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Effective visualization is central to the exploration and comprehension of brain imaging
data. While MRI data are acquired in three-dimensional space, the methods for visualizing
such data have rarely taken advantage of three-dimensional stereoscopic technologies.
We present here results of stereoscopic visualization of clinical data, as well as an
atlas of whole-brain functional connectivity. In comparison with traditional 3D rendering
techniques, we demonstrate the utility of stereoscopic visualizations to provide an intuitive
description of the exact location and the relative sizes of various brain landmarks,
structures and lesions. In the case of resting state fMRI, stereoscopic 3D visualization
facilitated comprehension of the anatomical position of complex large-scale functional
connectivity patterns. Overall, stereoscopic visualization improves the intuitive visual
comprehension of image contents, and brings increased dimensionality to visualization
of traditional MRI data, as well as patterns of functional connectivity.

Keywords: stereoscopic, anaglyph, intrinsic connectivity networks, atlas, functional connectivity, 3D visualization,

functional connectivity atlas

INTRODUCTION
Visualization is critical to understanding and reporting
neuroimaging data. The complexities of brain geometry
and its variation from one individual to the next, combined
with the increasing number of imaging modalities (MRI, PET,
SPECT, fMRI, DTI) and representations (e.g., parcellations,
voxels, vertices) required to fully characterize its structure and
function, make visualization a formidable challenge. Arguably,
the increased emphasis on patterns of brain connectivity has
ushered in a new level of challenge due to the vast complexity
of the connectome. Classical methods for viewing clinical and
research neuroimaging data, such as print media or radiological
film, reduce the three-dimensional (3D) structure of the brain
to two-dimensional (2D) representations, resulting in significant
loss of information. However, these 2D visualizations are not
mandated by technical limitations or fundamental limits of
human perception. By taking advantage of stereoscopy—an
approach for the visualization of data in 3D that dates back

Abbreviations: ICN, intrinsic connectivity networks; MRI, magnetic resonance
imaging; MS, multiple sclerosis; PET, positron emission tomography; SPECT,
single-photon emission computed tomography, fMRI, functional magnetic reso-
nance imaging; DTI, diffusion tensor imaging; FLAIR, fluid attenuated inversion
recovery.

nearly two centuries—the higher dimensional structure of
neuroimaging data can be faithfully reproduced.

In 1838 the English physicist Sir Charles Wheatstone first
defined the concept of stereopsis as the perception of depth that
results from slight differences in the visual projection of the world
onto the two retinas due to their distinct anatomical positions
(Wheatstone, 1838). This phenomenon is commonly referred to
as binocular disparity, retinal disparity, or retinal rivalry (Lipton,
1982). Later in the same year, Sir Charles Wheatstone created
a device called a “stereoscope,” which provides each eye with a
distinct picture. Using two angled mirrors, he demonstrated the
human brain’s tendency to bring together the two images in a
manner that yields perception of a 3D visualization (Wheatstone,
1842). Finally, Wilhelm Rollmann, a physicist, built upon this
concept to devise the anaglyph, which employs red and green
lenses to create a 3D visualization by showing different pictures
filtered by red and green lenses to each eye (Rollmann, 1853).

In short, stereoscopy refers to the process of creating or enhanc-
ing the illusion of depth in an image by presenting two offset
images separately to the left and right eyes of the viewer. These
images are combined by the visual processing system in the
human brain to give the perception of 3D depth. Currently there
are three stereoscopic approaches to 3D display, which include:
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1. Stereograms, which can be:

• spatially directed or filtered with glasses (e.g., stereoscopes,
Wheatstone, 1842; Brewster, 1856, anaglyphs, Rollmann,
1853, polarized images, Zone, 2007)

• temporally filtered with glasses (e.g., shutter glasses, Turner
and Hellbaum, 1986; Asthana and Sinha, 2005)

• perceptually delayed with glasses (e.g., Pulfrich effect,
Pulfrich, 1922; Morgan and Thompson, 1975; McAllister,
2002)

• spatially directed or filtered without glasses, “autostere-
ograms” (Julesz, 1960, 1964) (e.g., lenticular views,
McAllister, 2002, polarizing filters and half-silvered mirrors,
coarse gratings, Tyler, 1974, louvers)

2. Slice-stack methods (non-occluding temporal reconstruction,
e.g., varifocal mirrors, Traub, 1967; Rawson, 1969, rotating
helical surfaces, beam-excited fluorescing gases).

3. Wavefront reconstruction methods (e.g., holograms, Gabor,
1948; Denisyuk, 1962; Benton, 1969; Phillips and Porter, 1976,
numerical holograms, Schnars and Jüptner, 2005).

