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Does EMG control lead to distinct motor adaptation?
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Powered prostheses are controlled using electromyographic (EMG) signals, which may
introduce high levels of uncertainty even for simple tasks. According to Bayesian theories,
higher uncertainty should influence how the brain adapts motor commands in response to
perceived errors. Such adaptation may critically influence how patients interact with their
prosthetic devices; however, we do not yet understand adaptation behavior with EMG
control. Models of adaptation can offer insights on movement planning and feedback
correction, but we first need to establish their validity for EMG control interfaces. Here
we created a simplified comparison of prosthesis and able-bodied control by studying
adaptation with three control interfaces: joint angle, joint torque, and EMG. Subjects
used each of the control interfaces to perform a target-directed task with random visual
perturbations. We investigated how control interface and visual uncertainty affected
trial-by-trial adaptation. As predicted by Bayesian models, increased errors and decreased
visual uncertainty led to faster adaptation. The control interface had no significant effect
beyond influencing error sizes. This result suggests that Bayesian models are useful
for describing prosthesis control and could facilitate further investigation to characterize
the uncertainty faced by prosthesis users. A better understanding of factors affecting
movement uncertainty will guide sensory feedback strategies for powered prostheses
and clarify what feedback information best improves control.
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INTRODUCTION

Powered upper limb prostheses offer the possibility of restoring
abilities lost due to amputation; however, lack of kinesthetic feed-
back requires users to devote constant visual attention to every
task. Myoelectric prostheses are controlled using electromyo-
graphic (EMG) signals, which are highly variable byproducts of
muscle contraction (Clancy et al., 2002). Despite recent improve-
ments in prosthesis technology (Weir and Sensinger, 2009) and
EMG signal processing (Parker et al., 2006), prosthesis move-
ments are imprecise, and many amputees abandon their devices
out of frustration (Biddiss and Chau, 2007; Biddiss et al., 2007).
Providing additional sensory feedback is an intuitive solution, but
this has not yet been implemented clinically (Antfolk et al., 2013).
To provide effective sensory feedback, we need to understand
how amputees incorporate feedback information into movement
planning.

The role of feedback in able-bodied movement is described
well by a sensorimotor adaptation framework. This framework
theorizes that the nervous system coordinates movements by pre-
dicting the state of the body and correcting this prediction using
sensory feedback (Wolpert et al., 1995). The state prediction and
feedback processes are each estimated with some uncertainty,
caused by many possible factors (Orban and Wolpert, 2011).

The relative uncertainties of state prediction and sensory feedback
determine how these two sources of information are combined
(Kording and Wolpert, 2004). For example, if sensory feedback is
very uncertain (due to increased sensory variability, e.g., blurred
vision) the brain will rely more heavily on the feedforward state
prediction. Thus, the impact of sensory feedback depends on the
uncertainty of both the sensory and motor information.

Uncertainty levels are presumably high during prosthesis use,
due to EMG signal variability and limited sensory feedback.
Some studies suggest that adding sensory feedback reduces uncer-
tainty (Wheeler et al., 2010; Saunders and Vijayakumar, 2011),
although others report either no improvement or conflicting
results (Antfolk et al., 2013). In many cases, the reasons for the
ineffectiveness of sensory feedback remain unclear: Are users
perceiving high uncertainty in the feedback? Are users relying
entirely on feedforward state predictions, and ignoring feed-
back? Are users able to generate state predictions at all when
using EMG control? To accurately describe prosthesis control and
implement effective sensory feedback, we must determine the
effects of high motor uncertainty and control signal modality on
adaptation.

Several possible factors may affect adaptation with EMG
control. High motor variability may affect adaptation rate
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(Burge et al., 2008) and estimation of error relevance (Wei and
Kording, 2009). The lack of direct sensory feedback from EMG
activity may increase feedback uncertainty. Central nervous sys-
tem processes [e.g., efference copy formation (Poulet and Hedwig,
2007) and internal modeling of system dynamics (Kawato, 1999)]
are not well-understood for EMG control, which relies on indirect
biological signals. This study considers the effect of high motor
variability by measuring the effect of mean error on adaptation
rate; other factors are considered collectively by measuring the
effect of control interface on adaptation rate.

We investigated trial-by-trial adaptation with two levels of
feedback uncertainty and three different control interfaces: joint
angle, joint torque, and EMG. The control interface influenced
the motor uncertainty of the user and enabled a simplified
comparison of adaptation behavior between prosthesis and able-
bodied control. Trial-by-trial adaptation rate was examined as
a function of feedback uncertainty, control interface, and mean
error.

METHODS

Eight able-bodied subjects (three female, five male) participated
in this experiment, which was approved by the Northwestern
University Institutional Review Board. Subjects were between 23
and 32 years old.

