA) is generally applied when
one set of predictor variables X is to be related to another set
of predicted variables Y and observations are available for both
groups. Note that CCA is designed to deal with situations where
the underlying variables are not statistically independent and,
hence, they are inherently inter-correlated. The ultimate goal of
CCA is to find two basis vectors (canonical vectors) u, v, one for
each variable, so that the projections of X, Y onto these vectors,
respectively are maximally linearly correlated.

In CCA all variables from both sets are included in the fit-
ted canonical vectors. However, for the purpose of studying
brain connectivity, we are interested in sparse sets of associ-
ated variables that would result in simultaneous multivariate
dimensionality reduction and selection of the most relevant con-
nections. Furthermore, it allows the emergence of interpretable
links between EEG and fMRI connectivity data. Hence, we adapt
sparse canonical correlation analysis (sCCA) to optimize the CCA
criterion, subject to certain constrains (Witten and Tibshirani,
2009b):

maximizeu,vuT XT Yv
subject to :‖u‖2 ≤ 1, ‖v‖2 ≤ 1, ‖u‖1 ≤ c1, ‖v‖1 ≤ c2

(2)
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‖u‖1 ≤ c1 and ‖v‖1 ≤ c2 represent the L1 (or lasso) penalty and
they result in sparse canonical vectors u, v when the sparsity
parameters c1 and c2, respectively, are chosen appropriately. Note
that with u fixed, the criterion in Equation 2 is convex in v , and
with v fixed, it is convex in u . Therefore, the objective function
of this biconvex criterion increases in each step of an iterative
algorithm (Witten and Tibshirani, 2009b):

u← argmaxuuT XT Yv subject to : ‖u‖2 ≤ 1, ‖u‖1 ≤ c1

v← argmaxvuT XT Yv subject to : ‖v‖2 ≤ 1, ‖v‖1 ≤ c2
(3)

Here, we are interested in quantifying how well functional con-
nectivity measured with EEG in different bands can predict fMRI
brain connectivity and vice-versa. We use leave-one-out cross val-
idation and thus for each subject s = 1, . . . , S, the sCCA model is
trained based on the remaining S− 1 datasets. The number of
components is estimated as the minimum of the ranks of the pre-
dictor and predicted variables in CCA. The penalty values c1, c2

are optimized in each cross-validation loop using an approach
that permutes the rows of both the predictor and predicted vari-
ables of the sCCA (Witten and Tibshirani, 2009b). Optimization
takes place with exhaustive search on a grid of values.

Subsequently, a subject-specific rs-fMRI connectome Ys is
predicted from its previously unseen EEG connectome Xs

according to:

Ŷs = (uXs)+Dv+ (4)

Vice-versa a subject-specific EEG Xs conenctome can be pre-
dicted from its rs-fMRI connectome Ys based on the same sCCA
solution of u and v vectors:

X̂s =
(

(Ysv)�
)+

Du+ (5)

D is a diagonal matrix with the canonical correlation scores
and + denotes the pseudoinverse. The sCCA optimization prob-
lem being solved is symmetric in the two variables. However,
the algorithm finds a local optimum, by first updating one, then
updating the other criterion. Therefore, depending on the order
of updates, the local optimum obtained might be different. We
found that there was no practical difference when we reverse the
optimization approach.

Here, both X and Y are matrices with rows the vectorized
upper or lower triangular part of the precision matrices across
subjects. The diagonal elements of the normalized precision
matrix are excluded since they are always ones. CCA applies to
these elements without any further restrictions and hence there
is no explicit guarantee the predicted precision matrix would
be SPD.

2.6. A METRIC TO COMPARE COVARIANCE MATRICES
We are interested in estimating the similarity between predicted
and estimated connectivity matrices based on a distance metric
that quantifies differences in the space of covariance matrices.
Precision and covariance matrices lie in the space of symmetric
definite positive matrices F = Sym+p . The standard Euclidean
distance on matrices, the Frobenius norm, does not account for

the geometry of this space. Thus, this norm is ill-suited to quan-
tify prediction errors. However, Sym+p can be parameterized as
a Riemannian manifold using an intrinsic metric (Förstner and
Moonen, 1999; Arsigny et al., 2006):

dAI(P, G)2 = tr
(
log G−

1
2 PG−

1
2
)2

(6)

This metric has been used successfully to build statistical frame-
works of precision matrices Sym+p (Deligianni et al., 2011b).
dAI is a distance metric, invariant to affine transformations and
inversion, appropriate to quantify the distance between covari-
ance matrices from biological data successfully (Mitteroecker and
Bookstein, 2009).

The dAI measure is applied in a leave-one-out cross-validation
loop outside the sCCA algorithm to reliably estimate the out-of-
sample modeling error. We have shown before that the dAI metric
is suitable in quantifying the loss in a structured-output multi-
variate regression predictive framework, because it accounts for
the geometry of the output space, and it demonstrates evidence
of statistical consistency (Deligianni et al., 2013). Since CCA is
closely related to multivariate multiple regression analysis (Lutz
and Eckert, 1994), we argue that dAI is appropriate to compare the
prediction performance of different functional models of brain
connectivity.