For anaglyphs, the viewer wears eyeglasses with two different
color lenses (usually chromatically opposite), such as red and
cyan. The picture contains two differently colored images that
have a slight offset, which is seen by each eye when filtered by
the colored lenses. Such anaglyphs can be viewed in several types
of media: computer screens (for example, Internet web pages),
cinema, TV (videogames, DVD), digital projectors, or print.
Different color combinations can be used for anaglyph eyeglasses.
For example (generally in left-right eye order; Ribas et al., 2001;
Hawkins, 2002): red-green (pure colors), red-blue (pure colors),
or red-cyan (pure red, pure green+blue). In the first two cases
the color rendering is monochrome, and in the third it is full color
(good color perception of green and blue, poor perception of red).

Over the years, various applications of red-cyan anaglyph
3D method have emerged for the purposes of anatomical visu-
alization in medicine. For example, Hirsch and Kramer used
cyan-red anaglyphs to create a paper and CD-ROM based human
brain atlas, entitled “Neuroanatomy: 3D-Stereoscopic Atlas of the
Human Brain” (Hirsch and Kramer, 1999). Providing 173 illus-
trations of interactive and rotatable 3D models, this work demon-
strated the value of 3D stereoscopy for visualizing the human
brain—especially when augmented with modern-day computing
capabilities. Another example is provided by Guilherme Carvalhal
Ribas (Ribas et al., 2001) who devised a 3D anaglyph-based
approach for visualizing anatomical and surgical images obtained
by cameras affixed to a surgical microscope; this resource was
intended for both teaching and generating surgical reports.

Here we introduce the application of anaglyph-based 3D stere-
oscopy to visualization of data obtained from various MR-based
imaging modalities. First, we illustrate the utility of anaglyph-
based viewing of MRI data spanning commonly used imaging
modalities (i.e., morphometry, diffusion imaging, and functional
MRI), including clinical data (e.g., neoplasms). Then, we pro-
vide illustrations and descriptions of an interactive full brain
functional connectivity atlas we developed using 3D stereoscopic
visualization techniques. The atlas uses seed-based correlation

analyses and contains illustrations for the voxel-wise connectiv-
ity maps associated with each of the 200 functional regions in the
brain recently identified by Craddock et al. (2012) using data-
driven cluster analysis approaches. While various parcellation
schemes are available for the brain, this approach was selected
due to its emphasis on the delineation of functional (rather
than structural) regions as the basis for functional connectivity
regions-of-interest (ROIs).

MATERIALS AND METHODS
MORPHOMETRIC ILLUSTRATIONS FOR CLINICAL CASES
Morphometric studies for eight clinical cases are included in the
present work for the purpose of demonstration, after receiving
express written permission from the patients. Stereoscopic illus-
trations were generated for each of the cases using 3D Slicer ver-
sion 3.6.3 anaglyph stereo option (Brigham & Women’s Hospital,
Boston, Massachusetts, USA, www.slicer.org; Gering et al., 1999;
Pieper et al., 2004, 2006). The imaging parameters used for the
clinical cases are provided below.

Clinical cases P1-P4
For clinical cases P1-P4 (see Table 2 for clinical data), a high
resolution T1-weighted magnetization prepared gradient echo
(MPRAGE) sequence (sagittal images, 256 × 256 × 160, 1 mm3

isotropic spatial resolution, TI = 1100 ms, TR = 1870 ms, TE =
3.25 ms, flip angle = 15◦) was obtained using a Siemens-Avanto
1.5T MRI scanner (Siemens, Erlangen, Germany). The segmenta-
tion and volumetric studies were processed using FreeSurfer 4.4.0
(Dale et al., 1999; Fischl et al., 1999; Fischl and Dale, 2000).

Clinical case P5
For case P5, a 63 year-old female patient with a medulla oblon-
gata cavernoma, a diffusion tensor imaging (DTI) sequence
(single-shot diffusion-weighted spin-echo EPI sequence, TR =
7100 ms, TE = 96 ms, matrix = 116 × 116, FOV = 230 ×
230 mm, slice thickness 2.2 mm, gap = 0.8 mm, 50 contiguous
sections, b = 1000 s/mm2, 30 non-collinear directions), a high
resolution isotropic T1-weighted magnetization prepared gradi-
ent echo sequence was acquired with the same parameters as
cases P1-P4, and post gadolinium isotropic T1-weighted images
(T1-GD, sagittal images, 256 × 256 × 160, 1 mm3 isotropic spa-
tial resolution, TI = 1100 ms, TR = 2060 ms, TE = 3.25 ms, flip
angle = 15◦) were collected. See standard T2-weighted image in
Figure 1E. The tractography was processed using 3D Slicer 3.6.3
software. The T1-GD, T1 and DTI were coregistered with the 3D
Slicer linear registration algorithm, and the cavernoma was seg-
mented using a T1-GD sequence with a simple region-growing
algorithm, which was then used to create a 3D model of the
cavernoma using the Model Maker module of 3D Slicer.