EXPERIMENTAL PROTOCOL

Subjects sat comfortably in front of a computer display screen
(shown in Figure 1C). They used elbow extension movements to
control a virtual cursor along a single degree-of-freedom (DOF)
circular track (radius = 13 cm). The cursor started at the left side
of the circle (180°) and a target remained stationary at the right
side of the circle (0°). The start of each trial was indicated by
an audio signal triggered by the experimenter. Subjects had 3s

. ' S

FIGURE 1 | Experimental Setup. Subjects used elbow extension to move
a cursor with three different control interfaces: (A) joint angle and (B) joint
torque and EMG. The joint angle control interface used isotonic
contractions; joint torque and EMG control interfaces both used isometric
contractions. The cursor moved along a 1-DOF circular track (C).

to move the cursor from the starting position to the target. The
cursor then returned to the starting position.

Each experiment comprised three phases: familiarization,
training, and testing. The familiarization phase consisted of 10
trials, in which the cursor was displayed as one dot that was
unperturbed and visible throughout the trial. In the training
phase, the cursor was still unperturbed and displayed as one dot,
but visual feedback was taken away 0.5s into the trial. The cur-
sor reappeared after the trial to give 100 ms of terminal feedback
(Baddeley et al., 2003; similar to Wei and Kording, 2010; and oth-
ers). Training continued until the subject was able to complete 10
trials with an average error of under 20° (this usually required 15—
20 trials). In the testing phase, subjects were given only terminal
visual feedback. The testing phase included 4 blocks of 75 trials
each, with approximately 2 min of rest between blocks.

During the testing phase, visual perturbations were applied to
the displayed cursor endpoint. Perturbations were randomly dis-
tributed between —40°, 0°, and 40°. Subjects were encouraged to
hit the target as accurately as possible, and were instructed that
the terminal visual feedback represented the true cursor position.

Two levels of feedback uncertainty were created in the testing
phase by displaying the final cursor position as either one or five
dots (an approach used previously by Tassinari et al., 2006; Wei
and Kording, 2010; and others). When subjects saw the cursor as
one dot, feedback uncertainty was low. When subjects saw five
dots, feedback uncertainty was high. The location of the five dots
was drawn from a Gaussian distribution with the mean as the cur-
sor position and a standard deviation of 40°. Level of feedback
uncertainty was randomly assigned for each trial.

CONTROL INTERFACES

Subjects completed the experimental protocol once for each of the
control interfaces: joint angle, joint torque, and EMG. Each con-
trol interface was tested on separate days, in randomized order.
The experimental setups for each control interface are shown in
Figure 1.

Joint angle control interface

In the joint angle control interface, the subject extended the right
elbow (isotonic contraction). An electrogoniometer (Biometrics
Ltd) measured the elbow angle of the right arm (Figure 1A). The
end blocks of the goniometer were attached to a hinged two-bar
planar linkage. One link was fixed to a flat surface and strapped to
the subject’s upper arm. The other link was free to rotate, slid eas-
ily across the flat surface, and was strapped to the subject’s lower
arm. A mechanical stop prevented the subject from flexing past
45° and served as the starting position for each trial. The subject’s
view of the arm was blocked. The angle output of the goniometer
was filtered with a low-pass cutoff frequency of 50 Hz. Elbow flex-
ion of 45-135° was mapped to 0—-360° of the circular cursor track.

Joint torque and EMG control interfaces

In the torque and EMG control interfaces, the subject gener-
ated isometric extension torque about the elbow (Figure 1B).
Elbow extension torque was measured by a reaction torque sen-
sor (TFF40, Futek Inc.). EMG activity during isometric elbow
extension was measured by a self-adhesive bipolar electrode
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(Bagnoli™, Delsys Inc.) placed over the lateral head of the tri-
ceps brachii. The subject’s right arm was strapped into a modified
elbow brace that restricted motion (Elbow RANGER Motion
Control, ProCare®). The lower arm portion of the brace was fixed
to a horizontal link that coupled to the shaft of the torque sensor.
The upper arm portion of the brace was fixed to the housing of
the torque sensor.

The control signals were calibrated such that equal effort was
required to move the cursor for both torque and EMG control
interfaces. Subjects exerted approximately 4 N-m of extension
torque for 10s by viewing a screen that indicated their current
torque and the goal torque. Both torque and EMG control signals
were normalized to the mean absolute values recorded during the
10's calibration. Control signals were high-pass filtered at 0.1 Hz,
rectified, low-pass filtered at 5Hz, normalized, and mapped to
cursor angle with the following transfer function:

0(s) 1250
u(s) 24 11s

Similar dynamics are commonly used as an EMG filter for clinical
prostheses (Sensinger and Weir, 2008). Parameters were chosen to
match the dynamics of a typical prosthetic arm—the LTT Boston
Digital™ elbow (Heckathorne, 2004).

