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Major neuropsychiatric disorders are highly heritable, with mounting evidence suggesting
that these disorders share overlapping sets of molecular and cellular underpinnings. In
the current article we systematically test the degree of genetic commonality across six
major neuropsychiatric disorders—attention deficit hyperactivity disorder (ADHD), anxiety
disorders (Anx), autistic spectrum disorders (ASD), bipolar disorder (BD), major depressive
disorder (MDD), and schizophrenia (SCZ). We curated a well-vetted list of genes based on
large-scale human genetic studies based on the NHGRI catalog of published genome-wide
association studies (GWAS). A total of 180 genes were accepted into the analysis on the
basis of low but liberal GWAS p-values (<10−5). 22% of genes overlapped two or more
disorders. The most widely shared subset of genes—common to five of six disorders–
included ANK3, AS3MT, CACNA1C, CACNB2, CNNM2, CSMD1, DPCR1, ITIH3, NT5C2,
PPP1R11, SYNE1, TCF4, TENM4, TRIM26, and ZNRD1. Using a suite of neuroinformatic
resources, we showed that many of the shared genes are implicated in the postsynaptic
density (PSD), expressed in immune tissues and co-expressed in developing human
brain. Using a translational cross-species approach, we detected two distinct genetic
components that were both shared by each of the six disorders; the 1st component is
involved in CNS development, neural projections and synaptic transmission, while the
2nd is implicated in various cytoplasmic organelles and cellular processes. Combined,
these genetic components account for 20–30% of the genetic load. The remaining risk
is conferred by distinct, disorder-specific variants. Our systematic comparative analysis
of shared and unique genetic factors highlights key gene sets and molecular processes
that may ultimately translate into improved diagnosis and treatment of these debilitating
disorders.

Keywords: major neuropsychiatric disorders, neuroinformatics, cross-species, translational, genetic components,

genome wide association studies, enrichment

INTRODUCTION
Common psychiatric disorders including attention-
deficit/hyperactivity disorder (ADHD), anxiety disorders
(Anx), autism spectrum disorder (ASD), bipolar disorder (BD),
major depressive disorder (MDD), and schizophrenia (SCZ),
have a strong heritable component. Estimates for ASD range as
high as 80% whereas those for anxiety range, 30–45% (Stein
et al., 1999; Hettema et al., 2001). There is mounting evidence
that many of these pervasive neuropsychiatric disorders share
partially overlapping sets of common genetic risk factors (Cross-
Disorder Group of the Psychiatric Genomics Consortium, 2013),

supported by diagnostic comorbidities and shared phenotypes.
Diagnostic comorbidities are often reported in psychiatric
disorders (e.g., ADHD together with autism Joshi et al., 2014),
depression and anxiety (Hamilton et al., 2014), and BD with
ADHD (Faraone et al., 2012) and phenotypes shared among
these disorders include deficits in sensorimotor gating, sleep,
cognition, and social interaction (Braff et al., 2001; Spiegelhalder
et al., 2013; Foussias et al., 2014).

The correct identification of both common and
disease-specific sets of genes that confer higher or lower
risk of developing these disorders should expose mechanisms
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of comorbidity and provide valuable targets for therapeutic
intervention or prevention. However, the discrete (as opposed to
dimensional) diagnostic system currently in use by mental health
professionals (American Psychiatric Association: Diagnostic and
Statistical Manual of Mental Disorders, Fifth Edition, DSM-5,
2013) is heavily criticized for its lack of low validity in terms of
biological underpinnings (construct validity) as well as treatment
response (predictive validity; Insel, 2014). Therefore, in line
with the National Institute of Mental Health (NIMH) recently-
launched Research Domain Criteria (RDoC) project (www.nimh.

nih.gov/research-priorities/rdoc/index.shtml; Insel, 2014), the
genetic dissection of molecular and cellular mechanisms under-
lying the different major disorders could provide complementary
insight into the etiology and pathogenesis.