2.7. IDENTIFICATION OF RELEVANT CONNECTIONS
It is of great interest to identify which rs-fMRI connections
are mostly related to functional connections derived in each
EEG band. Toward this objective we concatenate the connections
across all EEG bands to one variable X̆, whereas the rs-fMRI
connectivity variable remains the same Y. We are interested in
applying the same biconvex criterion described in Equation 3 to
solve the sCCA problem that aims to find the parameters that
maximize the linear relationship between X̆ and Y, Equation 2.
The concatenation of the connections across all EEG bands is
advantageous because it does not require the choice of a spar-
sity parameter for each band independently, which would hinder
meaningful comparisons across bands.

Subsequently, we modify the biconvex criterion in sCCA,
Equation 3, based on the randomized Lasso principle
(Meinshausen and Buhlmann, 2010). Therefore, Equation 3
takes the following form:

u← argmaxu(wx · u)T X̆T Yv subject to :
‖u‖2 ≤ 1, ‖u‖1 ≤ c1, wx ∈ {1, 0.5}

v← argmaxvuT X̆T Y(v · wy) subject to :
‖v‖2 ≤ 1, ‖v‖1 ≤ c2, wy ∈ {1, 0.5}

(7)

wx and wx are the coefficients weights chosen randomly equal
to 0.5 or 1, as recommended by Meinshausen and Buhlmann
(2010); Deligianni et al. (2013). The randomized sCCA criterion
in Equation 7 is optimized several times, which is effectively a
strategy of resampling the connectivity data. Note that c1 and c2

was chosen initially based on a permutation strategy and they
remain the same through out the randomized Lasso iterations.
The probability of selecting a connection is then given by the
number of times the coefficient is selected over the number of
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repetitions. This provides a principled control on thresholding
false positives and it is a significant improvement over the stan-
dard Lasso penalization, which does not provide any information
on the statistical significance of the selected features. Another
important benefit of the randomized Lasso is that it decreases the
dependence of the selected coefficients on the initial choice of the
sparsity parameter, c1 and c2.

3. RESULTS
We present results based on brain connectomes derived from the
whole time series of EEG (WTS) as well as corresponding results
derived based on brain connectomes estimated from averaging
the Hilbert transformed EEG signal within each epoch (AWE).

In Figure 2 we show the average functional connectivity matri-
ces across subjects in fMRI and EEG δ, θ , α, β, and γ bands,
respectively. In both fMRI and EEG, the precision matrices have
been estimated based on time-series across the whole experiment
(WTS). Matrices are symmetric, since they reflect correlation and
this implies that there is no directionality information. Each of
the connectivity matrices has been estimated by averaging (mean)
each connection across all subjects. All matrices have two dis-
tinctive parallel lines to the diagonal that represent homologous
inter-hemispheric connections. These are strong in both fMRI
and EEG across all bands, whereas in EEG we also observe strong
intra-hemispheric connections. The top row depicts the partial
correlation within cortical regions and results in 68× 68 matri-
ces. The bottom row demonstrates the partial correlation within
cortical and subcortical regions and results in 82× 82 matrices.
For the cortical regions, the top left matrix quadrant represents
connections within the left hemisphere (lh), the bottom right
represent connections within the right hemisphere (rh) and the

remaining quadrants represent inter-hemispheric connections. In
the bottom row, the subcortical regions have been added at the
top left corner of the connectivity matrices. (The regions are
given in Table S1 and they are ordered similarly in their matrix
representation.)

In Figure 3, the connections with the 15% highest absolute
value in Figure 2 (WTS) are shown as 3D graphs in MNI space.
The top row shows partial correlation networks within corti-
cal regions, whereas the bottom row shows partial correlation
networks within cortical and subcortical regions. In rs-fMRI
connectomes inter-hemispheric connections dominate, whereas
across connectomes from each EEG band intra-hemispheric con-
nections are predominant. In particular, brain regions are repre-
sented with spheres. Their centers and radii represent the center of
mass of each underlying region and its volume, respectively. The
color-coding of the spheres corresponds to different parts/lobes
of the brain. Connections above the 15% threshold are repre-
sented as cylinders with salmon color when they are positive and
slate-gray when they are negative. The diameter of the cylinder is
proportional to the connection’s strength, scaled independently in
the fMRI connectome and the connectome from each EEG band.

