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Neurogenesis, the process of generating new neurons in the brain, fascinates researchers
for its promise to affect multiple cognitive and functional processes in both health
and disease. Many cellular pathways are involved in the regulation of neurogenesis,
a complexity exemplified by the extensive regulation of this process during brain
development. Toll-like receptors (TLRs), hallmarks of innate immunity, are increasingly
implemented in various central nervous system plasticity-related processes including
neurogenesis. As TLRs are involved in neurodegenerative disorders, understanding the
involvement of TLRs in neurogenesis may hold keys for future therapeutic interventions.
Herein, we describe the current knowledge on the involvement of TLRs in neurogenesis
and neuronal plasticity and point to current knowledge gaps in the field.
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INTRODUCTION
Neuronal development is regulated by a myriad of proteins with
functions intimately linked with tissue formation such as cell
migration (Lakatosova and Ostatnikova, 2012), cell cycle (Borrell
and Calegari, 2014) and plasticity (Park, 2013) to name a few.
Surprisingly, protein families with no apparent link to neuronal
plasticity are also found to be involved in neuronal develop-
ment. Such is the case with the toll-like receptors (TLRs) pathway.
TLRs, potent activators of the immune responses, have emerged
in recent years as regulators of many aspects of neuronal plastic-
ity and neurodegenerative processes. The aim of this mini-review
is to briefly update on recent advances in our knowledge on the
involvement of the TLRs pathway on developmental neuronal
plasticity.

TOLL-LIKE RECEPTORS
TLRs, hallmarks of innate immune activation (Kawai and Akira,
2007) exhibit differential expression patterns in the brain (Kaul
et al., 2012) and diverse functions within the developing and adult
central nervous system (CNS) (Okun et al., 2011). In this mini-
review, we will review recent data that further implicates this
family of innate immune receptors on CNS plasticity, with a spe-
cial focus on neurogenesis. Toll was first discovered in Drosophila
melanogaster, where it controls dorso-ventral patterning during
embryonic development (Valanne et al., 2011), as well as reg-
ulates immune responses (Quintin et al., 2013). A mammalian
homolog for Toll, TLR4, was later found to recognize bacte-
rial lipopolysaccharide (LPS), a major cell wall component of
Gram-negative bacteria (Okun et al., 2009). Subsequently, many
additional mammalian homologs have been identified across
diverse species. While Drosophila Toll plays both immune and

developmental roles, mammalian TLRs were thought to prime an
inflammatory response and facilitate activation of the adaptive
immune response (Liu et al., 2010). This dogma has changed,
however, and it is now recognized that mammalian TLRs also
possess developmental roles during embryogenesis, as well as
physiological and metabolic roles in adults. For example, TLR2
regulates multiple aspects of metabolism (Shechter et al., 2013)
and is implicated, along with TLR4, in regulation of the auto-
nomic nervous system (Okun et al., 2014). TLRs signal in both
vertebrates and invertebrates in response to diverse exogenous
microbial-associated molecular patterns (MAMPs) (Kawai and
Akira, 2007). Endogenous TLR ligands, termed damage associ-
ated molecular patterns (DAMPs), include various extra cellular
matrix components, β-defensins and heat-shock proteins (Kawai
and Akira, 2007; Lehnardt et al., 2008) present during tissue dam-
age. The signaling outcomes seem to differ between MAMP and
DAMP-induced TLR activation, probably due to the need to bal-
ance between immune intervention and tissue damage repair (Liu
et al., 2009).