Using the National Human Genome Research Institute
(NHGRI) catalog as a primary resource, we collected the set
of genes that have been associated with six major categories
of neuropsychiatric disorders [single-nucleotide polymorphisms
(SNPs) with a p-value < 1.0 × 10−5]: ADHD, Anx, ASD, BD,
MDD, and SCZ. To avoid biases caused by unequal sizes of gene
sets, we restricted ourselves to analyzing similarly sized gene sets,
resulting in top-51 protein-coding genes for each disorder. We
refer to this well-vetted list as the NHGRI-cross-disorder gene set.

Given the (inherently) rigid boundaries of these symptom-
based categories that are often poorly correlated with other
relevant cognitive, imaging, and physiological abnormalities, we
decided to pool GWAS results within each one of these six cate-
gories. For instance, GWAS findings from individuals with SCZ
and schizoaffective disorders were pooled under the SCZ cate-
gory. With respect to anxiety disorders, recent studies of people
with a range of anxiety disorders demonstrate that those with
a diagnosis of a specific anxiety disorder, such as posttraumatic
stress disorder, may be at opposite extremes for startle reactivity,
suggesting two biologically different disorders sharing the same
diagnosis (Mcteague and Lang, 2012). On the other hand, recent
studies emphasized commonalities among supposedly distinct
anxiety disorders, thus highlighting the validity of a transdi-
agnostic approach toward anxiety disorders. Therefore, GWASs
targeting individuals across a range of anxiety disorders were
pooled under a category named anxiety disorders (Spielberg et al.,
2014).

In the current analysis we use bioinformatic and analytic
approaches, including molecular cohesivity, expression, and
cross-species phenotype analysis with respect to brain regions
involved in the pathogenesis of the disorders. We investigated (1)
protein-protein interactions using data from curated databases.
These represent a valuable resource of information on functions
shared between genes (Lage, 2014), membership of a set of genes
in a common pathway is often assumed based on interactions
between their products (Segal et al., 2003). We further exam-
ined (2) enrichment of NHGRI-cross-disorder gene products in
available proteomes of neuronal compartments. We focused in
particular on human postsynaptic density (PSD), because many
of the proteins within the PSD are important for neuronal func-
tioning. They are enriched in cognitive phenotypes and cause
neurological disorders (Bayes et al., 2011). The genes identified
in SCZ-associated copy number variations (CNVs) have already

been shown to have significant enrichment in the PSD pro-
teome (Kirov et al., 2012). The relations between genes are also
often represented by similar phenotypes that arise when they
are disrupted. Therefore, we explored (3) the most prominent
phenotypes associated to orthologs of NHGRI-cross-disorder
genes in cross-species phenotype database (Uberpheno; Kohler
et al., 2013). Next, we looked into (4) information on tissue
with the highest expression for each gene set and identified co-
expressed modules across gene sets during development of the
most enriched tissue, the brain.

The final aim of our work was to dissect the genetic makeup
of these six major neuropsychiatric disorders into Principal
Components (PCs) based on co-expression patterns across differ-
ent mouse strains, in an attempt to reveal genetic (and biological)
mechanisms shared across all disorders. First, as a prerequisite
for the next stage, we attempted to identify statistical correlations
between such synthetic genetic components and relevant behav-
ioral phenotypes (5). As this attempt was essentially intended
to support the validity of a translational cross-species approach
for use in the next stage, we limited this proof-of-concept anal-
ysis to two disorders. Since estimated heritabilities of anxiety
disorders are in the modest range, 30–40%, significantly lower
than for disorders such as SCZ (Hettema et al., 2001), these
two disorders were chosen a priori since they represent markedly
different diagnostic categories in terms of their relative heritabil-
ity. In the next stage, we attempted to reveal whether distinct
genetic components shared by all six disorders exist, and if
so hypothesize about their postulated biological functions. For
this analysis the mouse amygdala was chosen as our region of
interest, since both structural and functional changes in this
region have been consistently associated with anxiety disorders
(Rauch et al., 2003), mood disorders (MDDs and BD, (Price
and Drevets, 2010) SCZ (Benes, 2010), and ASD (Dziobek et al.,
2010).