Figures 2, 3 demonstrate a relatively similar covariance struc-
ture across the EEG frequency bands. To examine whether there
is a broadband phenomenon where all frequency bands fluctuate
together within ROIs, or whether they are minimally corre-
lated, we plot the histograms of correlations for four subjects in
Figure 4. Within each ROI, we estimated the correlation matrix
(5-by-5) of the averaged time series (WTS) for each band. Here,
we show the histograms of the off diagonal correlation elements
across all cortical ROIs. These results show low correlation val-
ues between bands and demonstrate that the whole-brain EEG

FIGURE 2 | Average functional connectivity matrices across subjects in

fMRI and EEG δ, θ , α, β, and γ bands, respectively. In both fMRI and EEG,
the precision matrix has been estimated across the whole time samples
(WTS). (A–F) Depicts the partial correlation within cortical regions (68× 68),
whereas the bottom row demonstrates the partial correlation within cortical
and subcortical regions (82× 82). (The regions are given in Table S1 and they

are ordered similarly in their matrix representation). For the cortical regions,
the top left matrix quadrant represents connections within left hemisphere
(lh), the bottom right represent connections within the right hemisphere (rh),
and the remaining quadrants represent inter-hemispheric connections. At
(G–L), the subcortical regions have been added at the top left corner of the
connectivity matrices.
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FIGURE 3 | The connections with the 15% highest absolute value

in Figure 2 (WTS) are shown as 3D graphs in standard space.

Connections are represented as cylinders with salmon color when
they are positive and slate-gray when they are negative. Brain regions
are represented with spheres. Their centers and radii represent the

centers of mass of each underlying region and its volume,
respectively. The color-coding corresponds to different parts of the
brain. (A–F) Shows partial correlation networks within cortical regions,
whereas (G–L) shows partial correlation networks within cortical and
subcortical regions.

FIGURE 4 | Histograms of correlations between bands across all cortical ROIs for four subjects.

connectomes are not driven by broadband signal changes but
rather EEG signals at different frequencies operate within the
same networks.

Figure 5 shows results of prediction performance and inter-
subject variability for the case of precision matrices derived
based on the WTS approach. Results demonstrate that sCCA
has improved the agreement between the predicted connectivity
matrices and the corresponding measured connectivity matri-
ces. Note that the optimization objective of Equations 2, 3 does
not optimize the distance between connectivity matrices directly.
sCCA learns the relationship between EEG and fMRI connections
across subjects and as a result the Euclidean distance between the

predicted and measured connectomes is minimized. This usually
results in minimizing the geodesic distance between connectomes
too. The prediction performance are represented based on the
dAI metric, which reflects geodesic distance between SPD matri-
ces. The smaller the distance the more similar the connectivity
matrices should be and subsequently the better the performance
of the sCCA training. Figure 5A shows results based only on cor-
tical regions that summarize the prediction performance of fMRI
from EEG (brown box-plots), EEG from fMRI (green box-plots)
across bands, as well as the distance between the fMRI preci-
sion matrices and the EEG precision matrices within subjects
(white box-plots). Figure 5B shows similar results based on both
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FIGURE 5 | Results of prediction performance (WTS). This figure presents
results of prediction performance and inter-subject variability when both fMRI
and EEG precision matrices are estimated based on all time samples. The
distance between the rs-fMRI precision matrices and each of the EEG
frequency banded precision matrices estimated with dAI . The smaller the
distance the more similar the connectivity matrices should be. (A) It shows
results based only on cortical regions that summarize the prediction
performance of fMRI from EEG (brown box-plots) and vice-versa (green
box-plots) across bands, as well as the distance between the fMRI precision

matrices and the EEG precision matrices within subjects (white box-plots),
(B) It shows results based on both cortical and sub-cortical regions that
summarize the prediction performance of fMRI from EEG (brown box-plots)
and EEG from fMRI (green box-plots) across bands, as well as the distance
between the fMRI precision matrices and the EEG precision matrices within
subjects (white box-plots), (C) It shows inter-subject variability for the
precision matrices estimated within cortical regions. (D) It shows
inter-subject variability for the precision matrices estimated within cortical
and subcortical regions.

cortical and sub-cortical regions. In all cases, the performance of
the predictions is estimated based on leave-one-out cross vali-
dation. c1 and c2 have been optimized in each cross-validation
loop according to a permutation-based algorithm [6]. The num-
ber of components is estimated as the minimum of the ranks of
the variables X and Y .

The ability to predict a rs-fMRI precision matrix from an
EEG precision matrix remains relatively similar across bands and
it is substantially better than predicting an EEG connectivity

matrix from a rs-fMRI precision matrix. This is also shown with
a Wilcoxon rank-sum test, which demonstrates significant sta-
tistical differences between the prediction performance of EEG
from fMRI and the prediction performance of fMRI from EEG
across all bands (p-values < 1e-05). On the contrary, the pre-
diction of EEG from fMRI is considerably modulated across
bands with the low frequency bands (δ, θ , α) performing bet-
ter, similarly to the within-subject distance between the measured
fMRI and EEG connectomes. In Table 1 we show the p-values
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Table 1 | P-values of Wilcoxon rank-sum test for assessing differences

between intra-subject comparisons of EEG and fMRI across bands

(WTS) shown in Figure 5.