NEUROGENESIS
Neurogenesis occurs robustly during embryogenesis, and dimin-
ishes during early post-natal development and into adulthood
(Duan et al., 2008). Improper neurogenesis results in severe
embryonic developmental brain abnormalities (e.g.: micro-
cephaly) (Barkovich et al., 2012; Kahoud et al., 2014). Successful
neurogenesis requires proper execution of multiple steps: neu-
ronal progenitor cells (NPC) proliferation, migration, differenti-
ation, maturation, and ultimately functional integration of newly
formed neurons into existing neuronal networks. During mam-
malian embryonic development, extensive neurogenesis occurs in
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FIGURE 1 | Adult neurogenesis in the mouse brain. (A) Midsagittal view of
the mouse brain with the three main regions of adult neurogenesis: dentate
gyrus (DG) of the hippocampus, subventricular zone (SVZ) and the olfactory
bulb (OB) (B) Adult neurogenesis in the DG of the hippocampus is generally

divided into four stages: (1) proliferation, (2) migration, (3) differentiation, (4)
integration. (C) Stem cells proliferating in the SVZ migrate via the rostral
migratory stream (RMS) to the OB (D), where they differentiate and finally
integrate into neural circuits.

the sub ventricular zone (SVZ) of the lateral ventricles (Sakamoto
et al., 2014) (Figure 1). In adults, neurogenesis in rodents is
restricted to the subgranular zone (SGZ) of the hippocampal den-
tate gyrus (DG) and the sub ependymal zone (SEZ) lining the
lateral ventricles (Figure 1), however, in humans it was recently
shown that neurogenesis also occurs in the striatum (Ernst et al.,
2014). NPCs in the nervous system can self-renew and differen-
tiate into all types of neural cells, including neurons, astrocytes,
and oligodendrocytes (Gage, 2000) (Figure 1). Neurons arising
from the SGZ, differentiate and integrate locally into the DG as
granule cells, which ultimately act as primary excitatory neurons
in the DG, contributing to both formation and extinction of new
memories (Akers et al., 2014). New neurons formed in the SEZ,
however, migrate through the rostral migratory stream (RMS)
to the olfactory bulb where they contribute to plasticity in the
olfactory system (Sakamoto et al., 2014) (Figure 1). Numerous
endogenous signaling pathways (for an extensive review see Sasai
and Yamamoto, 2013) regulate the neurogenic niche signals. As
described below, TLRs emerge as an important family of such
endogenous factors regulating CNS plasticity in general and neu-
rogenesis in particular.

TLR EXPRESSION DYNAMICS DURING BRAIN DEVELOPMENT
A clue to understanding the roles of TLRs in neuronal plastic-
ity and neurogenesis can be obtained by analyzing the expression
pattern of TLR-related genes during brain development. Kaul

et al. (2012) have recently performed the first comprehensive
attempt at assessing the mRNA expression levels of TLR-related
genes throughout development. However, spatial information on
the expression of those genes in the developing brain is still
lacking. It is clear, however, that the expression of the various
TLR protein family members is differentially regulated through-
out development; TLR2 and its heterodimer partners, TLR1 and
TLR6 are expressed at early postnatal days (Okun et al., 2010b;
Kaul et al., 2012) (Figure 2). TLR4, which functions as a homod-
imer, gradually increases in expression from early embryonic
stages and maintains high expression level in the brain during
adulthood (Lathia et al., 2008; Kaul et al., 2012) (Figure 2). TLR5
forms asymmetric homodimers (Zhou et al., 2012) and seems to
maintain a stable expression level throughout the developmen-
tal process (Kaul et al., 2012) (Figure 2). Nucleic acid sensing
TLRs also exhibit differential expression pattern during develop-
ment; TLR3 expression is already in its highest levels in the early
period of cortical development when NPC are highly prolifera-
tive (Lathia et al., 2008) (Figure 2). Its expression then declines
as neurogenesis and gliogenesis ensues and low expression levels
are maintained in the adult (Kaul et al., 2012) (Figure 2). TLR7
expression levels in the developing mouse transiently increase at
the time of birth, and gradually declines afterwards as the ani-
mal develops (Kaul et al., 2012) (Figure 2). TLR8 expression in
the brain can be detected as early as embryonic day 12, follow-
ing which it increases until dramatically declines after postnatal
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FIGURE 2 | Expression pattern of TLRs and their adaptor proteins

throughout brain development. TLRs 1-9 and the TIR adaptor proteins
MyD88, TRIF, and SARM1 were thus far analyzed for their protein expression
levels during brain development. Different colors represent changes in
proteins expression levels; green represents increased expression, blue
represents decreased expression and red represents stable expression.