Clinical case P6
For case P6, a 24 year-old female patient with a left frontal glioma,
a standard fMRI block-design language generation task was used
to activate Broca’s area in the left posterior inferior frontal gyrus
(Binder, 2006). Blood-oxygenation level-dependent (BOLD) sig-
nals were measured with a T2∗-weighted echo-planar imaging
(EPI) sequence (TR = 2890 ms, TE = 50 ms, flip angle = 90◦,
FOV = 192 × 192 mm, in-plane resolution = 64 × 64 pixels or
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FIGURE 1 | Anatomical slices of each patient showing different type of

lesions. (A) P1: T2 weighted coronal slice. The right hippocampus volume
is reduced. (B) P2: T2 weighted coronal slice. Slight decrease in right
hippocampus volume. (C) P3: T1 weighted axial slice showing right
precentral tumor. (D) P4: T2- FLAIR axial image showing a right temporal
porencephalic cyst. (E) P5: T2 weighted axial slice of a patient with a
medulla oblongata cavernoma in brainstem. (F) P6: T2-FLAIR of a left
frontal glioma patient. (G) P7: PD axial slice of a MS patient. (H) P8: T2
weighted axial slice of a MS patient.

3 × 3 mm). Twenty interlaced axial slices, with 5.0 mm thickness
(gap = 1.25 mm) were acquired. Each acquisition had 55 scans
including 5 dummy scans that were discarded from analysis. A
standard 3D structural sagittal T1-weighted MPRAGE image used
the acquisition parameters described previously. See standard T2-
Flair image in Figure 1F. The fMRI was processed using FSL 4.1.8
software package (Smith et al., 2004; Woolrich et al., 2009). A
3D sagittal Fluid Attenuated Inversion Recovery (FLAIR) image

(TE = 354 ms, TR = 7000 ms, flip angle = 180◦, FOV = 294 ×
212, in-plane resolution = 256 × 184 pixels or 1.15 × 1.15 mm)
was used to segment the glioma using a simple region growing
algorithm and then to create a 3D model of the tumor using the
Model Maker module of 3D Slicer software package.

Clinical cases P7-P8
For two individuals with multiple sclerosis (P7: a 37 year-old
female, P8: a 42 year-old male), the imaging protocols included
3D sagittal FLAIR images (same parameters as above) and a 3D
structural sagittal T1-weighted MPRAGE image using the acqui-
sition parameters described previously (Figures 1G,H). Multiple
sclerosis (MS) lesion segmentation and lesion load was done
using Toads-Cruise 2010 R2a Medical Image Processing, Analysis,
and Visualization (MIPAV) software (http://mipav.cit.nih.gov)
plug in (McAuliffe et al., 2001; Shiee et al., 2010). The Model
Maker module of 3D Slicer software package was used to create
the 3D model of the MS lesions.

RESTING STATE fMRI BASED FUNCTIONAL CONNECTIVITY
ILLUSTRATIONS
Participant data
Resting state fMRI scans of 45 healthy volunteers (age range =
18–27, mean age = 21.0 ± 2.2, 3T MRI) from the Cambridge-
Buckner dataset of the 1000 Functional Connectomes Project
(www.nitrc.org/projects/fcon_1000; Biswal et al., 2010) were used
to illustrate the utility of anaglyphs for visualizing intrinsic con-
nectivity networks (ICNs).

Image preprocessing
Data processing was performed using Analysis of Functional
NeuroImaging (AFNI; http://afni.nimh.nih.gov/afni; Cox, 1996)
and fMRIB Software Library (FSL; www.fmrib.ox.ac.uk). Image
preprocessing consisted of slice time correction for interleaved
acquisitions; 3D motion correction with Fourier interpolation;
despiking (detection and compression of extreme time series out-
liers); spatial smoothing using a 6 mm FWHM Gaussian kernel;
mean-based intensity normalization of all volumes by the same
factor; temporal bandpass filtering (0.009–0.1 Hz); and linear and
quadratic detrending.

Linear registration of high-resolution structural images to
the MNI152 template was carried out using the FSL tool
FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002).
This transformation was then refined using FNIRT non-linear
registration (Andersson et al., 2007a,b). Linear registration of
each participant’s functional time series to the high-resolution
structural image was performed using FLIRT. This functional-
to-anatomical co-registration was improved by intermediate
registration to a low-resolution image and b0 unwarping.