θ α β γ

(A) CORTICAL CONNECTOMES

δ 0.07 0.39 0.23 3.4e-04

θ 0.39 0.006 1.2e-05

α 0.03 6.1e-05

β 9.4e-03

(B) CORTICO-SUBCORTICAL CONNECTOMES

δ 0.12 0.31 0.18 0.002

θ 0.88 0.01 0.0004

α 0.06 0.003

β 0.06

Bold values indicate p < 0.05.

of Wilcoxon rank-sum tests for assessing differences between
intra-subject comparisons of EEG and fMRI connectomes across
bands. Figures 5C,D shows inter-subject variability for the preci-
sion matrices estimated within only cortical and both cortical and
subcortical regions, respectively. Inter-subject variability in fMRI
is considerably lower than inter-subject variability across all EEG
bands.

Figure 6 is similar to Figure 5 but the EEG connectivity
matrices have been produced by averaging the Hilbert trans-
formed signal within epochs (AWE). Therefore, each EEG time
sample corresponds to a single fMRI time sample. (The cor-
responding connectivity matrices and 3D graphs are shown in
Figures S1, S2.) In this case, the distance between fMRI and
EEG is smaller across all bands compared to Figures 5A,B.
Nevertheless, the prediction of fMRI from EEG is better than
the prediction of EEG from fMRI. A Wilcoxon rank-sum test
shows significant statistical differences in θ and β bands with p-
values of 0.04 and 0.01, respectively, for cortical connectomes and
p-values of 0.04 and 0.005 for cortico-subcortical connectomes.
sCCA training does not improve the performance of predicting
EEG from fMRI compared to the original within-subject distance
of fMRI and EEG connectivity. This may reflect the limits of the
sCCA since dAI is not optimized explicitly and the original dis-
tance of the connectivity matrices is already low. Figures 6C,D
show inter-subject variability for only cortical and both cortical
and subcortical regions, respectively.

Figure 7B shows the normalized distance between the mea-
sured EEG and fMRI precision matrices across bands when we
use only subcortical structures, only cortical structures and both
cortical and subcortical structures. The inclusion of the sub-
cortical regions in the connectome increases the within subject
distance between EEG and fMRI matrices (less similar connec-
tomes). Several factors can account for this finding, including,
the limitation of EEG source reconstruction in deep brain struc-
tures. Note that dAI has been normalized based on the line fit of
the median values of the simulation data in Figure 7A. This is
approximately equivalent of dividing by the number of regions.
Figure 7A shows how the dAI metric scales with the number of
regions represented in the precision matrices. Simulation results

come from the comparison of 1000 pairs of precision matrices
drawn from random Whishart distributions of matrix order from
10 to 100. To investigate further whether incorporating subcor-
tical regions improves the prediction performance, we examined
the performance of prediction of cortical fMRI connectomes from
EEG cortical and cortico-subcortical connectomes. In this case,
the number of regions in the predicted connectomes is the same
and there is no need for any normalization. Subsequently, we
used a paired Wilcoxon test to examine significance in each band.
Our results showed that there is a trend that cortico-subcortical
EEG connectomes predict cortical fMRI connectomes better than
using cortical EEG connectomes alone. This difference is signif-
icant in the δ band (p = 0.01) and close to significance in the θ

band (p = 0.08).
Figure 8 demonstrate the results of 98050 randomized Lasso

iterations for the EEG brain networks estimated based on WTS.
(Figure S3 shows the corresponding results of the AWE case.)
These results highlight the most prominent connections in sCCA
from rs-fMRI (v) and EEG (u) brain connections across all bands.
For this experiment we concatenate all the connections across all
EEG bands to form the canonical variable X̆, whereas Y is the
brain connectivity as it is measured from rs-fMRI. This allows
us to draw the most relevant variables across all bands under
the same sparsity parameters c1 and c2. Finally, we measure how
many times each connection is selected out of the 98050 iterations
and this provides us with a probability measure of confidence
representing the importance of the underlying connection in
maximizing the relationship between fMRI and EEG. The top row
shows the 2% connections with the highest selection probability
in fMRI and each EEG band for cortical regions only. The bottom
row shows the 2% connections with the highest selection prob-
ability for the configuration with both cortical and subcortical
regions. We note that the selected features are mostly long-range
connections. To our knowledge, the results of randomized Lasso
represent the first attempt to show inter-relations between EEG
and fMRI whole-brain connectomes.