day 21, which is when the basic patterns of neurogenesis and
axonogenesis are complete. Thus, expression levels of TLR8 in
the adult brain are low (Ma et al., 2006a,b; Kaul et al., 2012)
(Figure 2). Finally, TLR9 expression constantly increases during
late embryogenesis and postnatal stages until adult levels are
reached and remains stable (Kaul et al., 2012) (Figure 2).

TLRs signal via 4 Toll/IL-1 receptor (TIR) adaptor proteins,
namely, MyD88, Mal, Trif, TRAM and one inhibitory TIR adap-
tor protein, SARM (O’Neill and Bowie, 2007). The importance
of understanding the expression pattern of these adaptor pro-
teins extends beyond the scope of TLRs, as MyD88, for example,
also mediates signaling from the interleukin (IL)-1 receptors
super-family (Janssens and Beyaert, 2002). Of the five known
TIR adaptor proteins, only MyD88, TRIF, and SARM were sys-
temically analyzed for expression during brain development,
and the expression pattern of Mal and TRAM remains to be
determined. Analysis of TRIF mRNA levels reveals a gradual
increase in expression until birth, after which TRIF mRNA lev-
els decrease again (Kaul et al., 2012) (Figure 2). The expression
levels of MyD88 during embryogenesis are unclear, as one study
found that MyD88 expression remains relatively constant follow-
ing birth (Kaul et al., 2012), while a second study found that
MyD88 levels decrease (Okun et al., 2010b) (Figure 2). During
mouse embryonic development, SARM protein expression levels
increases gradually in the brain, peaking on embryonic day 18,
a period of significant neuronal proliferation and programmed
cell death occurs, followed by a threefold decrease in expres-
sion levels after birth (Kim et al., 2007). The fact that distinct
TLRs and their TIR adaptor signaling proteins exhibit specific and

distinct expression patterns during brain development suggests a
physiological relevance of specific TLRs to brain development.

THE TLR PATHWAY IN NEURAL DEVELOPMENT
With the realization that TLRs are expressed in the CNS (Ma
et al., 2006b; Rolls et al., 2007; Tang et al., 2007), a signifi-
cant effort was put into understanding the functions of TLRs
in brain-residing cells. As summarized below, the TLR path-
way exhibits pleiotropic effects on neuronal plasticity including
neurogenesis during brain development. The relevancy of TLR-
related genes expression to developmental neuronal plasticity is
discussed, rather than microbial-mediated TLR activation, which
has been extensively reviewed elsewhere (Okun et al., 2009, 2011).

NPC proliferation
Deficiency for TLR2 in both adult and embryonic stages does
not affect the proliferative capacity of NPC (Rolls et al., 2007;
Okun et al., 2010b). Deficiency for TLR1 and TLR6, binding part-
ners for TLR2, was not yet tested, and therefore it remains an
open question whether these TLR members affect neurogenesis.
TLR3-deficiency enhances the proliferative capacity of embryonic
but not adult NPC, correlated with diminished TLR3 expres-
sion during development (Lathia et al., 2008). Deficiency for
TLR4 increases NPC self-renewal (Rolls et al., 2007). SARM1
was shown to inhibit TRIF-dependent TLR3 and TLR4 signal-
ing in immune cells (Carty et al., 2006; O’Neill and Bowie, 2007).
While developmental deficiencies for either TLR3 or TLR4 were
shown to increase embryonic NPC proliferation in the SVZ, it
is unlikely that these effects are related to SARM1, as SARM1 is
not expressed in NPC in the embryonic SVZ (Lin et al., 2014b).
There is no information on the impact of TLR5, 7, 8 or 9 on NPC
proliferation, and this remains an open question.