To control for the effects of physiological processes (such as
fluctuations related to cardiac and respiratory cycles) and motion,
we regressed each participant’s 4-D preprocessed volume on nine
predictors that modeled nuisance signals from white matter, CSF,
the global signal, and six motion parameters. Each participant’s
resultant 4-D residuals volume was spatially normalized by apply-
ing the previously computed transformation to MNI152 standard
space with 2 mm3 resolution.
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Default network
After image preprocessing described in the previous section,
6 mm radius spherical seeds located in medial prefrontal cor-
tex (MPF, MNI coordinates: −1, 47, −4), posterior cingu-
late/precuneus (PCC, −5, −49, 40) and lateral parietal cortex
(LP, −45, −67, 36) were used to generate participant-level default
network maps (Fox et al., 2005; Mennes et al., 2010). All group
maps were corrected for multiple comparisons using Gaussian
random field theory (min Z > 2.3; cluster significance: p < 0.05,
corrected).

The image fusion and stereoscopic 3D images of each case were
created using 3D Slicer 3.6.3 software (Gering et al., 1999; Pieper
et al., 2004, 2006). 3D Slicer implemented the red-cyan anaglyph
method for producing stereoscopic 3D images.

Craddock functional connectivity atlas
A 3D stereoscopic full brain functional connectivity atlas
was created using an atlas published by Craddock et al.
(2012). Using 3D Slicer 3.6.3 and the 200 ROI version of
the Craddock atlas, 200 grayscale surface models were created
using a z-stat threshold > 2.3, and each surface model was
processed with a surface decimation algorithm (Target reduc-
tion = 0.2), smoothed with the Taubin algorithm (5 itera-
tions, Taubin passband = 0.1) and without surface normals.
The surface model of the 200 ROIs of the Craddock parcel-
lation was created using the Model Maker 3D Slicer mod-
ule with 10 smoothing iterations, Sinc type smoothing, and
0.25 decimal percentage of target reduction in the number of
polygons.

Table 1 | Questions used for 2D and Stereoscopic versions of some of the images included in this paper to test stereoscopic benefits.

Images How well, in a scale 0 (not at all)—5 (perfectly). . . Answer

0 (not at all)—5 (perfectly)

1 Is it possible to estimate the length of each hippocampus?

2 Is it possible to estimate the position of an hippocampus relative to the other?

3 Is it possible to estimate the length of each hippocampus?

4 Is it possible to estimate the depth of the tumor?

5 Is it possible to estimate the depth of the tumor?

6 Is it possible to estimate the depth of the tumor?

7 Is it possible to estimate the depth of the tumor?

8 Is it possible to estimate the relative position of the tumor to the tracts?

9 Is the relative position of Broca’s area with respect to the tumor viewed using anaglyph?

10 Is the relative position of Broca’s area with respect to the tumor viewed using anaglyph?

11 Is it possible to determine the distance between Broca’s area and the tumor?

12 Is it possible to determine the relative position of a MS lesion with respect to another?

13 Is it possible to determine the relative position of a MS lesion with respect to another?

14 Is it possible to determine the relative position of a MS lesion with respect to another?

15 Is it possible to determine the relative position of each area of the functional network (Default Mode Network)
with respect to another?

16 Is it possible to determine the relative position of each area of the functional network (Default Mode Network)
with respect to another?

17 Is it possible to determine the relative position of each area of the functional network (Default Mode Network)
with respect to another?

18 Is it possible to determine the relative position of the functional network with respect to the hippocampus?

19 Is it possible to determine the relative position of the different regions of the functional network?

Table 2 | Data summary for each patient.

Patient Demographic

information

Clinical data Image sequences Figure numbers

P1 26 year-old, male Left temporal lobe treatment-refractory epilepsy, right hippocampus
volume reduction, mesial temporal sclerosis

MPRAGE Figures 1A, 2A–D

P2 44 year-old, male Single epileptic seizure, arterial hypertension, dyslipidemia, slight
decrease in right hippocampus volume

MPRAGE Figures 1B, 2E,F

P3 36 year-old, female Epilepsy secondary to right precentral tumor MPRAGE Figures 1C, 3A–D, 4A,B

P4 25 year-old, female Epilepsy secondary to a right temporal porencephalic cyst MPRAGE Figures 1D, 5A–D

P5 63 year-old, female Medulla oblongata cavernoma MPRAGE, T1-GD, DTI Figures 1E, 6A,B

P6 24 year-old, female Left frontal glioma MPRAGE, EPI Figures 1F, 7A–F

P7 37 year-old, female Multiple sclerosis MPRAGE, FLAIR Figures 1G, 8A,B

P8 42 year-old, male Multiple sclerosis MPRAGE, FLAIR Figures 1H, 8C–F
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For improved visualization of the functional connec-
tivity networks and their relative anatomical position,
the surface model of five subcortical anatomical struc-
tures (corpus callosum, bilateral caudate, pallidum,
putamen, thalamus, and hippocampus) were included
in ICN visualizations. These surfaces were created
with 3D Slicer using the segmentation computed with
FreeSurfer v. 5.1.