4. DISCUSSION
We utilized the band-limited power envelope of the EEG signal
to estimate an average time-series for each gray-matter cortical
region based on a standard atlas-based parcellation. Based on
this approach we describe functional connectivity with covari-
ance matrices between corresponding regions across subjects and
modalities. This allows us to compare resting-state functional
connectivity derived across frequency bands from EEG with
resting-state functional connectivity derived from BOLD fMRI.
To our knowledge, we are the first to investigate the relation-
ship between synchronous fMRI and EEG connectomes across
frequency bands in a whole-brain, using source space analysis.
fMRI connectivity is dominated by the inter-hemispheric con-
nections between homologous areas, whereas brain connectivity
derived from EEG shows a more complex pattern of connections
composed by both intra-hemispheric and inter-hemispheric con-
nections. We also observe that EEG connectomes in low frequency
bands are the most similar to resting-state fMRI connectomes
based on their geodesic distance of the underlying precision
matrices.
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FIGURE 6 | Results of prediction performance (AWE). This figure
presents the same results as Figure 5 but EEG time series have been
averaged within each epoch, which is equal to the fMRI-TR. The distance
between the rs-fMRI precision matrices and each of the EEG frequency
banded precision matrices estimated with dAI . The smaller the distance
the more similar the connectivity matrices should be. (A) It shows results
based only on cortical regions that summarize the prediction performance
of fMRI from EEG (brown box-plots) and vice-versa (green box-plots) across
bands, as well as the distance between the fMRI precision matrices and

the EEG precision matrices within subjects (white box-plots), (B) It shows
results based on both cortical and sub-cortical regions that summarize the
prediction performance of fMRI from EEG (brown box-plots) and EEG from
fMRI (green box-plots) across bands, as well as the distance between the
fMRI precision matrices and the EEG precision matrices within subjects
(white box-plots), (C) It shows inter-subject variability for the precision
matrices estimated within cortical regions. (D) It shows inter-subject
variability for the precision matrices estimated within cortical and
subcortical regions.

One possibility is that the low frequency bands in EEG
are most predictive due to their higher signal-to-noise ratio.
However, low frequency bands are affected from small drifts, eye
blinks, cardiac, and respiration cycle and so on, whereas muscle
artifacts and channels with low impedance affect higher frequen-
cies. In addition for EEG-fMRI this is additionally complicated
by the gradient and pulse artifacts that provide sources of struc-
tured noise in particular in the alpha band at the slice frequency.

Given this noise distribution, it is unlikely that the prediction dif-
ference of the EEG bands is driven by the signal noise differences
between bands. Nevertheless, we cannot exclude the possibility
that differences in SNR across frequencies could explain some
of the differences in similarity between fMRI and EEG brain
connectomes across bands.

Subsequently, we examine the connectivity derived from
simultaneous EEG and fMRI by means of statistical prediction.
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FIGURE 7 | (A) It shows how the dAI metric scales with the number of
regions represented in the precision matrices. 1000 pairs of precision
matrices were drawn from random Whishart distributions from matrix order
of 10–100. Subsequently, the distance between the pair of matrices was
estimated based on the dAI metric. (B) It shows the normalized distance

between the measured EEG and fMRI precision matrices across bands when
we use only subcortical structures, only cortical structures and both cortical
and subcortical structures. dAI has been normalized based on the line fit of
the median values of the simulation data. This is approximately equivalent of
dividing by the number of regions.

FIGURE 8 | Results derived from randomized Lasso for the WTS

case. These reflect the 2% connections selected more often over all
sCCA repetitions. (A–F) Shows results with the precision matrices

derived based on cortical regions only, whereas (G–L) shows the
results obtained with precision matrices that include both cortical and
subcortical regions.
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An advantage of a predictive framework of EEG and fMRI con-
nectomes is that it removes noise that it is present in one modality
and not the other. We use sCCA to predict EEG brain connectivity
from fMRI and vice-versa. To evaluate the prediction perfor-
mance we use leave-one-out cross validation and we compare
the predicted connectivity matrix with the observed connectiv-
ity matrix. We demonstrate that the performance of predicting
fMRI connectivity from EEG is considerably better than pre-
dicting EEG from fMRI across all bands. In fact, the prediction
performance of EEG from fMRI follows a similar pattern to the
distance between the original precision matrices, whereas the pre-
diction performance of EEG from fMRI is relatively stable across
bands. There is no significant improvement in prediction of fMRI
from EEG using the joint information across multiple EEG fre-
quency bands. Note that increasing the number of variables does
not necessarily increase the prediction performance, since we use
cross-validation loop to control for over fitting.

This finding has several important implications. Firstly, it
shows that there are signatures of rs-fMRI dynamics across EEG
frequencies. This is consistent with the concept of nested oscil-
lations and cross spectral coupling often found within EEG
(Penny et al., 2008). Note that we have used envelope correla-
tion amplitude and thus the phase information is not preserved.
Nevertheless, if the phase-amplitude locking, which indicates
nested oscillations, is intermittent then a large overall ampli-
tude correlation is also expected (Penny et al., 2008). Secondly,
it likely reflects the greater dynamic information content cap-
tured by EEG in this particular spatial scale. Although, the spatial
resolution of source localization is in the scale of 1–2 cm, most
fMRI network analysis studies involve averaging the hemody-
namic signal within larger regions. Our results indicate that in
this spatial resolution the information carried in the EEG signal
is richer than the averaged hemodynamic activity. In this con-
text, the question of which EEG band represents best the fMRI
is not important; any EEG band can provide similar connectivity
information. This implies that scalp EEG can be used to provide
similar information to resting state fMRI based connectomes at
substantially reduced cost while providing much greater possibil-
ities in dynamic information content. This might be because of
the coarse brain parcellation, which limits spatial resolution to
the size of the underling cortical regions. However, most current
fMRI studies tend to examine connectivity at this scale.

