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Compared to standard laboratory protocols, the measurement of psychophysiological
signals in real world experiments poses technical and methodological challenges due
to external factors that cannot be directly controlled. To address this problem, we
propose a hybrid approach based on an immersive and human accessible space called
the eXperience Induction Machine (XIM), that incorporates the advantages of a laboratory
within a life-like setting. The XIM integrates unobtrusive wearable sensors for the
acquisition of psychophysiological signals suitable for ambulatory emotion research. In
this paper, we present results from two different studies conducted to validate the XIM
as a general-purpose sensing infrastructure for the study of human affective states under
ecologically valid conditions. In the first investigation, we recorded and classified signals
from subjects exposed to pictorial stimuli corresponding to a range of arousal levels, while
they were free to walk and gesticulate. In the second study, we designed an experiment
that follows the classical conditioning paradigm, a well-known procedure in the behavioral
sciences, with the additional feature that participants were free to move in the physical
space, as opposed to similar studies measuring physiological signals in constrained
laboratory settings. Our results indicate that, by using our sensing infrastructure, it is
indeed possible to infer human event-elicited affective states through measurements of
psychophysiological signals under ecological conditions.
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1. INTRODUCTION
Decades of psychophysiological studies have demonstrated the
role of the Autonomic Nervous System (ANS) in modulating
human physiological responses (Andreassi, 2006; Cacioppo et al.,
2007; Boucsein, 2012). This has facilitated an important chan-
nel for the inference of human affective states. In particular, two
important physiological measurements of autonomic responses,
namely, the electrodermal response (EDR) and electrocardiogram
(ECG), have been widely used as indicators of psychological inter-
nal states and processes, due to their relative non-invasiveness,
easy quantification and reliability (see Berntson et al., 2007;
Dawson et al., 2007 for a review). ECG and EDR allow the extrac-
tion of heart-rate variability (HRV) and skin conductance (SC),
respectively. HRV constitutes an objective index of sympatho-
vagal balance (Stein et al., 1994; Acharya et al., 2006), while SC is a
direct measure of eccrine sweat glands activity and reflects activ-
ity within the sympathetic axis of the ANS (Fowles et al., 1981;
Valenza et al., 2010; Boucsein, 2012). EDR is acquired by mea-
suring the electrical conductance on the skin of the hand palm

(normally on the fingertips), where the concentration of eccrine
glands is higher. The recorded signal consists of a superposition of
two main components: a tonic level of skin conductance (SCL),
representing the baseline of the signal, and a series of super-
imposed phasic increases in conductance. Each of these phasic
elements represents a unitary skin conductance response (SCR),
which reflects the response of eccrine sweat gland activity to an
external stimulus (Boucsein, 2012). Heart rate is controlled by
both the sympathetic and the parasympathetic branches of the
ANS (Berntson et al., 2007). Among features that characterize
cardiac response, one of the most reliable and robust measures
with regard to ANS dynamics is HRV, which reflects the fluctu-
ations of the cardiac beat-to-beat time distance (Acharya et al.,
2006) and previous research has already shown that several HRV
spectral measures are strictly related to sympatho-vagal balance
variations (Stein et al., 1994; Valenza et al., 2013b). A broad con-
sensus now exists among researchers that variations in electrical
properties of the skin and cardiac activity are physiological mark-
ers of specific internal states associated to cognition and emotion
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(Ekman et al., 1983; Lang et al., 1993; Lang, 1995; Healey and
Picard, 2005; Greco et al., 2012; Lanatà et al., 2012; Valenza et al.,
2014).

Nonetheless, these physiological measures are prone to con-
tamination by noise and artifacts that dramatically reduce their
quality and reliability (Boucsein, 2012) and often occur on the
same bandwidth as the signal, thus affecting its precision and
informative utility. As a matter of fact, both ECG and EDR can be
severely affected by such artifacts if not properly treated. External
sources, such as the common power line noise (hum), can be
detected from the spectrogram of the recorded signal and success-
fully reduced employing online or offline filters (or a combination
of both). Other artifacts are due to physiological factors and are
more difficult to treat. For instance, deep or irregular breath-
ing, as well as speech, often induce an increase of non-specific
EDR components (Hygge and Hugdahl, 1985; Schneider et al.,
2003). In addition, physical activity itself can covary with the
recorded physiological signals (Picard and Healey, 1997). The
latter becomes a crucial issue in wearable systems, when acqui-
sition is performed under real life conditions. For this reason,
most research is often conducted under strictly controlled lab-
oratory settings or artificial clinical environments, where the
subject is usually wired to a fixed equipment and asked to avoid
gross body movements in order to ensure optimal conditions in
the acquisition of high quality signals. Strict laboratory settings,
however, introduce other limitations. For instance, physiologi-
cal responses, which are normally recorded for short segments of
time (mainly due to the discomfort produced by long term use of
the equipment) may not reflect the entire spectrum of emotional
experiences that occur under everyday situations (Picard, 2000;
Healey and Picard, 2005; Healey et al., 2010). These shortcomings
spurred an increased interest in the development and application
of wearable technologies to different fields of research from clin-
ical and rehabilitation to behavioral studies (Valenza et al., 2008;
Lanatà et al., 2010a; Pantelopoulos and Bourbakis, 2010; Poh
et al., 2010; Lanatà et al., 2011; Boucsein, 2012; Patel et al., 2012).
In addition, a good amount of ambulatory physiological research
has recently been directed toward the development of devices that
are both accurate and robust to motion artifacts, while, at the
same time, comfortable to wear, easy to use (Picard and Healey,
1997; Ebner-Priemer and Kubiak, 2007) and reliable for inves-
tigating physiological correlates of emotions in natural settings.
Despite these advances, experiments involving psychophysiologi-
cal measures of affective states in the natural world still present a
number of technical drawbacks such as loss of connectivity dur-
ing signal acquisition, fitting problems with the wearable devices,
difficulty in accurately labeling data (which often relies exclu-
sively on subjects’ self-assessment) and other external factors,
such as social interactions, that cannot be fully controlled by the
experimenter.

In this context, laboratory settings and life-like conditions do
not have to be seen as mutually exclusive paradigms, but can
rather be viewed as complementary to each other (Fahrenberg
et al., 2007). For instance, the use of Virtual Reality (VR) offers an
excellent compromise between the laboratory and natural world.
Through VR it is possible to create life-like environments where
users can act through natural movements and gestures, while, at

the same time, accounting for a systematic control of the stim-
uli and the variables that are studied. For this reason, we have
built the eXperience Induction Machine (XIM), an immersive
space we previously used to study human behavior in ecologically
valid conditions (Eng et al., 2005; Bernardet et al., 2007, 2010).
More recently, we used the XIM to investigate the salience of
social stimuli by measuring participants’ physiological responses
induced by spatial interaction with humans and avatars using a
commercial data acquisition system (g.MobiLab, g.Tec, Austria).
We showed that the salience of a social stimulus is directly mapped
onto the physiological correlates of arousal (Inderbitzin et al.,
2013). With the aim of conducting ambulatory emotion research,
we expanded the XIM’s capabilities with the integration of new
wearable sensors for the acquisition of psychophysiological sig-
nals (Omedas et al., 2014). These devices are capable of real-time
measurements of body posture, arm orientation, hand position,
fingers movements, as well as psychophysiological signals such as
ECG and EDR. These signals were specifically selected because
of their reliability in inferring affective states and the possibil-
ity to integrate dedicated textile-based sensors on small-scale
wearable devices (Paradiso and Caldani, 2010; Carbonaro et al.,
2012).

In this paper we present results from two different stud-
ies conducted to validate the XIM as a general-purpose sensing
infrastructure for investigating human affective states in life-
like conditions. In the first investigation, we aimed to validate
the quality of the signals acquired through our new pool of
wearable sensors. To do so, we exposed subjects to pictorial stim-
uli, covering the full range of arousal levels, while walking and
performing hand gestures in the XIM environment. By inter-
preting the participants’ ECG and EDR signals we were able to
correctly classify and predict the presented stimuli in terms of
arousal classes (a short version of the results was presented in
Betella et al., 2014).