Evaluation of visualization techniques
Twenty-one 3D images first and subsequently the same stereo-
scopic versions were shown to a group of 14 healthcare profes-
sionals (8 pediatric and adult neurologists, 1 neuroradiologist,
2 neurosurgeons, 1 radiologist, and 2 nurses; 30–52 years old).
For each image, they were asked about the utility of each ver-
sion of the image (3D, stereoscopic) in the assessment of a distinct
brain feature. The questionnaire is included in Table 1, and each

FIGURE 2 | (A–D) Patient P1 (left temporal lobe refractory epilepsy, decrease
in volume and signal hyperintensity of the right hippocampus consistent with
mesial temporal sclerosis in a 26 year-old). (E,F) Patient P2 (single epileptic

seizure, arterial hypertension, dislipidemia, 44 years old), slight decrease in
right hippocampus volume. (A,C,E) 3d images, (B,D,F) stereoscopic
(anaglyph) 3D version that must be viewed using red-cyan anaglyph glasses.

www.frontiersin.org November 2014 | Volume 8 | Article 328 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Rojas et al. Stereoscopic 3-D visualization in neuroimages

question was answered on a Likert scale from 0 (not at all) to 5
(perfectly).

RESULTS
CLINICAL ILLUSTRATIONS
To demonstrate the added value of stereoscopy in the visu-
alization of structural and functional abnormalities in clinical
patients we created anaglyph-based 3D images for a series of
magnetic resonance studies. Below we discuss highlights from
representative cases of commonly found abnormalities (common
and anaglyphic 3D images are provided for each case to enable
comparison. Anaglyph images must be viewed using red-cyan
anaglyph glasses from computer screen or printed matter). See
Table 2 for clinical descriptions.

Mass lesions
One of the most obvious potential applications of stereoscopy
is the visualization of mass lesions, such as tumors and

cysts. To demonstrate this point, we first generated common
and anaglyphic 3D visualizations from the MPRAGE data
for patient P3, a 36 year-old female with history of epilepsy
secondary to right precentral tumor (see Figures 3, 4, and
Supplementary Video 1). FreeSurfer segmentation identified the
tumor as an “unknown” tissue, and the resultant mesh of the
right hemisphere was notable for a hole in the pial surface (see
Figures 4A,B). While both common and anaglyph 3D images
show the tumor in detail, as well as its anatomical position, the
anaglyph version is notably more realistic, as it more effectively
conveys the depth of the tumor.

Next, we generated common and anaglyphic 3D images from
the MPRAGE data for patient P4, who was diagnosed with
epilepsy secondary to a right temporal porencephalic cyst. As is
notable in Figure 5, the cyst, appearing as a large hole in the right
temporal lobe of the brain, is better conveyed with stereoscopic
visualization. This advantage is due to the more effective repre-
sentation of the depth of the hole produced by the cyst, as well

FIGURE 3 | Patient P3 (epilepsy secondary to right precentral tumor, 36 years old). (A,C) 3D image, (B,D) and stereoscopic (anaglyph) 3D of pial surface.
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FIGURE 4 | (A) T1 axial slice of P3 showing right hemisphere precentral tumor, (B) segmentation, white matter and pial surface of same slice. The tumor was
segmented as an “unknown” tissue, and white and pial surfaces encircle the tumor.

FIGURE 5 | Patient P4 (epilepsy secondary to porencephalic cyst, female, 25 years old). (A,C) 3D images, (B,D) stereoscopic (anaglyph) 3D of pial surface.
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as the relative geometry of the adjacent gyrus and sulcus, which
further enhances the realism of the image.

Beyond visualization of MPRAGE-based morphometric find-
ings, stereoscopic approaches can be extended to the visual-
ization of diffusion imaging-based findings. In this regard, we
provide common and anaglyphic versions of tractography visu-
alizations of patient P5, a 63-year old female with a medulla
oblongata cavernoma depicted in yellow in Figure 6. Figure 6A
shows a standard presentation of tractography, while Figure 6B
(and Supplementary Video 2) is a stereoscopic depiction. The
approaches are notably different, with Figure 6A using varia-
tions in color related to FA (fractional anisotropy) to convey
details; in contrast, Figure 6B depicts the tracts in gray to facil-
itate stereoscopic viewing (colors need to be removed to prevent
any unintended impact on the anaglyph glasses). Despite the lack
of color, the stereoscopic image shows the relative position of the
tracts with respect to the cavernoma and the different sections of
the tracts.