On the other hand, the inclusion of the subcortical regions
results in more dissimilar fMRI and EEG connectomes even when
we account for the difference in the number of regions. This may
indicate that the highly complex cortico-subcortical interactions
are not adequately captured with EEG alone. Cortico-subcortical
interactions play an important role in regulating physiological
rhythms that are associated with sleep or wakefulness, motor con-
trol and so on. Furthermore, they have an eminent role in patho-
logical conditions such as the propagation of epileptic activity in
several epilepsy syndromes (Kahane and Depaulis, 2010; Moeller
et al., 2013). Therefore, further investigation on how multi-modal
data can improve the sensitivity in detecting these interactions
both in space and time is crucial in discovering new treatments
and understanding how brain networks work. Our multi-modal
connectivity analysis demonstrate evidence that incorporating

sub-cortical structures in EEG connectomes improves the predic-
tion of cortical fMRI connectomes. Therefore, a cutoff in weights
might be appropriate in some circumstances, but due to the
sparsity constraints a weight should only be large enough to be
influential if the corresponding edge is genuinely informative for
the prediction. It should therefore not be necessary to explic-
itly down-weight or ignore connections carrying little predictive
information. We acknowledge that there is controversy in the abil-
ity to detect subcortical sources with EEG source imaging alone
(Muthuraman et al., 2014). However, Muthuraman et al. also
showed that sources in deep gray matter structures are present in
EEG data when segments with higher SNR are selected indicating
a lower sensitivity of EEG to detect deep-gray matter sources com-
pared to MEG data. Nevertheless, Plomp et al. linked event related
potentials recorded with EEG with sources in the insula and sub-
cortical areas such as the parahippocampus and the thalamus
(Plomp et al., 2010). Furthermore, Moeller et al. demonstrated
the ability of electrical source imaging in identifying deep sources
in the thalamus and in revealing similar neuronal networks as
with simultaneously acquired fMRI (Moeller et al., 2013). In any
case, as we have discussed here, there is evidence in the literature
and in our data to suggest that there may be some information in
the scalp EEG which is attributable to deep sources.

Furthermore, we showed that the connectomes derived in low
frequency EEG bands (δ, θ , and α) resemble best rs-fMRI con-
nectomes. This conclusion results from estimating the precision
matrices over the whole down-sampled EEG Hilbert-transformed
time-series (WTS). When connectivity is estimated based on the
average of the signal envelope within epochs (AWE), the geodesic
distance between EEG and fMRI connectomes is smaller, reflect-
ing the fact that averaging the EEG signal within epochs of equal
duration to fMRI TR, approximates the rs-fMRI signal better.
Effectively, this reduces the information content in the EEG in a
way that better resembles the fluctuations observed in the BOLD
signal. Furthermore, this temporal averaging of the EEG means
that the difference in prediction performance between bands is
smaller than the inter-subject variability within-band.

In literature there is on-going controversy about which band in
EEG mostly resembles rs-fMRI connectivity. Our results are con-
sistent with de Pasquale et al. where a seed-based analysis was used
to correlate the dorsal and default mode networks with sponta-
neous MEG activity (de Pasquale et al., 2010) and showed that the
band limited MEG signal in theta, alpha and beta bands is primar-
ily related to BOLD fMRI connectivity. Similarly, Brookes et al.
observed higher spatial agreement between resting-state fMRI
and MEG in the α and β bands (Brookes et al., 2011b). However,
in de Pasquale et al.s MEG study inter hemispheric correlation
between homologous regions was not observed in despite it being
a typical feature of resting state fMRI studies, being observed in
the first such study by Biswal et al. (1995). Furthermore, Cabral
et al. found that the strength of correlation between brain regions
peaks at the α and the lower end of the β frequency bands, both in
MEG and in simulated connectivity based on coupled oscillators
with parameters derived from structural networks (Cabral et al.,
2014). On the other hand, work in anaesthetized rats suggested
that in the fMRI signal is mostly correlated to δ band (epidu-
ral) electrophysiological measures (Lu et al., 2007), whereas Magri
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et al. highlighted α, β, and γ bands as mostly related to BOLD
fMRI spontaneous activity in anaesthetized monkeys.