MATERIALS AND METHODS
GENES ASSOCIATED WITH MAJOR NEUROPSYCHIATRIC DISORDERS
Genes associated with major neuropsychiatric disorders were
mined from the NHGRI catalog of published genome-wide
association studies (GWAS; Welter et al., 2014). The full cat-
alog was downloaded (Hindorff et al., 2014) and publications
were filtered on the keywords for neuropsychiatric disorders:
Asperger disorder, attention deficit hyperactivity disorder, autism,
BD, depression, depressive disorder, mood disorder, neuroticism,
panic disorder, and SCZ. The published GWAS SNPs within 10 kb
of a genomic feature (i.e., gene/transcript biotypes, see below)
were selected and duplicate genomic features within each dis-
order were filtered out. Protein-coding genomic features were
used for further analysis, which were retrieved through filtering
using the Ensembl BioMart feature Biotype and manual cura-
tion for unannotated features. To limit discovery bias, same-sized
sets of features were extracted for subsequent analysis (n = 55),
from which 20 non-coding features were excluded, namely: anti-
sense (2x), lincRNA (6x), ncRNA (5x), pseudogene (6x), rRNA
(1x). This resulted in same-sized coding gene sets (n = 51) with
the exception of anxiety (n = 16), due to limited association of
genes.
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ANNOTATION OF MOUSE ORTHOLOGS
Mouse homologs of the human genes were retrieved through
a BioMart query using Ensembl Compara ortholog prediction
(Vilella et al., 2009).

VENN DIAGRAM
The overlap between neuropsychiatric disorders was visual-
ized using a Venn diagram, created using a webtool: (http://
bioinformatics.psb.ugent.be/software/details/Venn-Diagrams).
Graphical output is only possible for up to five lists (ADHD, ASD,
BD, MDD, SCZ). The two overlapping Anx genes were annotated
manually.

PROTEIN-PROTEIN INTERACTIONS
Cytoscape (version 2.8.3) was used to visualize protein-
protein interaction networks based on curated interactions from
the BioGRID protein-protein interaction online data reposi-
tory (Release 3.2.108) and HPRD protein Reference Database
(Release 9). A background interaction set created by merg-
ing BioGRID and HPRD data was further adjusted by remov-
ing duplicates and non-physical interactions. The resulting set
contained purely physical interactions (i.e., association in com-
plex, direct interaction, physical interaction, and biochemical
co-localization).

GENE ONTOLOGY
GOrilla (cbl-gorilla.cs.technion.ac.il; Eden et al., 2009), DAVID
(http://david.abcc.ncifcrf.gov/; Huang Da et al., 2009a,b) and
WebGestalt (http://bioinfo.vanderbilt.edu/webgestalt/; Zhang
et al., 2005; Wang et al., 2013) tools were used for gene ontology
(GO) annotation.

ENRICHMENT ANALYSIS
Data sets used for calculation of enrichment: human postsynap-
tic density proteins (hPSD; Bayes et al., 2011), nuclear proteome
isolated from human brain (Dammer et al., 2013), membrane-
enriched proteome from human brain (Donovan et al., 2012),
mitochondrial proteome from mouse brain (Stauch et al., 2014),
proteome from rat synaptic vesicles (Morciano et al., 2005), cross-
species phenotype ontology (Uberpheno; Kohler et al., 2013).
Enrichment and p-value were calculated with two-sided Fisher
exact test.

IDENTIFICATION OF TISSUE WITH HIGHEST EXPRESSION OF
NHGRI-CROSS DISORDER GENE SETS
Data from Illumina Human BodyMap 2.0 (http://www.illu
mina.com/science/data_library.ilmn) summarized to tissue with
highest expression for each annotated gene (n = 166), was used
for tissue enrichment analysis. p-values were calculated using
two-sided Fisher exact test.

CO-EXPRESSION AND TEMPORAL SPECIFICITY
Normalized gene-expression data determined by RNA sequenc-
ing and representing 16 human brain regions were obtained from
BrainSpan (http://www.brainspan.org). Expression for 179 out
of 186 NHGRI-cross-disorder genes was extracted and clustered
according to their expression pattern with R-package WGCNA
(weighted correlation network analysis, Langfelder and Horvath,
2008). The expression level for each gene and developmental stage

(only stages with expression data for all structures were selected,
n = 12) was calculated as median expression across all regions at
a given stage.