NPC differentiation
The effects of TLR2 on NPC differentiation are developmental
stage-dependent. The differentiation of embryonic NPC is not
affected by TLR2 deficiency (Okun et al., 2010b). Within the adult
brain, TLR2 is expressed in both the SEZ and SGZ neurogenic
niches, and specifically on cells that co-express the early neuronal
marker, doublecortin (DCX), glial fibrillary acid protein (GFAP),
myeloid cells or NPC (Rolls et al., 2007; Okun et al., 2010b). In
contrast to the embryonic brain, at this stage, TLR2 does affect
the fate of adult hippocampal NPC differentiation. Specifically,
TLR2 deficiency promotes astrocytic rather than neuronal fate in
differentiating NPC (Rolls et al., 2007). NPC from TLR4-deficient
mice or NPC treated with siRNA against TLR4, exhibit a higher
proportion of neurons at the expense of astrocytes (Rolls et al.,
2007). These cells, however, do not survive to become mature
neurons in vivo, implying that additional survival signals must
act in concert with TLR4 to successfully execute the neuroge-
nesis process (Rolls et al., 2007). A similar effect is observed
in MyD88-deficient mice, suggesting that MyD88 mediates the
effects conferred by TLR4 on neurogenesis (Rolls et al., 2007).
Consistent with an inhibitory role for TLR3 on NPC proliferation,
neurogenesis is increased in TLR3-deficient mice, correlating with
increased DG volume (Okun et al., 2010a). Overall, our under-
standing of the effects of TLRs on NPC differentiation is limited
to studies conducted on TLRs 2, 3, and 4. The field is open for
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additional studies that will enhance our insights on the roles of
innate immune receptors in general and TLRs in particular in
neurogenesis.

Axonal growth
While several studies have addressed the impact of TLR-activation
on axonal growth during neuronal differentiation, not much is
known on the impact of the expression of TLR-related genes on
this process. An exception to that is the sterile α and TIR motif–
containing protein 1 (Sarm1), a TLR-related adaptor protein,
which was recently studied for its roles in neuronal plastic-
ity. Sarm1 is a multidomain adaptor molecule containing two
sterile α motifs and one Toll/interleukin-1 receptor homology
domain. Sarm1 was originally identified in humans as a nega-
tive regulator of the TRIF-dependent TLR3 and TLR4 pathways
in innate immunity (Mink et al., 2001; Carty et al., 2006).
Importantly, Sarm1 is known to function in the nervous sys-
tem; Toll and interleukin 1 receptor domain protein (Tir-1), an
ortholog of Sarm1 in Caenorhabditis elegans, is highly concen-
trated at synapses (Chuang and Bargmann, 2005). Tir-1 receives
synaptic signals via interaction with CaMK, regulating the down-
stream ASK1–MKK–JNK pathway, further regulating olfactory
receptor expression (Figure 3) (Chuang and Bargmann, 2005).
Unlike the other TIR domain-containing adaptor proteins, Sarm1

is predominantly expressed in the mammalian brain (Lin et al.,
2014b) and preferentially expressed in neurons, where it also reg-
ulates neuronal survival by targeting JNK3 to the mitochondria
(Kim et al., 2007). In the brain, Sarm1 interacts with and receives
signals from syndecan-2 (Sdc2), a synaptic heparan sulfate pro-
teoglycan that triggers dendritic filopodia and spine formation as
well as regulates dendritic arborization in cultured hippocampal
neurons through the MKK4–JNK pathway (Figure 3). Sarm1-
deficient mice exhibit reduced dendritic arborization compared
to wild-type littermates (Chen et al., 2011). In addition to act-
ing downstream of Sdc2, Sarm1 is required for proper initiation
and elongation of dendrites, axonal outgrowth, and neuronal
polarization (Chen et al., 2011). These functions likely involve
Sarm1-mediated regulation of microtubule stability, as Sarm1
influences tubulin acetylation (Chen et al., 2011). Moreover,
Sarm1-deficient mice also exhibit a higher spine density on hip-
pocampal CA1 dendrites, in a mechanism involving mGluR5 (Lin
et al., 2014a). Perhaps of the highest importance with respect
to axonal growth, both Drosophila SARM1 (dSarm) and murine
SARM1 suppress Wallerian degeneration cell-autonomously for
weeks after axotomy. This indicates that the functionality of
Sarm1 as a pro-degenerative agent is conserved in mammals
(Osterloh et al., 2012). Several TLRs with significant impacts on
neuronal plasticity, including neurogenesis and axonal growth,