In the second study, we investigated whether we can correctly
infer the features of conditioning from the signals recorded in a
subject freely acting in a physical space while trained with a clas-
sical conditioning protocol. Classical conditioning has for long
been a well-grounded paradigm in cognitive and clinical neuro-
science. In particular, conditioning has been widely investigated
using EDR (see Boucsein, 2012 for a comprehensive review) and
applied to different clinical treatments for anxiety, phobias and
other behavioral disorders (Field, 2006). Our results not only
demonstrate behavioral features of conditioning in an ecolog-
ical setting, but also show how psychophysiological signatures
of conditioning can be effectively extracted from the acquired
signals.

In both our studies, the main goal was to use our sensing
infrastructure (i.e., the XIM and the wearable sensors) to tackle
the well-known challenge of measuring psychophysiological sig-
nals in the presence of movements and gestures, thus advancing
beyond standard laboratory protocols. The obtained results con-
firm the validity of our approach for the inference of human
event-elicited affective states in life-like conditions. We show
that using our custom-made technology, it is indeed possible to
infer participants’ emotional states (i.e., arousal) from acquired
psychophysiological signals.
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2. MATERIALS AND METHODS
2.1. THE SENSING INFRASTRUCTURE
2.1.1. The eXperience Induction Machine (XIM)
The XIM (see an illustration in Figure 1) covers an area of about
25 m2 and is equipped with a number of effectors that include
8 projectors, 4 projection screens, a luminous interactive floor
(Delbruck et al., 2007) and a sonification system (Le Groux et al.,
2007). Along with the effectors, the XIM features a pool of sensors
to measure users’ explicit behavior and implicit states, including a
marker-free multi-modal tracking system (Mathews et al., 2012),
microphones and floor-based pressure sensors.

2.1.2. Wearable sensing systems
The wearable devices used in this study were integrated into two
main interfaces: a sensing glove for the simultaneous acquisition
of hand gestures and EDR, and a sensing shirt for the acquisition
of ECG and respiration. The choice of textile integrated sensors
was primarily dictated by the advantages in terms of portability
and usability for long-term monitoring and because they provide
minimal constraints in terms of natural gestures and movements.

2.1.2.1. Sensing glove. The sensing glove (Figure 2) was specif-
ically designed for the XIM space and it was conceived to
measure both explicit (gestural information through forearm ori-
entation and finger positions) and implicit (psychophysiological
inference through EDR) signals. Two textile electrodes interwo-
ven in the index and middle fingertips are used to measure
EDR. In a previous work, electrical characteristics of interwoven
textile electrodes were investigated in comparison with standard

Ag/AgCl electrodes through simultaneous acquisition of the same
EDR signals (Lanatà et al., 2012), where the impedance of textile
electrodes in the EDR bandwidth was evaluated using a stan-
dard reference electrolytic cell and a high precision impedance
meter. This study demonstrated that textile electrodes are equiva-
lent to standard Ag/AgCl electrodes, thus allowing the acquisition
of high quality signals. Grounded on previous results obtained
with conductive elastomer sensors (Tognetti et al., 2006; Vanello
et al., 2008), finger motion tracking is obtained through five

FIGURE 2 | The sensing glove and its main components. We refer the
reader to the main text (Section 2.1.2.1) for a detailed explanation of the
features.

FIGURE 1 | Schematic illustration of the eXperience Induction Machine

(XIM). XIM is a 5 × 5 × 4 m infrastructure equipped with a number of
effectors (8 projectors, 4 projection screens, a luminous interactive floor and
a sonification system) and sensors (marker-free multi-modal tracking system,

microphones and floor-based pressure sensors). In addition, a custom-built
sensing glove is used for the acquisition of hand gestures and electrodermal
response (EDR), while a sensing shirt is used for the acquisition of
electrocardiogram (ECG) signals and respiration (BR).
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textile deformation sensors integrated on the glove metacarpo-
phalangeal hand joints. Sensors are made of knitted piezoresistive
fabric (KPF) material, previously demonstrated to be a valid
choice for biomechanical and cardiopulmonary data acquisition
(Taccini et al., 2008; Pacelli et al., 2013). Finger movements pro-
duce local deformations in the fabric that modify the electrical
resistance of the sensors, which is highly correlated with the single
finger degree of flexion. A customized algorithm for hand gestures
recognition was developed (Carbonaro et al., 2012) to deal with
the slow baseline drift of the sensor signal which is due to intrinsic
characteristics of the textile substrate. Both EDR and deformation
signals are acquired in real-time through a dedicated wearable and
wireless electronic unit. Moreover, forearm orientation is mea-
sured by an Inertial Measurement Unit (HMC6343, Honeywell,
MN, USA) embedded in the glove’s electronics and worn on the
dorsal area of the forearm close to the wrist.

Compared with other similar devices (e.g., the Aladin sen-
sor glove Ritter, 2009), our sensing glove is not limited to the
measurement of EDR, yet it integrates a broader pool of sen-
sors while maintaining a high level of comfort and usability.
Acquisition of fingers position and forearm orientation through
wearable sensing systems allows to track fine user’s actions more
precisely and enable multi-user scenarios (i.e., avoiding the com-
mon problem of camera occlusion). In immersive environments,
such as XIM, the use of low cost video-based systems like Kinect
and LeapMotion does not guarantee an optimal resolution to
track finger angles and hand/forearm orientation, especially when
the users are not correctly positioned with respect to cameras.
In addition, professional infrared (IR) sensors and magnetic or
radio based tracking systems are usually prone to interference in
cave-like environments due to the simultaneous presence of light
projection systems, metal scaffolding and wireless devices.

2.1.2.2. Sensing shirt. The sensing shirt (Smartex srl, Italy)
(Paradiso et al., 2005) is used in XIM to acquire ECG, Breathing
Rate (BR) and tri-axial accelerometer data. It is equipped with a
tiny electronic battery-powered unit that streams acquired data
through a Bluetooth connection contained in the front pocket.
ECG is acquired through two interwoven textile electrodes placed
inside the shirt near the lower section of the pectoral muscles. BR
is acquired through a KPF strain sensor interwoven in the shirt
(Lanatà et al., 2010b; Paradiso and Caldani, 2010). This wear-
able system has been employed in previous studies on long-term
monitoring of chronic patients, focusing on the early preven-
tion of cardiovascular diseases (Scilingo et al., 2005). This sensing
shirt has also been adopted in human-robot interaction studies
aimed to investigate psychophysiological states of autistic chil-
dren (Mazzei et al., 2012). The states were inferred by analysing
signals acquired through the sensing shirt during the therapeutic
protocol (Mazzei et al., 2010, 2011; Lazzeri et al., 2014) and the
obtained results empirically validated the device’s capabilities in
the acquisition of high quality signals suitable for the analysis of
psychophysiological measures.

2.1.3. Data recording
The data coming from the wearable devices is conveyed to the
XIM sensing platform that captures and processes in real-time

raw sensors data (Wagner et al., 2013a). This platform is imple-
mented using the Social Signal Interpretation (SSI) framework
(Wagner et al., 2013b), a set of tools for the recording, analysis
and recognition of human behavior in real-time. The data stream
of each sensor is transmitted through dedicated separate chan-
nels and preprocessed. The sensing platform then synchronizes
the incoming streams by establishing a stable connection with
all the sensors and by buffering data streams. Single buffers are
compared upon regular time intervals according to an internal
timestamp and synchronized, if necessary. Following the synchro-
nization, each signal is processed separately to isolate noise and
artifacts from relevant information.