Atrophy
Another potential use of stereoscopy is to enhance the ability to
visually identify atrophy in brain structures commonly affected
by aging, or mesial temporal sclerosis, such as the hippocampus.
3D images appear in Figures 2A,C, and stereoscopic images of P1
appear in Figures 2B,D. P2 related images appear in Figures 2E,F
in 3D and stereoscopic versions, respectively. The hippocampus
is shown in yellow. The left hippocampus is slightly atrophied
and the right shows moderate atrophy. The stereoscopic visu-
alization allows one to perceive the difference in size between
both hippocampi and their differences in relative position in a
realistic way.

White matter lesions
Central to the diagnosis of myelin-related disorders such as mul-
tiple sclerosis is the visualization and identification of white
matter lesions. To demonstrate the potential utility of stere-
oscopy, we provide common and anaglyphic 3D illustrations

of MPRAGE and FLAIR images from two patients with mul-
tiple sclerosis (MS patients P7 and P8; see Figure 8 and
Supplementary Video 3). Figures 8A,C,E depict the common
“3D” images, and Figures 8B,D,F illustrate the stereoscopic
forms. The stereoscopic images show the relative position of the
MS lesions between patients, and between lesions and anatomical
slices. Figure 8F shows the relative position of each MS lesion: the
lesions in the left hemisphere appear closer to the observer, and
the lesions in the right hemisphere appear farther away, with the
corpus callosum located between them.

Altered functional activation
A final application to clinical examinations is provided by the
illustration of altered functional activation in pathologic brain
regions. Figure 7 shows the 3D (Figures 7A,C,E) and stereoscopic
images (Figures 7B,D,F) of a left frontal glioma in a 24-year old
patient (P6) with expressive language fMRI activation. The fMRI
activation and glioma are shown in 3D models (pink and brown
colors respectively). The models show that the expressive lan-
guage activation (Broca’s area) is in close contact with the frontal
glioma.

NEUROTYPICAL ILLUSTRATIONS
Resting state fMRI based functional connectivity stereoscopic atlas
We selected the default network for our primary demonstra-
tion of the utility of stereoscopy in visualizing large-scale func-
tional networks, as it is one of the most commonly examined
and widely distributed networks in the brain. As demonstrated
in Figure 9 (and Supplementary Video 4), using the anaglyph
approach, we can perceive the relative location, morphology
and size of key structures in the network (i.e., medial tem-
poral lobe, medial prefrontal cortex, posterior cingulate cor-
tex, precuneus, and parietal cortex; see Figures 9B,D,F, and
Supplementary Video 4).

The anaglyph-based approach can be applied to any func-
tional network in the brain. Building upon this strength, we
created a functional atlas of the brain (see Figure 10), including

FIGURE 6 | Patient P5 (medulla oblongata cavernoma, 63 years old). Tractography with cavernoma in yellow: (A) 3D image, (B) stereoscopic (anaglyph) 3D
image.
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FIGURE 7 | Patient P6 (left frontal glioma, female, 24 years old). Glioma in pink with Broca’s area (expressive language fMRI) in brown. (A,C,E) 3D images,
(B,D,F) stereoscopic (anaglyph) 3D version.

the networks for each of the 200 functional units identified in
a recent functional-connectivity based parcellation of the brain
(Craddock et al., 2012). The complete stereoscopic functional
connectivity atlas (Stereoscopic Atlas of Intrinsic Brain Networks;
SAIBN) is available at NITRC (www.nitrc.org/projects/saibn/).

Of note, to better visualize the position of a functional net-
work in the brain, a solution used in this paper was the addition

of a surface model of subcortical structures (such as hippocam-
pus, amygdala, corpus callosum, 3rd and 4th ventricles, lateral
ventricles, putamen, pallidum, caudate, thalamus). The same
approach could be used for our functional connectivity atlas to
perceive the relative position of a functional connectivity network
with respect to the hippocampus or the midline of the corpus
callosum, for example.
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FIGURE 8 | (A,B) Lesion load of patient P7 (Multiple sclerosis, difficulty in walking, 37 year-old female), (C–F) lesion load of patient P8 (Multiple sclerosis, 42
year-old male). (A,C,E) 3D images, (B,D,F) stereoscopic (anaglyph) 3D version.

Evaluation of visualization techniques
Answers to questions related to the 3D and stereoscopic images
are summarized in Table 3. The mean score for the 19 ques-
tions, across the 14 healthcare professionals is 2.5 (range: 1.5–3.3)
for 3D images and 4.3 (range: 3.8–4.8) for stereoscopic versions
with a standard deviation of 2.6 and 0.9, respectively. Using a
Student’s t-Test (α = 0.05) the difference between 3D and stereo-
scopic visualization was statistically significant [t(18) = 9.88, p =

1.07E-08]. Stereoscopic visualizations were consistently ranked
higher by raters as indicated by a Fleiss’ Kappa = 0.255, p < 0.001
(Altman, 1991).