FIGURE 3 | SARM1-mediated signaling in C. elegans and humans.

In C. elegans, Sarm1/Tir-1 has been shown to regulate left–right
asymmetric expression of odorant receptor genes in olfactory neurons
via association with Unc43 (homolog to the mammalian CamKII), which
leads to downstream activation of the NSY/MKK/JNK signaling pathway.
In mammals, Sarm1 was shown to play multiple roles in controlling

neuronal morphology. Sarm1 physically interacts with transmembrane
heparan sulfate proteoglycan syndecan-2 (Sdc2) and mediates the
function of Sdc2 to control dendritic arborization. In addition, Sarm1
also regulates microtubule stability, establishment of neuronal polarity
and axonal outgrowth. These functions are likely mediated through the
MKK4/JNK pathway.
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were shown to exhibit pleiotropic effects on mouse cognitive
behavior (Okun et al., 2010a, 2012) (for an extensive review see
Okun et al., 2011). Similarly, SARM1 deficiency exhibits multiple
effects on various aspects of cognitive behavior (Lin and Hsueh,
2014). This includes a mild impairment effect on spatial learning
(tested using a T-maze) and impaired contextual-fear learning.
Interestingly, social interaction is also impaired in these mice
(Lin and Hsueh, 2014). It is not clear yet whether these effects
are solely developmental or whether Sarm1 affects adult cogni-
tive behavior independently of its effect on neuronal plasticity.
Moreover, it is not known whether the pleiotropic effects medi-
ated by SARM1 are part of a larger TLR3- or TLR4-dependent
endogenous activation or whether SARM1 mediates these effects
in a TLR-independent manner.

CONCLUSIONS
TLRs (mostly TLRs 2, 3, and 4) and their adaptor proteins
(MyD88, Sarm1) exhibit distinct effects on the different aspects of
neurogenesis throughout the development of the brain. This may
not come as a surprise, given the critical role of the Drosophila
Toll gene during the embryonic development of the fly, and
the immunological function it later undertakes in the adult
fly (Valanne et al., 2011). As indicated in the “open question”
section, it will be interesting to uncover whether other mem-
bers of the TLR family are involved in neurogenesis and what
mechanism underlies these effects downstream to TLRs in the
brain.

OPEN QUESTIONS IN THE FIELD:
• TLR2 typically forms heterodimers with TLR1 or TLR6. While

a deficiency of TLR2 has no impact on NPC proliferation, it is
not known whether deficiency of TLR1 or TLR6 affects NPC
proliferation.

• The impact of TLRs 5, 7, 8 or 9 has not yet been examined for
an effect of NPC proliferation.

• So far, the only TIR adaptor protein examined for their expres-
sion pattern during brain development were Trif, MyD88 and
Sarm1. It is interesting to examine the expression pattern of
Mal and TRAM during brain development. Further, it will be
interesting to assess whether these adaptor proteins have an
active role in brain development.

• Developmental deficiency for Sarm1 exhibits pleiotropic effects
on cognitive behavior. It is not clear, however, whether these
effects are solely developmental or whether Sarm1 affects adult
cognitive behavior independently of its effects on neuronal
plasticity.
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