2.2. ELECTROCARDIOGRAM
From the data recorded via the sensing shirt we computed the
HRV signal as the variability of the distance between consecu-
tive R-peaks over time. Currently, R-wave peaks were taken as the
reference point. It is worthwhile noting that R-peak is the most
reliable ECG-measure against noise-artifact that can be made
with respect to other possible points of the QRS complex. Before
extracting the R-peaks, the ECG signal was filtered using a Moving
Average Filter (MAF) to extract and subtract the baseline since it
is commonly affected by low frequency disturbances (e.g., respira-
tion activity). The Heart Rate (HR) was defined as HR= 60/tR−R,
where tR−R is the time interval between two successive R-peaks.
In order to detect QRS complexes, we treated the ECG signal
using the automatic QRS detection algorithm proposed by Pan
and Tompkins (Pan and Tompkins, 1985) and after this proce-
dure R-peaks could be extracted. The obtained HR resulted in a
time series of non-uniform RR intervals, hence it was interpo-
lated and re-sampled in accordance to the recommendations of
Berger et al. (2007). In this study, we solely focused on the inter-
vals between normal (sinus) beats (NN-intervals). Given RR time
series, a set of features were extracted in both time and frequency
domains as well as by using non-linear methods (Acharya et al.,
2006; Valenza et al., 2012a), which are summarized in Table 1.
In the time domain, we extracted statistical parameters and mor-
phological indices. Time-domain features were computed within
consecutive non-overlapping time windows of 30 s in which a
series of RR intervals were present. It is worthwhile noting that,
for short-term ECG acquisitions (i.e., lower than several hours),
windows should not be less than 20 s (Camm et al., 1996). More
specifically, we derived simple MNN and SDNN, corresponding
to the mean value and to the standard deviation of the NN inter-
vals, and several statistical measures, such as standard error of
the mean, root mean square, mean of squares, sum of squares,

Table 1 | Summary of the features extracted from HRV/HR and SC

signals.

Features extracted Signal

MNN, SDNN, RMSSD, pNN50,
HRV/HR

VLF, LF, HF, LF/HF, SD1, SD2, E

Lat, nSCR, Mean.SCR, Var.SCR, Max.SCR
SC

AmpSum, AUC.SCR, Mean.Tonic, Var.Tonic, NSR
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skewness, kurtosis’ excess coefficient, mean absolute deviation,
root mean square of successive differences of intervals (RMSSD),
as well as several central moments. We also computed the number
of consecutive differences of intervals, which differ by more than
50 ms (NN50) and the same features normalized with respect to
the total number of intervals (pNN50).

In addition to the above statistical measures, a series of geo-
metric measures were calculated from the RR intervals histogram.
The HRV triangular index was obtained as the integral of the
histogram (i.e., total number of RR intervals) divided by the
height of the histogram, which was dependent on the selected bin
width. Finally we extracted the TINN which corresponds to the
baseline width of the RR histogram evaluated through triangular
interpolation (see Camm et al., 1996 for details).

In the HRV frequency domain analysis, three main spec-
tral components were distinguished in a spectrum calcu-
lated from short term recordings: Very Low Frequency (VLF)
[0.003–0.04 Hz], Low Frequency (LF) [0.04–0.15 Hz], and High
Frequency (HF) [0.15–0.4 Hz]. Short term recordings were
intended as the time duration of HRV signal segments. In this
work, HRV segments were in agreement with the picture pre-
sentation time. It is well known from the literature that the
distribution of the spectral power gives an indication of modu-
lations in the Autonomic Nervous System (ANS). Current HRV
research in the frequency domain suggests that even though
the frequency band division represents a unique non-invasive
tool to achieve an assessment of autonomic function, the use of
HF and LF components does not allow to precisely assess the
state of sympathetic activation. Therefore, along with the esti-
mation of the Power Spectral Density in the VLF, LF and HF
band, we also calculated the LF/HF PSD Ratio which provides
information about the Sympatho-Vagal balance (Camm et al.,
1996).

In regards to non-linear analysis of HRV, it is reasonable to
assume that non-linear mechanisms are involved in the genesis
of HRV. In the latest decade, several non-linear measures have
been used to investigate HRV behavior that do not fully com-
ply with standard measures, neither in the time domain nor in
the frequency domain. Further details on HRV non-linear meth-
ods can be found in Fusheng et al. (2000); Zbilut and Webber
(2006); Chua et al. (2008); Valenza et al. (2012a,b, 2013a). In
this work, we used the Poincaré plot (a graphical representation
of the correlation between successive RR intervals) and entropy.
More specifically, from the Poincaré plot we used the short and
long term variability (i.e., SD1 and SD2). Moreover, non-linear
measures often suffer from the curse of dimensionality, i.e., they
cannot reliably be estimated because of the lack of a sufficient
number of points in the time series. For this reason, we estimated
system complexity which allows to quantitatively characterize the
dynamics even with short time series (Kurths et al., 1995; Wessel
et al., 2000). Entropy was also employed since it has already been
adopted in HRV analysis with encouraging results (Pincus and
Goldberger, 1994).

2.3. ELECTRODERMAL RESPONSE
EDR was obtained as the ratio between an imposed continu-
ous voltage of 0.5 V applied to the index and middle fingers

and the flowing current. In order to analytically split the EDR
signal into its tonic (SCL) and phasic (SCR) components we
adopted a convolution model (Benedek and Kaernbach, 2010a)
where the Sudo-Motor Nerve Activity (SMNA) can be seen as
the input of the model whose output is the EDR. The Impulse
Response Function (IRF) is represented by a biexponential func-
tion (called the Bateman function) (Garrett, 1994), which is
defined as follows:

IRF(t) = (e
− t

τ1 − e
− t

τ2 ) · u(t) (1)

where u(t) is the stepwise function. Consequently, the result
of the deconvolution between the EDR signal and IRF can be
defined as the driver function, describing the SMNA behavior.
This processing method allows for the identification of intrinsi-
cally overlapped inter-stimulus phasic responses, which are due
to a sequence of stimuli in time. Further details on the EDR
deconvolution method can be found in Benedek and Kaernbach
(2010a).

Skin conductance decomposition to its components was per-
formed using Ledalab software package in MATLAB (Benedek
and Kaernbach, 2010b). The signal was filtered by means of a
low pass zero-phase forward and reverse digital filter (Mitra and
Kuo, 2006) with a cutoff frequency of 2 Hz. The phasic features
were calculated within a time window (response window) up to
5 s length following the stimulus onset. We extracted the number
of SCRs within the response window (nSCR), the latency of the
first SCR (Lat), the Amplitude-Sum of SCRs reconvolved from
phasic driver-peaks (AmpSum), the average phasic driver activ-
ity (Mean.SCR) as the time integral over response window by
size of response window, the variance of the phasic driver signal
(Var.SCR), the Phasic driver area under curve (AUC.SCR) and the
maximum phasic driver amplitude (Max.SCR).

From the tonic driver signal, we obtained the follow-
ing features: average level of (decomposed) tonic component
(Mean.Tonic), variance of the tonic driver signal (Var.Tonic) and
number of the non-specific response (i.e., the spontaneous skin
conductance response unrelated to a specific stimulus) (NSR). See
Table 1 for a summary of the features extracted.

2.4. MOVEMENT DETECTION AND ARTIFACTS
Along with the acquired ECG and EDR signals, acceleration, fin-
ger flexion and forearm orientation were also recorded using
the tri-axial accelerometer, textile deformation sensors and the
Inertial Measurement Unit embedded in the sensing shirt and
glove (see Section 2.1.2 for more details). Moreover, in the first
study all the subjects were video recorded for the entire duration
of the experiment, and a precise annotation of the type of move-
ments performed by the subjects was obtained. These sources
of information were then used to isolate body movements (e.g.,
in our scenario the subject walks in XIM, grabs virtual objects
and/or points with the hand toward different parts of the virtual
scene), and subsequently identify those parts of the physiological
signals that were potentially affected by motion artifacts.

In general, we expect portions of the acquired signals to be
affected by artifacts, that are alternated with unaffected “clean”
segments. The amount of affected signal increases depending
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on the intensity of the physical activity and frequency of move-
ment. In this context, we hypothesize that, at least in the case of
mild physical activity related to interaction in virtual reality, the
segments of clean signals that can be extracted are sufficient to
allow for a reliable identification of event-elicited affective states.
Motion artifacts mostly affected the EDR signal due to the ges-
ture of grabbing that induces a physical movement of the EDR
electrodes. ECG signal measured on the subject’s chest, instead, is
normally not affected by hand or arms gestures. For this reason
ECG recording was preprocessed as reported in Section 2.2 and
the entire time window related to the stimuli presentation was
used to further analyze the ECG signal.