DISCUSSION
The present work illustrates novel applications of stereoscopy for
visualizing brain data from leading magnetic resonance imaging
modalities. These preliminary examples convey the ability of 3D
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FIGURE 9 | (A,C,E) 3D viewing, and (B,D,F) stereoscopic (anaglyph) version of Default Mode Network obtained using resting state images from 45 controls.

visualization approaches to better communicate the complexi-
ties and dimensionality of human brain structure and function.
In particular, our functional connectivity atlas based on the
Craddock et al. (2012) parcellation demonstrates the added

value of stereoscopic approaches in communicating network
relationships, as they successfully convey information regarding
the relative position of network components typically lost in
two-dimensional representations. Additionally, our work suggests
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FIGURE 10 | Functional connectivity atlas. (A) ROI 2 and right
hippocampus, (B) 3D image, and (C) stereoscopic (anaglyph) 3D version of
functional connectivity network created with ROI 2. (D) ROI 126 from the

Craddock parcellation atlas and right hippocampus, (E) 3D image, and (F)

stereoscopic (anaglyph) version of functional connectivity network created
with ROI 126.

Table 3 | Answer to the questions of Table 1.

HP 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Images 3D S3D 3D S3D 3D S3D 3D S3D 3D S3D 3D S3D 3D S3D 3D S3D 3D S3D 3D S3D 3D S3D 3D S3D 3D S3D 3D S3D

1 3 4 3 4 2 3 0 5 3 4 3 3 3 4 3 4 3 4 5 5 4 4 3 4 3 4 3 4

2 4 5 0 4 4 3 0 5 3 4 3 3 3 4 2 4 5 4 3 4 2 5 4 5 3 4 2 4

3 2 4 3 4 2 4 0 5 2 3 3 3 3 4 1 4 2 3 4 4 2 4 3 4 3 4 2 4

4 3 5 2 4 0 4 3 5 1 4 0 3 2 4 0 4 2 4 0 5 0 4 0 5 3 5 0 4

5 3 5 3 4 0 4 3 5 2 5 0 4 2 4 0 4 1 4 1 5 0 4 3 5 3 5 0 4

6 3 5 2 5 0 4 3 5 1 4 0 4 2 4 0 5 1 4 1 5 0 4 1 4 1 4 1 4

7 2 5 2 5 0 4 3 5 2 5 0 4 2 4 0 4 1 5 1 4 0 4 1 4 0 4 1 5

8 4 5 4 5 3 3 4 4 3 5 3 5 3 4 3 4 3 4 1 5 4 4 1 5 2 5 1 5

9 5 5 4 4 3 4 4 4 3 3 2 4 3 4 3 3 4 5 4 5 4 4 5 5 4 4 3 4

10 5 5 3 4 3 4 4 4 3 5 3 5 3 4 3 4 4 4 4 5 4 4 5 5 4 4 3 5

11 3 5 2 3 2 4 3 4 1 3 0 5 3 4 3 3 1 3 1 4 2 4 3 5 2 4 1 5

12 3 5 3 5 3 4 5 5 1 4 2 4 3 5 4 5 4 5 4 5 4 5 4 5 2 4 3 5

13 3 5 3 5 3 4 4 5 2 4 2 4 3 5 2 5 3 5 2 5 4 5 1 5 2 4 3 5

14 4 5 4 4 3 4 4 5 3 4 2 4 3 5 4 5 4 5 3 5 4 5 4 5 4 4 3 5

15 3 5 3 5 3 4 4 5 3 5 1 4 3 4 2 5 4 5 3 4 4 5 1 4 3 5 3 4

16 3 5 3 5 3 4 3 5 3 4 3 5 3 5 2 5 4 5 3 5 4 5 3 5 4 5 3 4

17 3 5 3 5 3 4 4 5 2 4 1 5 3 5 2 5 4 5 3 4 4 5 3 4 3 5 3 4

18 3 4 3 5 2 4 3 4 1 3 1 4 3 4 4 5 3 5 2 4 3 4 3 4 3 4 3 4

19 3 4 3 4 2 4 2 3 1 3 0 4 3 4 4 4 3 4 2 2 2 4 0 5 2 4 3 5

Mean 3.3 4.8 2.8 4.4 2.2 3.8 2.9 4.6 2.1 4.0 1.5 4.1 2.8 4.3 2.2 4.3 2.9 4.4 2.5 4.5 2.7 4.4 2.5 4.6 2.7 4.3 2.2 4.4

3D, three-dimension; S3D, stereoscopic 3D; HP, healthcare professionals.

possible clinical and educational value for the visualization of
lesions (e.g., tumors, plaques) in the brain.