There is some consensus among studies that the best agree-
ment between rs-fMRI and EEG signal is in the α frequency
range. Our results also highlight low frequency bands, which
could result from that both fMRI and EEG connectomes describe
mostly long-distance connections due the relatively large vol-
ume of the underlying regions. In fact, evidence suggests that
the more distant two neural assemblies are, the longer the signal-
conduction delay between them. This biases the maintenance of
a phase relationship between the two signals over long cortical
distances to low frequencies (Schölvinck et al., 2013). Also small
time shifts in high frequencies cause proportionally large phase
shifts, which limits correlations in high frequencies. EEG and
fMRI provide measurements of whole-brain spontaneous activ-
ity over a large range of spatial, temporal and spectral scales. Slow
electrophysiological activity as it is derived from the envelope or
power of a limited range of frequencies, also called band limited
power (BLP), is of great interest for three reasons. First, changes
occur over similar time scales as the BOLD signal. Secondly, it is
related to large scale spontaneous oscillations observed between
any pair of distant brain regions. Finally, they reflect intrinsic cou-
pling modes that are closely related to structural connectivity and
appear relatively constant across brain states (Engel et al., 2013;
Woolrich et al., 2013).

The main reason for mapping the sensors to source space, in
combination with an atlas based analysis approach, is that it pro-
vides a general framework that allows for an anatomical interpre-
tation of the EEG data as well as a direct comparison with other
networks derived from fMRI and Diffusion Weighted Imaging
(DWI). This is important to allow the extension of our method-
ology to pathological and atypical brains (Bellec et al., 2010).
For example, in epilepsy, localizing accurately and specifically the
epileptogenetic zones where seizures initiate is of tremendous
importance for the surgical outcome. Current research shows
that agreement between EEG and fMRI analysis in detecting
the epileptogenetic zone correlates with good surgical outcome
(Thornton et al., 2010). Our framework could be extended to
shed light on how to interpret observations when there is no
multi-modal agreement. For example, examining whether and
how the relationship between fMRI and EEG brain networks
differ in different brain states and pathological conditions is of
particular interest in current clinical neuroscience studies.

4.1. METHODOLOGICAL CONSIDERATIONS
Sensor level connectivity analysis is biased by the effects of vol-
ume conduction/field spread, since there are multiple sensors
recording the signal from the same sources. This severely affects
the estimation of connectivity and impedes interpretation of the
results (Hillebrand et al., 2012). We have used a state of the art
approach to estimate the sources from EEG recordings based
on beamforming (Brookes et al., 2012). Although, the effect
of field spread is not completely abolished, this approach pro-
vides a reasonable solution and it is resilient to artifacts in EEG
acquired during fMRI such as those due to switched magnetic
fields gradients. Another option is to analyse the imaginary part
of the coherence, which is robust to volume conductance (Engel

et al., 2013). However, functional connectivity based on phase
measurements have different interpretations than envelope based
connectivity (Engel et al., 2013). It is more variable across brain
states and less bound to structural connectivity. The framework
provided here can be extended to study both the power enve-
lope and the phase of the EEG signal that could provide valuable
insights regarding the connectivity information across modalities.

Our analysis assumes that functional connectivity can be ade-
quately described as a stationary process. Most current connec-
tivity studies assume stationarity to avoid the high complexity
involved in modeling the dynamic signal information, which lim-
its the ability to process connectomes with more than 10–20
regions (Smith, 2012). Nevertheless, the extension of our frame-
work, using for example sliding-window correlations, to examine
the dynamic complexity of the underlying signals is of particular
interest (Brookes et al., 2014). Here, we examine brain connec-
tivity based on the precision matrix, which is the inverse of
the covariance matrix and it reflects partial correlation. This is
important to disentangle the influence of other regions on each
pair-wise connection (Smith et al., 2013) and to allow direct com-
parison between connectivity variables (Deligianni et al., 2011b,
2013). Partial correlation not only is a reasonable approximation
of direct connectivity among brain regions but compared to the
usual correlation coefficient it is also more resilient to common
underlying noise sources.

The inversion of the covariance matrix requires a well-
conditioned SPD matrix. This problem is also known as covari-
ance selection, and in the context of brain connectivity it is
challenging due to the problem’s intrinsically high dimensional
space, and to inter-subject variability (Varoquaux et al., 2010a).
In fact, the empirical covariance matrix results in inaccurate esti-
mation of the precision matrix from its inverse due to numerical
instabilities and poor estimation of its eigen structure. Here, we
use a shrinkage estimator (Krämer et al., 2009) based on the
Ledoit and Wolf theorem (Ledoit and Wolf, 2004). This regu-
larizes the estimate of the precision matrix by adding a diagonal
matrix to the sample covariance before computing its inverse.