An example of EDR signals acquired from the sensing glove
in a representative subject, with and without the motion artifact
induced by a series of grabbing gestures, is provided in Figure 3A.

To do so, we acquired simultaneously EDR using two gloves, on
the left and on the right hand, respectively. We instructed the
subject to relax as much as possible (to avoid changes in affec-
tive states) and to use only the right hand to perform a series of
grabbing gestures. Given the high impact of this gesture on the
acquired EDR measure, the signal affected by this artifact can-
not be used for affective states classification. These artifacts are
due to skin stretch and/or compression and are particularly evi-
dent during the grabbing events, when the electrodes mounted
on the glove fingertips physically touch the hand palm. Figure 3B
illustrates the glove finger signals in correspondence to the EDR
red trace in Figure 3A and clearly shows that fingers motion and
EDR signal affected by the gesture are highly correlated. This
qualitative observation is further confirmed by a Fourier analysis
performed on fingers flexion and EDR during slow hand grabbing

FIGURE 3 | (A) Averaged EDR signals of a subject while performing a
grabbing gesture with the right hand (red trace) whereas the left hand is in
rest conditions (green trace). (B) Right hand fingers flexion signals acquired in
correspondence of the EDR recordings of (A). The peaks of the flexion occur

at the same time of the peaks observed in the EDR. Each trace in (A,B) is the
average of three sweeps ± standard deviation. (C) Comparison of EDR and
finger flexion spectral contents. The Y axis shows the normalized amplitude
of the Fourier transform.
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tasks (Figure 3C) showing a strong correlation in frequency con-
tent of EDR and motion signals.

The portions of the signals that were strongly affected by arti-
facts (e.g., grabbing gestures) were excluded from the analysis
with the aim of demonstrating that the remaining physiologi-
cal signals associated to the induced stimuli were sufficient to
accurately classify users’ affective states. Figure 4 shows a 90-s
segment of annotated recording of one participant in our first
study (Section 3), where the motion events captured through the
sensors and the EDR signal are labeled according to the natural
movements of the subject extracted from the analysis of the video
recorded during the experimental trial. With the exception of the

right hand grab event occurring after 12 s of recording (and thus
excluded from the analysis), the impact of the body movements
on the remaining portion of the EDR signal did not produce
strong artifacts and allowed for the extraction of the features
used to classify the subject’s affective state. Motion events, such as
hand grabbing, generate synchronous spikes on the EDR signal,
as shown in Figure 3. The grabbing event can be easily extracted
from the finger sensors through adaptive threshold based algo-
rithms such as the one described in Carbonaro et al. (2012),
that were implemented directly in our sensing platform SSI (see
Section 2.1.3). In the specific context of ambulatory research of
event-elicited emotion using our sensing infrastructure (i.e., the

FIGURE 4 | 90-s recording from a subject while conducting the

experiment described in study 1. The signals were acquired from the
accelerometer (sensing shirt), the IMU and the EDR sensors (sensing glove).

The annotated body movements events were extracted from the recorded
video and synchronized with the signals. Y axis of the EDR signal is truncated
to allow a better visualization of the signal.
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work here presented), strong artifacts produced by movements
accounted only for a small portion of the data collected (corre-
sponding to the grabbing events) and were manually excluded
from the analysis by means of post-processing techniques.

3. STUDY 1
The aim of the first study was to correctly discriminate sti-
mulus−elicited subjective arousal levels from the ECG and EDR
recorded signals. We expected to observe a significant increase
in SC peaks and HR when the subjects were exposed to highly
arousing pictures. Moreover, we expected to observe significant
changes in the values of the features extracted from the psy-
chophysiological signals, in accordance to the arousal of the
stimuli.

3.1. SAMPLE AND PROTOCOL
A total of 7 voluntary subjects (4 females and 3 males, mean age
= 29.7, SD = ±3.9) recruited from the University campus par-
ticipated to this empirical validation. Before participating to the
experiment, all the subjects read and signed an informed consent
form declaring that they clearly understood all the experimen-
tal procedures and the aim of the study. The protocol of the
experiment was approved by the local Ethical Committee.

Twelve different pictorial stimuli were selected from the IAPS
pictures collection (Lang et al., 2008). Each stimulus represented
a different rating value of arousal, thus covering the entire scale of
arousal from a minimum rating of 1.72 to a maximum of 7.34 (see
Table 2 for a summary of the stimuli used for this study). Before
being exposed to the images, participants were helped wearing the
sensing shirt and the glove by the experimenter. A short test phase
to verify the correct positioning and functioning of the sensors
followed. Participants were then instructed to enter the XIM and
stand at the designated starting point in the center of the room.
A schematic illustration of the experimental protocol is shown
in Figure 5. A 5-min baseline recording phase followed, during

Table 2 | Selection of the 12 stimuli from the International Affective

Picture System (IAPS) database.

ID IAPS Description Arousal Subset Subset Subset

Catalog ID mean (SD) α β γ

1 7175 Lamp 1.72 (±1.26) A1 A1 A1

2 7020 Fan 2.17 (±1.71) A1 A1 A1

3 5030 Flower 2.74 (±2.13) A1 A1 A1

4 7547 Bridge 3.18 (±2.01) A1 – A1

5 7512 Chess 3.72 (±2.07) A1 – A2

6 9280 Smoke 4.26 (±2.44) – – A2

7 9171 Fisherman 4.72 (±2.17) – – A2

8 9582 Dental Exam 5.29 (±2.21) A2 – A2

9 9611 Plane Crash 5.75 (±2.44) A2 – A3

10 9622 Jet 6.26 (±1.98) A2 A2 A3

11 9412 Dead Man 6.72 (±2.07) A2 A2 A3

12 3000 Mutilation 7.34 (±2.27) A2 A2 A3

The arousal ratings are reported for each stimulus, along with the class assigned

in the data subsets α, β, and γ .

which a black screen was displayed while participants were asked
to maintain a natural standing and relaxed posture. After baseline
acquisition, participants were told that they were free to walk
and to assume a natural posture during the entire duration of
the experiment. Subsequently, the first image was displayed on
the frontal screen of the XIM. The order of presentation of the
stimuli was randomized for each experimental session and sub-
ject. Each stimulus was displayed for 20 s and it was followed by a
“beep” sound to alert the user about the possibility to proceed
with the following trial. To start the new trial, the participant
was instructed to make a “grabbing” gesture with the hand that
wore the sensing glove. This event was interpreted and recorded
by the sensing platform to provide an accurate time annotation
for each stimulus. A 20 s black screen was inserted between each
trial. All the subjects were video recorded using a video camera
placed behind them on the XIM floor and the information was
used as an additional source for movements’ annotation.

3.2. DATA ANALYSIS
A number of fixed time windows were used to segment the sig-
nals (EDR, HRV) in accordance to the experimental protocol. To
compute each feature of the skin conductance’s phasic compo-
nent, the EDR signal was segmented in 5 s windows aligned to
the onset of the visual stimulus. To compute the HRV features we
instead used longer windows of 20 s corresponding to the entire
duration of each visual stimulus.

The extracted features (see Table 1) were divided into three
subsets α, β and γ in accordance with the arousal ratings of the
stimuli (see Table 2):

• α: A1 refers to arousal ratings 1–3 (low), A2 refers to arousal
ratings 5–7 (high). Each class comprises 5 stimuli.

• β: A1 refers to arousal ratings 1–2 (low), A2 refers to arousal
ratings 6–7 (high). Each class comprises 3 stimuli.

• γ : A1 refers to arousal ratings 1–3 (low), A2 refers to arousal
ratings 3–5 (medium), A3 refers to arousal ratings 5–7 (high).
Each class comprises 4 stimuli.