While a variety of approaches are available to create 3D visu-
alizations, the present work used the popular anaglyph method

(using red-cyan glasses). This approach is advantageous due to
the relative ease and low cost by which 3D visualization can be
achieved, simply requiring red-cyan glasses that are commonly
available and can be purchased for as little as US $0.50. Of course,
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visualization without the need for glasses would be optimal,
though is unlikely to be obtained without incurring significantly
greater expense (e.g., $19,999 for a glasses-free 3D TV with lentic-
ular lens). Importantly, anaglyph images can be generated with
packages such as 3D Slicer and displayed on a television screen,
computer screen, cinema, or printed in a manuscript or poster.
The selection of red-cyan as opposed to other possible color com-
binations for generation of anaglyphs leaves researchers an ample
array of color options for use in their images. Some caution does
need to be taken in the selection of colors for use in the generation
of anaglyph images, which can be somewhat time-consuming,
although given the additional benefits in the final results, careful
selection is merited.

The stereoscopic functional connectivity atlas is useful for
viewing the relative position of the different parts of each of
the 200 functional connectivity networks, including the relative
position of the functional networks with respect to subcortical
structures and, among the different networks themselves. SAIBN
could be also useful for visual comparison of functional con-
nectivity networks corresponding to an individual patient in
reference to the 200 atlas networks, as well as for educational
purposes.

Importantly, stereoscopy may not be an ideal solution for all
visualizations. Specifically, some individuals may have problems
with 3D perception. Stereoblindness is the complete deficiency
of stereopsis, and is often caused by strabismus (crossed-eye),
amblyopia (lazy eye), or blindness in one eye (Lipton, 1982).
Lipton (1982) specified that 2% of people are stereo-blind, and
another 2% or 3% of healthy individuals suffer fatigue and
discomfort when looking at stereo projections.

Additionally, Sherman (1953) found that approximately 2%
of the population has hyperphoria, an upward deviation of the
visual axis of one eye relative to the other, which prevents the
visual axes of the eyes from crossing at any point in space and
hence precludes stereoscopy. Total or partial color-blindness can
also produce some limitations for viewing in 3D using anaglyph-
based methods or other similar ones, and has a prevalence of 1.3%
(Lipton, 1982; Pokorny and Smith, 1986). Beyond these various
conditions, additional considerations are the potential discom-
fort of wearing 3D stereoscopic glasses for those that do not wear
glasses regularly, and the need to overlay them over corrective
lenses for those who do wear glasses.

Our evaluation shows that a diverse array of healthcare pro-
fessionals that explored the 3D and stereoscopic images perceived
the increased dimensionality of stereoscopy as beneficial. Depth
of tumors, relative position of MS lesions, relative position,
and size of both hippocampi, and relative position of different
functional connectivity areas in resting state images were bet-
ter perceived in stereoscopic images than in common 3D images
(percentage difference greater than 30%). Higher percentage dif-
ference was obtained for the tumor related images (more that
98%) and lower percentage difference (lower than 20%) for
images that include a functional area in close contact with a tumor
(for example Figure 7).

In conclusion, the present work illustrates the potential util-
ity of 3D stereoscopic visualization approaches in visualizing
complex imaging findings. Using several imaging approaches

(e.g., task activation fMRI, fMRI-based functional connectivity,
morphometry, and tissue segmentation) and findings (e.g., cyst,
tumor, multiple sclerosis), we demonstrated the ease with which
stereoscopy can be applied to imaging data to provide more
realistic and informative representations of brain structure and
function. In particular, stereoscopy uniquely provided intuitive
descriptions of the exact location and the relative size of var-
ious normal elements and lesions in a 3D representation, and
facilitated comprehension of the anatomical position of complex
large-scale functional connectivity patterns. Novel 3D visualiza-
tion techniques can enhance the utility of imaging data for clinical
applications and offer, through their intuitive nature, substantial
educational value. Future work will benefit from further quanti-
tative evaluation of the benefits of 3D stereoscopic visualization
of neuroimages.
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Supplementary Video 1 | Spinning stereoscopic (anaglyph) video of

Patient P3 pial surface (epilepsy secondary to right precentral tumor, 36

years old). Must be viewed using red-cyan anaglyph glasses.

Supplementary Video 2 | Spinning stereoscopic (anaglyph) video of

Patient P5 (medulla oblongata cavernoma, 63 years old). Corticospinal

tract with cavernoma in yellow.

Supplementary Video 3 | Spinning stereoscopic (anaglyph) video of lesion

load of patient P8 (multiple sclerosis, 42 year-old male).

Supplementary Video 4 | Spinning stereoscopic (anaglyph) version of

Default Mode Network obtained using resting state images from 45

controls.
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