Other approaches to regularizing the inverse covariance matrix
based on shrinkage have been recently proposed (Friedman et al.,
2008) and they have been suggested in estimating connectivity
from fMRI time series (Varoquaux et al., 2010a; Smith et al.,
2013). These approaches shrink the estimated values of the preci-
sion matrix, so that very small values that are potentially noisy
are forced to zero and the rest are better estimated. However,
a major challenge is how to determine the shrinkage parameter
(Hinne et al., 2014). This is particularly important when we com-
pare connectivity across bands and modalities. One approach is to
use cross-validation to choose the shrinkage parameter that best
generalizes the estimated covariance within subjects (Pedregosa
et al., 2011). This results in connectivity matrices with consid-
erably different sparsity across bands and thus interpretation of
the results is not straightforward. Other approaches hypothesize a
structure based on prior information provided either from struc-
tural data (Deligianni et al., 2013; Hinne et al., 2014) or using
population priors (Varoquaux et al., 2010a) and they may intro-
duce strong biases. Furthermore, their extension in populations
with neurological diseases is not obvious.
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It is important to note that the canonical correlation variables
X and Y that represent EEG and fMRI connectivity, respectively,
are not in the form of SPD matrices. They are produced by the
concatenation of the vectorized upper triangular matrix of each
precision matrix across subjects. The sCCA operates on these con-
nectivity variables based on the lasso L1 penalty, which results in
sparse vectors u and v. Although there is no explicit constraint
to ensure that the prediction will be an SPD matrix, we do not
encounter this problem when we predict fMRI from EEG con-
nectomes. On the other hand, when we predict EEG from fMRI
connectomes, non-SPD predictions appear on average three times
for each cross-validation. This is worse with other approaches
of estimating the precision matrix such as the graphical lasso
(Friedman et al., 2008; Pedregosa et al., 2011). In this case, most
of the predictions are not SPD and therefore we cannot proceed
further and estimate the overall prediction performance reliably.

We used gray matter regions derived from standard atlas-based
parcellation, which is a common approach (Hillebrand et al.,
2012). The main advantage of this whole-brain parcellation is
that it is well-defined in subject space and produces correspond-
ing regions across subjects and modalities. It is well known that
atlas-based segmentations have poor functional specialization
and regions’ sizes differ considerably from a few tens of voxels to
thousands. This would produce differences in signal to noise ratio
of the estimated time-series. Another approach is to use regions
drawn from functional studies. Although, these regions are more
functionally specialized, there is no universal agreement on how
to produce a whole-brain representation and how to propagate it
into subject space. We expect that more functionally specialized
regions would improve the ability of the proposed approach to
select relevant connections and subsequent interpretation of the
results (Deligianni et al., 2013).

Nevertheless, our analysis shows that strong inter-hemispheric
connectivity between homologous regions is present in both EEG
and fMRI connectomes. This is indicated by the lines parallel to
the diagonal in the partial correlation matrices, Figure 2. These
correlations emerge even though in EEG the voxel time-series to
be averaged within a region are drawn randomly for each region
and subject. Coupling between homologous sensory areas across
hemispheres has been also revealed with envelope correlation
in previous seed-based studies (Engel et al., 2013). This is also
well established in resting-state fMRI analysis independently of
how regions are defined (voxel based or function based) (Biswal
et al., 2010). Furthermore, evidence shows that inter-hemispheric
connectivity has critical significance for behavior, indicating an
important interaction between homologous regions rather than
an effect of averaging dissimilar signals (Carter et al., 2010).
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Table S1 | Freesurfer subcortical and cortical regions used in this work to

define brain connectomes.

Figure S1 | Average functional connectivity matrices across subjects in

fMRI and EEG δ, θ , α, β, and γ bands, respectively. The Hilbert envelope of

the EEG signal was averaged within each epoch (AWE), which is equal to

the fMRI-TR. Therefore, both fMRI and EEG time series have the same

number of time samples. (A–F) Depicts the partial correlation within

cortical regions (68× 68), whereas (G–L) demonstrates the partial

correlation within subcortical regions (82× 82). The regions are given in

Table S1 and they are ordered similarly to their matrix representation. For

the cortical regions, the top left matrix quadrant represents connections

within left hemisphere (lh), the bottom right represent connections within

the right hemisphere (rh), and the remaining quadrants represent

inter-hemispheric connections. At (G–L), the subcortical regions have

been added at the top left corner of the connectivity matrices. This figure

is similar to Figure 2 with a noticeable decrease of the partial correlation

across all EEG bands. This may be due to less time samples that would

result in under-estimation of true connectivity due to the regularization.

Figure S2 | The connections with the 15% highest absolute value in

Figure S1 (AWE) are shown as 3D graphs in standard space. Connections

are represented as cylinders with salmon color when they are positive and

slate-gray when they are negative. Brain regions are represented with

spheres. Their centers and radii represent the centers of mass of each

underlying region and its volume, respectively. The color-coding

corresponds to different parts of the brain. (A–F) Shows partial correlation

networks within cortical regions, whereas (G–L) shows partial correlation

networks within cortical and subcortical regions.

Figure S3 | Results derived from randomized Lasso for the AWE case.

These reflect the 2% connections with the highest probability to be

selected overall sCCA repetitions. (A–F) Shows results with the precision

matrices derived based on cortical regions only, whereas (G–L) shows the

results obtained with precision matrices that include both cortical and

subcortical regions.
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