A statistical inference analysis was conducted by means of both
parametric and non-parametric tests, in accordance to the data
distribution, to verify the null-hypothesis of having no statisti-
cal difference between the classes for both the 2-class (datasets
α and β) and the 3-class (dataset γ ) problems. The significance
level for all the tests was set to 0.05. A pattern recognition phase
followed the statistical analysis to investigate whether the arousal
content of the stimuli could be discriminated in 2 and 3 classes of
α, β and γ respectively, considering the aforementioned subset of
features.

3.3. PATTERN RECOGNITION
An inter-subject analysis was performed for all subjects and all
extracted features. The subsets α and β represent a 2-class prob-
lem, while subset γ represents a 3-class problem. Taking into
account the entire dataset of features, the dimensionality of the
features space was reduced through the application of Principal
Component Analysis (PCA), considering the number of PCs that
would be sufficient to explain 90% of the total variance.
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We performed a classification phase to classify each sample
of the dataset according to the set of classes. Among different
classifiers, the Linear Discriminant Classifier (LDC) (Härdle and
Simar, 2007), was the one that performed better in terms of accu-
racy and consistency in arousal discrimination. The performance
of the classification process was examined through the confusion
matrix, which expresses the capacity of the algorithm to recog-
nize each sample as belonging to one of the predefined classes (a
more diagonal confusion matrix corresponds to a higher degree of
classification). The validity of the classification model was eval-
uated through the cross-validation method. For each validation
step, the classifier was trained on the 80% of features randomly
extracted from the whole dataset (training set) and tested on the
remaining 20% (test set). More specifically, we performed 40-
fold cross-validation steps in order to obtain unbiased results.
The final results were expressed as the mean and the standard
deviation of the 40 computed confusion matrices.

3.4. RESULTS
We assessed the non-Gaussianity of the features distribution using
Kolmogorov–Smirnov tests with Lilliefors correction (p < 0.05).
The α and the β datasets were submitted to a Mann–Whitney test
to check for a difference between class A1 (low arousal) and class
A2 (high arousal). The performed analysis on the α subset of fea-
tures showed no statistical significance, whilst for the β subset LF
resulted to be significantly higher in A2 than A1 (p < 0.05; Mdn
A1 1097; Mdn A2 1684).

We conducted a Kruskal–Wallis (KW) test among the three
classes A1 (low arousal), A2 (medium arousal) and A3 (high
arousal) of the γ dataset. The obtained results showed a signifi-
cant effect (p < 0.01). Mann–Whitney tests were used to follow up
these findings. A Bonferroni correction was applied to compen-
sate for multiple comparisons. The pairwise comparisons showed
a significantly higher value of RMSSD for A3 as opposed to A1

(p < 0.05; Mdn A1 195.98; Mdn A3 218.67) and a significantly
higher value of HF for A3 as opposed to A1 (p < 0.05; Mdn A1

528.22; Mdn A3 727.46).
We assessed the parametric distribution of the mean HR values

for each one of the three datasets by means of a Kolmogorov–
Smirnov test with Lilliefors correction (p> 0.05). We submitted
the mean HR in the α and the β datasets to an Independent
Samples T-test. The results showed no statistical differences (p >

0.05) between the two classes in both the α dataset (mean A1

= 82.40, SD = ±16.5; mean A2 = 80.31, SD = ±12.9) and the
β dataset (mean A1 = 82.17, SD = ±15.6; mean A2 = 79.85,

SD = ±13.4). To test for differences in mean HR between the
3 classes of the γ dataset, we conducted an ANOVA. No signif-
icant effect was found (mean A1 = 82.88, SD = ±16.9; mean A2

= 82.94, SD = ±15.4; mean A3 = 79.93, SD = ±13.1). Given all
of the physiological features extracted from HRV and SC, we dis-
criminated by a pattern recognition stage (Section 3.3) the two
levels of arousal for the α and β datasets and the three levels
of arousal for the dataset γ . As a result of the pattern recog-
nition phase, the LDC classifier accounted for a high accuracy
in the recognition of both the 2-class and the 3-class problems
(Tables 3, 4 respectively).

The multivariate analysis with LDC for the entire dataset
accounted for an accuracy between 73.3% and 88.9% in the 3-
class problem (low, medium and high arousal), and exceeding
87% in the 2-class problem (low and high arousal).

3.5. BODY MOVEMENTS AND SIGNALS ACQUISITION
To exclude the possibility that the overall accuracy of the clas-
sification could be biased by body movements systematically
associated to the arousal of the stimuli presented, we quantified
the subjects’ motor activity for each class of stimuli. To do so, we
calculated the sum of the standard deviation for the three axes
for both acceleration and orientation data within time windows
equal to (or greater than) 20 s, that correspond to the presentation

Table 3 | Confusion matrix of the LDC classifier for the 2-class

problem for α and β datasets.

Dataset α Dataset β

LDC A1 A2 A1 A2

A1 87.27 ± 6.19 7.72 ± 15.12 95.36 ± 6.77 0.00 ± 0.00

A2 12.72 ± 6.19 92.27 ± 15.12 4.64 ± 6.77 100.0 ± 0.00

The results were obtained after 40 cross-fold validations.

Table 4 | Confusion matrix of the LDC classifier for the 3-class

problem for γ dataset.

LDC A1 A2 A3

A1 88.89 ± 10.19 2.78 ± 6.11 5.56 ± 10.44

A2 7.72.56 ± 7.45 85.56 ± 12.01 21.11 ± 13.74

A3 3.89 ± 5.43 11.67 ± 11.09 73.33 ± 11.29

The results were obtained after 40 cross-fold validations.

FIGURE 5 | Experimental protocol of Study 1. A black screen is
presented during the first 5 min of the experimental session while the
subject is maintaining a natural standing and relaxed posture.

A sequence of 12 pictorial images extracted from the IAPS database
and followed by a black screen is then presented and the physiological
measures collected.
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of the pictorial stimuli, thus obtaining two maximized activity
indexes (Maximized Acceleration Index and Maximized Rotation
Index). Using these indexes, we conducted an intra-subject analy-
sis to compare the subjects’ motor activity to the arousal classes
identified in the 3 data subsets (see Section 3.3). We assessed
the homogeneity of variance between the classes by conducting
within-subject Levene tests. Our results did not show statisti-
cally significant differences across classes neither in the α and β

subsets, nor in the γ subset (p > 0.05).
Additionally, we conducted an inter-subject analysis. We com-

puted the standard deviation of acceleration and orientation for
all the subjects within the time window that corresponds to the
stimuli exposure and compared the obtained values to the classes
of the 3 data subsets. Using the Levene test for both the activity
indexes, we did not find statistically significant differences across
classes neither in the α and β subsets (p > 0.05), nor in the γ

subset (p > 0.05) (Figure 6).
The outcome of these two analyses indicates the homogene-

ity of variance in the activity indexes across the classes in the
3 data subsets, hence showing that the results obtained through
the acquired psychophysiological signals were not due to artifacts
produced by the subjects’ motor activity.

4. STUDY 2
The second study was designed to empirically validate the XIM
infrastructure and its wearable sensors using a classical condition-
ing (CC) task. Classical conditioning has been extensively used
to study autonomic responses in humans and other species due
to its non invasiveness and the relatively fast underlying learning
processes (Fanselow and Poulos, 2005; Boucsein, 2012), allowing

a direct comparison with results already present in literature. In
the CC paradigm, subjects learn to predict the occurrence of an
aversive event (unconditioned stimulus or US, i.e., a mild elec-
trical shock or a loud noise) from contextual cues (conditioned
stimulus or CS, i.e., a tone or a light), which, after several pre-
sentations of the CS−US pairings, results in the expression of an
anticipatory conditioned response (CR) (Pavlov, 1927; Rescorla,
1966; Dickinson and Mackintosh, 1978; Clark and Squire, 1998;
Maren, 2001; Inderbitzin et al., 2010). In summary, our primary
objective was to verify whether we can reliably extract signa-
tures of EDR and ECG conditioning from the recordings of freely
moving subjects in a VR scenario using virtual objects and IAPS
pictures as conditioned and unconditioned stimuli, respectively.
We expected to observe significantly stronger skin conductance
responses to the CS events that were followed by a high arousing
US by the end of the acquisition protocol. We further expected to
observe longer reaction latencies during the trials where the CSs
were followed by an aversive US image. In regards to the HRV, we
expected to find a significant variation in the vagal control of the
heart going from the acquisition to the extinction phase, along
with a reduction of the global activity.