RESULTS

We investigated the influence of control interface on trial-by-
trial adaption to visual perturbations with two levels of feedback
uncertainty. Subjects used three control interfaces—elbow exten-
sion angle, torque, and EMG—to move a cursor toward a station-
ary target. Terminal visual feedback was displayed as one dot (low
feedback uncertainty) or five dots (high feedback uncertainty).
Adaptation rate was assessed as a function of control interface,
feedback uncertainty level, and mean absolute endpoint error.

Every subject demonstrated trial-by-trial adaptation for all
three control interfaces (Figures 2, 4). When a visual perturbation
was applied in the negative direction, the subject typically reacted
to the perceived error by overcorrecting on the next trial. Thus,
the slope of the regression line (solid line in Figure 2) reflects the
degree to which the subject adapted to perturbations, and will
be referred to here as the adaptation rate. Note that although the
slope is always negative, here we present adaptation rates as pos-
itive values (correction opposite to perceived error) to avoid any
confusion.

Higher mean errors significantly increased adaptation rate.
The slope of the overall linear relationship between adaptation
rate and mean error is statistically significant (p < 0.01, Table 1)
and accounts for a large proportion of variance in adaptation
rate (1712, = 0.21, Table 1). This relationship depends on control
interface and feedback condition (Figure 3A).

The control interface did not affect adaptation; there were no
significant differences in adaptation rate between control inter-
faces (p = 0.7, r]f, = 0.01, Table 1). However, control interface
did influence mean error. When using EMG control, subjects’
mean errors were significantly higher than when using joint angle
or torque control (Figure5, p < 0.01, One-Way ANOVA with
Tukey post-hoc tests).

Error on Trial N (degrees)

—40 0
Perturbation on Trial N—1 (degrees)

FIGURE 2 | Representative data from one subject using the joint angle
control interface with low feedback uncertainty. Individual trials are
plotted as circles. The x-axis shows the perturbation size for a trial with
one-dot terminal feedback, and the y-axis shows the error on the following
trial (error is defined as the unperturbed or true distance between the
cursor and the target). Adaptation rate is defined as the slope of the linear
regression between the unperturbed error of trial (N) and the perturbation
of trial (N-1). The regression is plotted as the bold solid line. If a subject
showed no adaptation, the regression slope would equal zero, illustrated by
the horizontal dotted line. If a subject showed complete adaptation, the
regression slope would equal —1, illustrated by the dashed line. Note that
the adaptation rate is negative; however, in this paper we present
adaptation rates as positive values to avoid confusion.

Table 1 | Results of Three-Way ANOVA on adaptation rate.

Factor Type Significance Effect size
Mean error Continuous p < 0.01 77,2; =0.22
Control interface Categorical p=0.89 nf, =0.01

Feedback Categorical p < 0.01 % =0.32
uncertainty

(Control interface) x Continuous p=0.78 71;2; =0.01

(Mean error)

Categorical factors test for an offset change in the dependent variable and con-
tinuous factors test for a slope change in the dependent variable. Effect sizes
were assessed using partial eta squared, ng (Hentschke and Sttittgen, 2011;
Richardson, 2011).

Feedback uncertainty significantly affected adaptation rate for
all three control interfaces (p < 0.01, nﬁ = 0.32, Table 1). Higher
feedback uncertainty decreased the intercept of the adaptation
rate curve (Figure 3A). This means that subjects adapted less after
trials with high feedback uncertainty, i.e., when terminal feedback
was presented as five dots instead of one.

Various factors influenced adaptation rate (Figure3B).
Because control interface did not have a significant effect on
adaptation rate, linear regressions were calculated and plotted
across all three control interfaces. Mean error affected the slope
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Mean Absolute Error (degrees)

FIGURE 3 | Adaptation rate as a function of mean absolute endpoint
error. (A) Regression between adaptation rate and error with each control
interface, for low feedback uncertainty (solid lines), and high feedback
uncertainty (dashed lines). The range of each regression line runs from the
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Regression between adaptation rate and error across control interfaces for
low feedback uncertainty (solid line), and high feedback uncertainty (dashed
line). Shaded areas represent 95% confidence intervals of regression.
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FIGURE 4 | Adaptation rates during each control modality and
feedback condition. Blue squares and green crosses represent the mean
adaptation rates across subjects for one dot and five dot feedback,
respectively. Bars represent standard errors of the mean.

of the adaptation curve and feedback uncertainty affected the
intercept.

DISCUSSION
In this work we investigated how prosthesis control affects trial-
by-trial adaptation by comparing three different control inter-
faces: joint angle, torque, and EMG. We found that the control
interface did not significantly affect adaptation; instead adapta-
tion rates depended primarily on mean error and on feedback
uncertainty.