4.1. SAMPLE
A total of 11 voluntary subjects (7 females and 4 males, mean
age = 27, SD = ±4.51) recruited from the University campus
participated in the study. All participants completed and signed
an informed consent providing information about the motiva-
tion of the study, the procedures adopted and the storage policy
of the data collected. Subjects were informed about the possi-
bility to leave the experiment at any moment if they were not

FIGURE 6 | Acceleration (top) and rotation (bottom) of all the

subjects across the classes of arousal of the stimuli for the 3

data subsets. The Maximized Acceleration Index and the Maximized
Rotation Index are calculated as the sum of the standard deviation

of the 3 axes (σX+σY+σZ) of the accelerometer and the IMU
embedded in the sensing shirt and glove, respectively. The p-values
reported in each plot indicate homogeneity of variance across the
classes.
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feeling comfortable with the experimental settings. The study was
reviewed and approved by the local Ethical Committee.

4.2. CONDITIONING PROCEDURE AND EXPERIMENTAL DESIGN
Before starting the experimental session, participants were pro-
vided with task instructions and fitted with the sensors by the
experimenter. Subjects were then left alone in the XIM for 5 min
to relax and get acquainted with the sensors and the XIM envi-
ronment. An interactive virtual scenario consisting of a realistic
3D model of an equipped living room designed with SketchUp
(http://www.sketchup.com) and rendered using Unity3D (http://
unity3d.com) was then projected on the frontal and the two
lateral screens of the XIM (Figure 7).

The experimental protocol consisted of three different ses-
sions in a within-subjects design: an acquisition and an extinction
session that were followed by a self-assessment questionnaire to
test for awareness of the contingencies between the stimuli pre-
sented. During each learning phase, participants were presented
with a conditional visual stimulus (a photo camera, CS+, or
a remote control, CS−, representing the reinforced and non-
reinforced stimuli, respectively) that they had to collect from
the virtual cabinet through a grabbing gesture. Once collected,
a high or low arousal IAPS classified image (representing US+
and US− respectively), was displayed on the virtual TV screen.
Based on the image segmentation obtained in the first study, we

selected our stimuli from two subsets of images belonging to the
negative (high arousal ratings) and neutral (low arousal ratings)
categories of the IAPS database. In more detail, the acquisition
phase consisted of 18 intermixed trials for each CS type presented
in a random order (Figure 8). Each one of the 9 CS+ stimuli
was followed by a high arousing image (US+, mean valence =
2.02, SD = ±1.44 and mean arousal = 6.95, SD = ±2.04), while
the CS− stimuli were followed by a low arousing image (US−,
mean valence = 5.06, SD = ±1.13 and mean arousal = 2.42,
SD = ±1.65). Each trial followed a fixed guided sequence that
drove the participant through the trial. USs were displayed for
15 s and during the acquisition phase they were followed by a
black image for an interval of 17 ± 3 s. Following the acquisi-
tion phase, participants were left inside the room for 5 min to rest
before starting the following session. The extinction phase con-
sisted of 18 intermixed trials for each CS within the same context
(Figure 9), always followed by a neutral image (US− trials only).
At the end of the extinction phase the participants were asked
to fill the self-assessment questionnaires, then they were assisted
by the experimenter in the removal of the equipment and finally
dismissed.

4.2.1. Questionnaires
To measure subjective affective reactions to the stimuli, we
used both a computer interactive version of the Self-Assessment

FIGURE 7 | Study 2: the VR scenario displayed in XIM with 180 degrees immersive projections. The participant (here represented as an avatar) starts at the
center of the room. The cabinet on the left contains the CS (either a photo camera or a remote control), while the TV displays the US (images from IAPS database).

FIGURE 8 | Study 2: timeline of an acquisition phase trial. The CS is displayed in the cabinet as a virtual object (photo camera or remote control). As soon as
the participant grabs the CS, the US is displayed for 15 s. A black screen follows for 15 s.

www.frontiersin.org September 2014 | Volume 8 | Article 286 | 11

http://www.sketchup.com
http://unity3d.com
http://unity3d.com
http://www.frontiersin.org
http://www.frontiersin.org/Neuroprosthetics/archive


Betella et al. Psychophysiological signals in ecologically valid conditions

Manikin (SAM) (Bradley and Lang, 1994) and the Affective Slider.
The latter is an alternative scale under development in our group
that measures the same dimensions as the SAM questionnaire,
but on a continuous scale (Figure 10). In addition, a second

interactive questionnaire was delivered to each participant to asses
the level of explicit awareness about the relation between the CSs
and USs. Participants were shown a picture of the CS+ and asked
to rate on a Likert scale ranging from −5 (strong disagreement) to

FIGURE 9 | Study 2: timeline of an extinction phase trial. The CS is displayed in the cabinet as a virtual object (photo camera or remote control). As soon as
the participant grabs the CS, a black screen is displayed for 15 s. Subsequently US− is displayed.

FIGURE 10 | Study 2: self-assessment questionnaire (based on SAM and Affective Slider) to test for awareness of CSs. CS+ (photo camera) and CS−
(remote control) were presented separately and in random order.
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5 (strong agreement) the level of self-awareness about any causal
relationship between the CS and the following US.

4.3. PSYCHOPHYSIOLOGICAL MEASURES AND DATA ANALYSIS
Electrodermal responses were acquired through the sensing glove,
sampled at 100 Hz and stored for off-line analysis, whilst the ECG
signals were acquired through the sensing shirt with a sampling
frequency of 250 Hz. As already detailed in the Section 2.2, ECG
was used to extract HR and HRV related features.

The recorded EDR waveforms were visually inspected and the
analysis of skin conductance components was performed using
Ledalab (Benedek and Kaernbach, 2010b). Before being decom-
posed into its phasic and tonic components, the signal was low
pass filtered with a cut-off frequency of 2 Hz. For the event-related
analysis, a number of fixed time windows were used to segment
the signal according to the conditioning protocol and a set of
phasic component features were extracted (see Section 2.3). A
segment of the signal time-locked to each CS onset was used to
derive a dependent measure of the cued response (separately for
the CS+ and the CS−). In accordance to the EDR literature, for
the analysis of cued responses we considered only those responses
starting one second after the stimulus presentation.

The EDR and latencies to the grabbing data for each CS type
were analyzed both in aggregated form by dividing each session
into early, middle and late blocks of three trials, and on a trial
by trial basis. The Amplitude-Sum of SCRs in a time window of
3 s after the CS onset was considered (first interval response), and
the values were normalized with respect to subject’s own maxi-
mum value for between-subjects comparison. Statistical analysis
was performed with non-parametric tests (Wilcoxon ranksum,
Kruskal-Wallis and Friedman) given the non-Gaussianity of the
distributions, as assessed by independent Kolmogorov–Smirnov
tests with Lilliefors correction. When required, the statistics were
corrected for multi-comparisons. The significance level α for all
tests was set to 0.05.

HRV analysis was conducted in accordance to the recommen-
dations of Task Force on HRV (Camm et al., 1996). While for
the event-related analysis of EDR we defined short time windows
starting after the CS onset, to analyze HRV we extracted features
using time windows of 30 s corresponding to the US and the black
screen together. We refer to these time windows in the text as
“CS+ trials” and “CS− trials,” in accordance to the nature of
the preceding CS. Four participants were excluded from the HRV
analysis due to technical problems (i.e., signal degradation due
to low battery charge) that occurred during the acquisition phase
of the ECG signal (hence resulting in N = 7). Statistical analysis
of HRV included non-parametric Wilcoxon and Friedman rank-
based tests, due to the non-Gaussianity of the distributions, as
assessed by Kolmogorov–Smirnov tests with Lilliefors correction.
The significance level α for all the tests was set to 0.05.