Subjects were able to develop and adapt a simple internal
model using EMG control (Figure4). Previous studies show

[\
S

Mean Absolute Error (degrees)
>

10
Angle Torque EMG

FIGURE 5 | Mean error levels for each control interface. Markers
represent the mean error across subjects for each control modality. Bars
represent standard errors of the mean. Mean error refers to the mean
absolute unperturbed endpoint error of all trials in a single experiment. (x)
indicates significant difference (p < 0.01) as determined by a One-Way
ANOVA with Tukey post-hoc multiple comparisons.

that amputees maintain the central nervous system capabilities
needed for adaptation (Lotze et al., 1999, 2001). Other studies
show that subjects adapt to novel transformations when using
EMG control (Radhakrishnan et al., 2008). Our results support
these findings and motivate future studies of adaptation behav-
ior that requires more complex internal models during powered
prosthesis control.

The relationship between mean error, feedback uncertainty,
and adaptation rate supports the Bayesian framework, if we
assume that mean error influences feedforward uncertainty.
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Bayesian theory predicts that feedforward uncertainty speeds
adaptation and feedback uncertainty slows adaptation (Wei and
Kording, 2010). This interaction of feedforward and feedback
uncertainty is critical for the high uncertainty levels associated
with powered prosthesis control. When viewed in light of this
interaction, results of sensory feedback studies begin to form
cohesive patterns. Sensory feedback reduces errors if feedforward
control is noisy (Saunders and Vijayakumar, 2011) or if vision is
removed (Wheeler et al., 2010), but has no significant effect in
many other cases (Antfolk et al., 2013).

The patterns observed here have important implications for
prosthesis control. When control is more precise, prosthesis
users will rely less on feedback and more on their internal
feedforward predictions. When sensory feedback is provided,
the perceived uncertainty of this feedback determines whether
there is any impact on control. Visual feedback also intro-
duces another factor: if the uncertainty of sensory feedback
is greater than that of visual feedback, it will not notably
improve control over vision alone, since the two senses are
integrated according to their uncertainty (Ernst and Banks,
2002).

The mean error of EMG control was significantly higher
than that of both angle and torque control; however, adapta-
tion rates of EMG control were not significantly different. The
high mean error of EMG control is not surprising because EMG
signals have higher variability than angle and torque signals
(Vodovnik and Rebersek, 1974; Clancy et al., 2002). We offer two
hypotheses for why we did not find a corresponding difference
in adaptation rates. First, there may be a ceiling for adapta-
tion rates. If subjects continually see very large errors, they may
be so unsure of their feedforward signals that instead of adapt-
ing quickly, they do not adapt at all (e.g., Torres-Oviedo and
Bastian, 2012). Second, increasing adaptation rate may not be
optimal behavior in every situation. In this trial-by-trial adapta-
tion paradigm, increasing adaptation means continually making
large corrections in response to large errors. Furthermore, EMG
noise is dependent on signal size; larger control signals (from
stronger contractions) are more variable. Studies show that sub-
jects learn to use smaller control signals in the presence of such
signal-dependent noise (Chhabra and Jacobs, 2006). The noise
characteristics of EMG control signals may have altered optimal
adaptation behavior.

Higher mean error increased adaptation rates, and higher
feedback uncertainty decreased adaptation rates, but con-
trol interface did not have a significant effect (Tablel and
Figure 3). Subjects behaved similarly when using different con-
trol modalities, including EMG signals. This result is encour-
aging, because it suggests that improved prosthesis control
systems with lower errors may enable skilled, coordinated
movement.

This study introduces the application of adaptation paradigms
to powered prosthesis control; however, many questions remain.
We chose a single DOF task for a simple initial compari-
son of EMG-controlled and able-bodied adaptation, but multi-
DOF tasks might reveal differences and should be investigated.
Similarly, only one muscle, the triceps brachii, was used for
single-site proportional EMG control, whereas many powered

prostheses are controlled by pattern recognition of multiple EMG
signal features (Kuiken et al,, 2009) or other multi-site con-
trol schemes (Zecca et al., 2002). Other limitations include the
difficulties of selecting and matching control ranges for per-
formance comparisons. Furthermore, this study included only
able-bodied subjects interacting with a virtual environment.
For amputees using physical prostheses, everyday tasks may
involve higher levels of uncertainty from a greater variety of
sources.

Our results provide a strong motivation for further investiga-
tion of adaptation behavior during powered prosthesis control.
We found that subjects using EMG control adapted to pertur-
bations in a manner consistent with Bayesian predictions. A
better understanding of internal model development and adapta-
tion will guide control and sensory feedback strategies to reduce
uncertainty for prosthesis users.
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