4.4. RESULTS
4.4.1. Time to grab
We looked for any significant difference in the latencies to the
grabbing of the virtual object. Reaction times to the CS+ (mean
= 3.7238 s, SD = ±0.76) were significantly longer than the laten-
cies for CS− (mean = 3.3998 s, SD = ±0.73) during acquisition

(paired Wilcoxon ranksum test, p < 0.05), while no significant
differences were found for the extinction phase (mean CS+ =
3.5640 s, SD = ±1.3; mean CS− = 3.5696 s, SD = ±1.1). A signif-
icant difference was also found for CS+ reaction times between
acquisition and extinction sessions (paired Wilcoxon ranksum
test, p < 0.05), with longer reaction times during the acquisition
session.

4.4.2. Self-assessment and awareness questionnaires
The self-assessment ratings of arousal collected through the ques-
tionnaire were tested for normality with a Kolmogorov–Smirnov
test with Lilliefors correction (p > 0.05), and a paired-samples
T-test between the arousal ratings for CS+ and CS− was then
conducted. We found a significant difference between the two
stimuli: CS+ was rated as more arousing than the CS− (mean
CS− = 3.23, SD = ±1.4; mean CS+ = 4.62, SD = ±2.7, p < 0.05)
showing that the subjects differentiated between the two stim-
uli by the end of the experiment, thus demonstrating a trace of
conditioned response being maintained after extinction. In addi-
tion, 95% of the participants explicitly reported that they strongly
agreed with the statement “In the first level I noticed a relation-
ship between the object in the cabinet and the image displayed on
the TV” (mean rating = 4, SD = ±1.28), hence suggesting a causal
contingency between CS+ and US+.

4.4.3. EDR
A statistically significant difference was found for the CS+ ampli-
tudes between the second three (middle block) and the last
three (late block) trial during acquisition, with larger amplitudes
during the late block (KW, p = 0.047, corrected for multi compar-
isons). A significant difference was also found for CS− amplitudes
during extinction between the first three (early block) and the
last three trials, with significantly smaller amplitudes in the last
part of the extinction session (KW, p = 0.024, corrected for mul-
ticomparisons). A close to significance difference (p = 0.06) was
found for the CS+ between acquisition and extinction trials. The
other comparisons did not differ significantly, but overall the EDR
showed characteristic trend patterns both in the acquisition and
extinction phases (Figure 11).

4.4.4. HRV
To analyze HRV, we performed a series of inter-subject compar-
isons for each one of the extracted features (see Table 1). We
conducted a Friedman test between all the stimuli presentations
in both acquisition and extinction phases, which consisted of 4
groups of data (i.e., all the CS+ trials and CS− trials in the 2
sessions). The results of the test indicate a significant difference
between acquisition and extinction in Mean (p < 0.02), Median
(p < 0.02) and RRmean (p = 0.01). These 3 features show a signif-
icantly higher mean value for CS+ trials than CS− trials during
the acquisition phase and a significantly higher mean value of
CS− trials as opposed to CS+ trials in the extinction phase (see
Table 5).

An inter-subject comparison between CS+ trials and CS−
trials in both the acquisition and extinction sessions was then
conducted through means of Wilcoxon tests. No statistically sig-
nificant results were found in the acquisition session, with the
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FIGURE 11 | Study 2: trial by trial evolution of the normalized sum of amplitudes of the significant SCRs averaged over all the subjects in a window

of 1–4 s after the CS onset during acquisition and extinction session. Data are normalized for each subject’s maximum. Bars indicate ± sem.

Table 5 | Mean values and SD of statistically significant features extracted from HRV (Mean, Median and RRmean) between CS+ trials and

CS− trials.

HRV Feature Acquisition Extinction

Mean Median RRmean Mean Median RRmean

CS+ trials mean (SD) 0.91 (±0.021) 0.86 (±0.017) 0.90 (±0.022) 0.92 (±0.033) 0.87 (±0.038) 0.91 (±0.032)

CS− trials mean (SD) 0.90 (±0.028) 0.85 (±0.022) 0.89 (±0.027) 0.93 (±0.025) 0.88 (±0.029) 0.92 (±0.024)

For all these features, CS+ trials show a higher mean than CS− trials during acquisition, while this trend is inverted during the extinction phase.

exception of a close to significance difference between CS+ trials
and CS− trials for RR_tri (p = 0.07). In the extinction phase, we
found statistically significant differences in the first 4 consecutive
CS+ trials between acquisition and extinction for RRmean, Mean
and Median (p < 0.05).

Finally, taken the first 4 consecutive CS+ trials in the extinc-
tion phase, a number of features showed significantly lower in
values in the last occurrence, as opposed to the first: RMSSD,
HF, SD1 (p < 0.05). Figure 12 shows that RMSSD, HF and SD1
decreased their ranks value from the first to the fourth CS+ trial.
These features are indeed representative of the vagal control of
the hearth (Camm et al., 1996; Tulppo et al., 1996; Berntson et al.,
2005), therefore their concurrent decrease during the extinction
phase represents a significant variation in the parasympathetic
heart activity.

5. DISCUSSION
The role played by psychophysiological correlates of human affec-
tive states has been investigated for more than a century, dating
back to James-Lange’s theory of emotions (Cannon, 1927) in the
late 19th century. Until recently, most of the studies that mea-
sured psychophysiological signals, such as EDR and ECG, were
conducted under strictly controlled laboratory settings. However,
due to the improvements in hardware portability, the last decade
has witnessed an increasing interest in the real world domain.

The bottleneck of conventional laboratory settings is created
by the artificial conditions in which experiments are conducted,
because they may or may not induce genuine emotions. When
studying anxiety disorders, for instance, an unfamiliar laboratory

environment can generate apprehension and stress in the partic-
ipants, thus interfering with the natural emotional phenomena
investigated. Similarly, the study of stress in a social context, such
as family or workplace, necessarily requires investigation under
naturalistic conditions (Wilhelm and Grossman, 2010). However,
the discrepancy between the laboratory and the real world can be
considerably minimized when investigating other topics, such as
stress or mental workload detection during driving. Healey and
Picard (2005), for instance, measured physiological data during
a real-world driving task and classified the driver’s stress using a
recognition algorithm (Healey and Picard, 2005), while Stuiver
et al. (2014) used cardiovascular measures to detect drivers’ men-
tal workload. The act of driving a real car (while wearing sensors
with the awareness of being exposed to an experiment) or per-
forming the same task in a laboratory using virtual reality would
probably lead to similar results since the subjects’ body motion is
limited in both the approaches.

Moreover, in some cases, the laboratory can present a num-
ber of advantages when compared to life-like conditions. The
latter, for instance, often present the problem of loss in con-
nectivity between the sensors and the recording devices, while
in controlled laboratory settings (even though there is a pos-
sibility of disconnection of devices) the probability of a data
loss is extremely reduced. In addition, experiments that inves-
tigate affect recognition in life-like conditions are often aimed
to measure long-term components of psychophysiological sig-
nals, such as tonic activity in EDR (see, as an example Healey
et al., 2010), but can produce ambiguous results when investigat-
ing event-related states since the participants in the natural world
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FIGURE 12 | Study 2: statistical comparison of the features RMSSD,

HF and SD1 (extracted form HRV) among the first 4 CS+ trials (i.e.,

US + black screen that follow a CS+) in the extinction phase.

Specifically, a statistically significant difference was found between the

1st CS+ trial and the 4th CS+ trial presented (p < 0.02), along with a
clear decreasing trend in terms of ranks. The marker represents the
median of the ranks, while the whiskers indicate the median absolute
deviation (MAD).

perform other activities than merely experiencing emotions (e.g.,
reading, talking, etc.). Furthermore, in the laboratory it is possible
to investigate reactivity to specific classes of emotion-eliciting
stimuli, while in life-like conditions there can be avoidance of
negative emotion-eliciting situations (Wilhelm and Grossman,
2010; Valenza et al., 2012c). Additionally, data labeling in life-
like conditions relies almost exclusively on self-assessment. For
an effective analysis, it is crucial to accurately annotate the data
collected, since physical activity in ambulatory subjects can over-
whelm the physiological effect of affective responses (Picard and
Healey, 1997). A controlled laboratory environment, instead, pro-
vides all the means to easily annotate events along with the
recorded signals with high accuracy and minimal delays, to deter-
mine a baseline for the acquired psychophysiological signals, and
does not necessarily require the participants’ self-assessment.

While we acknowledge the importance of achieving ecologi-
cally valid conditions in order to get genuine insights in the field
of emotion research, we do believe that the definition of ecolog-
ical validity in literature is often vague. Fahrenberg et al. (2007)
support this viewpoint by presenting the laboratory and the field
as alternatives that are not fundamentally opposed and by stress-
ing the importance of removing this antithesis by developing
new research strategies, that can be validated in the labora-
tory, while, at the same time, being close to daily life conditions
(Fahrenberg et al., 2007). This is exactly why we built an immer-
sive sensing infrastructure, the eXperience Induction Machine
(XIM), which provides the unique opportunity to investigate
human affective states in more ecologically valid environments
than those offered by standard laboratory settings. By taking
this hybrid approach, we are able to conduct ambulatory emo-
tion research through the use of virtual reality and custom-made
unobtrusive wearable technology suitable for the acquisition of
psychophysiological signals without the constrains typical of
standard laboratory settings, while, at the same time, ensuring
that the subjects are timely exposed to systematically controlled
stimuli according to the experimental design. This makes the
XIM an ideal environment to conduct research on emotion-
eliciting events and reactions, such as the two studies that we

conducted to validate our infrastructure which are discussed in
this work.

In the first study, we exposed participants to a set of visual
stimuli that covered the full range of arousal levels while they
were free to walk around in the space and gesticulate with the
aim of observing different psychophysiological signatures related
to the arousal of the stimuli. Using a classifier, we were success-
ful in discriminating and predicting arousal classes of the stimuli
presented by only measuring participants’ ECG and EDR, with
an accuracy between 73% and 88% in the 3-class problem, and
exceeding 87% in the 2-class problem. Although we found clear
classification results, the analysis of psychophysiological data did
not show a full consistency between the signals and the classes
of arousal. We found significant trends for some of the features
extracted from HRV, however these trends were not visible in all
the data subsets. The α subset, for instance, did not present any
trend. This result could be due to the fact that it comprised 5 stim-
uli per class (thus including almost the entire pool of stimuli),
while classes in β and γ comprised 3 and 4 stimuli, respectively,
hence covering just more extreme arousal levels. In the frequency
domain, the β subset showed a significantly higher value for LF,
while the γ subset resulted in significantly higher values for HF
when associated to the presentation of highly arousing pictures
as opposed to neutral images. In the time domain, we found sig-
nificantly higher values of RMSSD in the γ subset for the high
arousal class, whereas, contrary to our expectations, the analysis
of the HR did not show any statistically significant result. Similar
studies that address the effect of arousal on HR present hetero-
geneous results, in some cases even showing a decrease in HR
following highly arousing stimuli. One explanation for this mixed
outcomes can be the dominance of other cognitive processes (e.g.,
attention) during the experimental task (Brouwer et al., 2013).

Following the first study, we designed a second experiment
using VR that goes beyond the standard laboratory setup used
in the well-known classical conditioning paradigm. Previous
researchers have, in fact, investigated conditioning in VR using
psychophysiological measures (Grillon et al., 2006; Huff et al.,
2011; Greville et al., 2013), albeit with one caveat; in all those
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studies participants were constrained to a chair and used devices
such as joysticks to move in the virtual space, while keeping the
non-dominant hand (where the EDR electrodes were mounted)
still for the entire duration of the experimental session in order
to minimize signal artifacts. This is precisely what we wanted
to avoid in our experiment: by providing an ecological form of
interaction and using our wearable technology, we tackled the
challenge of acquiring meaningful psychophysiological record-
ings related to emotion-eliciting events in an ambulatory context.
Additionally, we used the recorded motion events (e.g., hand
grabbing) not only to isolate motion-related artifacts, but also to
further support the results obtained through physiological mea-
sures (i.e., grabbing latencies and reaction time). Consistent with
our hypothesis, we found an anticipation of the US manifested as
longer response times to the CS+. These results are in line with
other studies on classical and context conditioning in VR. Dawson
et al. (1982) observed longer reaction times to a stimulus during
the CS−US interval only for the CS+ that they interpreted as the
CS+ allocating more attentional resources. In other studies the
presentation of CS+ led to behavioral avoidance of certain loca-
tions (Grillon et al., 2006) or resulted in a negative performance
in an interactive task requiring precise motor control (Greville
et al., 2013). The results of the HRV analysis suggest that learning
took place and was detected through psychophysiological mea-
sures. The values in time of Mean, Median and RRmean for CS+
trials as opposed to CS− trials inverted their trend from the acqui-
sition to the extinction phase. Additionally, our findings show
statistical changes in the activity related to the vagal control of
the heart for time-dependent features such as RMSSD, which is
associated with short-term, rapid changes in heart rate, and is cor-
related with vagus mediated components of HRV (Malik et al.,
1996). From the analysis of the EDR, we observed significantly
stronger skin conductance responses following the presentation
of CS+. The significant difference in CS+ during the acquisi-
tion phase between the middle and the late block confirms the
expected outcome and is consistent with previous research on
conditioning (Grings and Dawson, 1973; Öhman and Bohlin,
1973; Prokasy and Kumpfer, 1973). During the extinction phase,
we also found a significant reduction in the amplitudes of the
responses related to CS− toward the end of the session. This
result can be explained by the fact that the acquisition proto-
col followed in previous studies, normally, did not include the
presentation of any US following the CS−, while in our exper-
imental design neutral IAPS images were used as US− in order
to ensure the ecological setting we designed (i.e., the virtual liv-
ing room where the TV screen always displays an image after the
subject collects the CS from the cabinet). The close to signifi-
cant difference found for CS+ between acquisition and extinction
suggests that a complete extinction probably did not occur. This
interpretation is supported by the results of the self-assessment
questionnaire administered at the end of the experiment, where
the subjects reported higher arousal levels associated to CS+. To
be more effective, experiments on conditioning conventionally
adopt strong USs, such as electrical shocks, loud sounds, bright
lights and evolutionary fear-relevant images as CSs. In our data
we did observe characteristic trial-by-trial trends in the ampli-
tude of SCRs for both the acquisition and extinction phases,

however, these trends were not statistically significant. A possible
interpretation of this outcome relies in the nature of the stimuli
used in our experimental design (i.e., IAPS pictures with nega-
tive arousal and common objects as conditional stimuli) for the
sake of ecological validity, while the adoption of fearful images
would have produced stronger emotional responses than negative
images (Courtney et al., 2010).

The results reported here are in line with previous research.
Nevertheless, some of these findings also reflect the complexity
in obtaining a homogeneous interpretation of psychophysiologi-
cal signals across studies. One example we observed, in contrast
to our expectations, is the similarity of the mean values of HR
obtained when the subjects were exposed to stimuli conveying dif-
ferent arousal content. As a matter of fact, the uniform inference
of psychophysiological correlates of emotions in life-like settings
still constitutes a challenge in the field. This is mainly due to the
concurrence of multiple cognitive processes that modulate both
sympathetic and parasympathetic activity, and that are difficult to
isolate, especially under ecologically valid conditions (i.e., short
time windows, artifacts, etc.). Along with future improvements
in hardware technology, one further step to tackle this issue is
the addition of more (direct and indirect) physiological mea-
surements, such as an eye-tracker, that can be used to measure
attention and estimate mental workload.
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