ESTABLISHING MOUSE ORTHOLOG PROBES CORRESPONDING TO THE
NHGRI-CROSS-DISORDER GENE SETS AND PRINCIPAL COMPONENT
ANALYSIS OF CO-EXPRESSION PATTERNS IN MOUSE AMYGDALA
For each gene in the NHGRI-cross-disorder gene set, an ade-
quate probe within the well-curated INIA Amygdala Cohort Affy
MoGene 1.0 ST (Mar11) RMA Database was identified using
GeneNetwork (www.genenetwork.org). This set contains expres-
sion data from 54 genotypes of BXD mice, which were generated
by crosses of C57BL/6J and DBA/2 inbred strains (Wang et al.,
2003). The amygdala region was chosen based upon biological
and practical considerations. If several probes for the same gene
were available, the probe with the highest expression value was
selected. Based upon co-expression patterns across the 50 BXD
and parent strains, a Principal Component Analysis (PCA) was
undertaken. For each disorder, the synthetic PCs that individually
account for >10% of the total variance in the probe set expression
were identified.

EXPRESSION–PHENOTYPE CORRELATIONS
As outlined in the introduction, this prerequisite feasibility anal-
ysis was limited to SCZ and anxiety disorders. For each category,
well-established behavioral paradigms for which consistent etho-
logical data from rodents suggests face and predictive validities
to the corresponding disorders in humans have been selected
for correlation with the PCs derived above. Subsequently, based
on classical approach-avoidance paradigms (Cryan and Sweeney,
2011), the two anxiety-related mouse phenotypes selected were
the elevated plus maze and dark-light box traits reported by Yang
et al. (2008). For SCZ-related mouse phenotypes, based on sen-
sorimotor gating paradigms that apparently reflect an interface
between psychosis and cognition (van Den Buuse, 2010), we
selected behavioral traits obtained from experiments measuring
the prepulse inhibition of acoustic startle response reported by
Loos et al. (2012). For each disorder, we performed a PCA of the
relevant behavioral traits. Individual PCs accounting for >10%
of total variance was then cross-correlated with the disorder-
specific expression PCs (see above). Pearson’s moment product or
Spearman’s rank-order correlations were used, depending on the
number of subjects per group, trait distribution and existence of
outliers. For each disorder, correlations were deemed significant
at p-values < 0.05 following Bonferroni’s correction for multiple
testing.

CROSS-SPECIES ANALYSIS OF GENETIC COMPONENTS SHARED
ACROSS DISORDERS
A second-order PCA among all of the disorder-specific amyg-
dalar co-expression PCs generated previously was performed, in
an attempt to reveal if the new second-order PCs—termed Master
PCs—could be detected and whether they receive significant
contribution from all six neuropsychiatric disorders.

BIOLOGICAL UNDERPINNING OF THE SHARED GENETIC
COMPONENTS—TRANSLATIONAL EVIDENCE FROM MICE
In order to attribute a biological meaning to shared genetic
components, if indeed identified, for each Master PC, a list of
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the top-500 genes with the highest genetic correlation across
all 34760 records of the Amygdala Cohort Database was assem-
bled. Enrichment analysis based on GO terms was then per-
formed for each list using WebGestalt (Zhang et al., 2005;
Wang et al., 2013). The mmusculus__genome was chosen as
the reference gene set. For the statistical analysis, the hyper-
geometric method was chosen. Multiple test adjustment was
performed using the BH method (Benjamini and Hochberg,
1995). Minimum number of genes for a category was set
at two. Significantly enriched GO terms (i.e., those with
adjusted p < 0.05) were presented using REVIGO (Supek et al.,
2011).

RESULTS
CURATING THE DISORDER-SPECIFIC GENE SETS BASED ON CURRENT
GWASS
Genes associated with major neuropsychiatric disorders were
mined from the NHGRI catalog of published GWAS (Welter et al.,
2014). A total of 115 publications (Supplementary Table 1A) were
retrieved reporting 911 SNPs with a p-value < 1.0 x 10−5. The
top-51 protein-coding genes were selected for each disorder, with
the exception of anxiety where only 16 genes could be retrieved
(Supplementary Table 1B). Of the 180 genes (referred as NHGRI-
cross-disorder gene set throughout the manuscript), 15 occurred
in at least five disorders (8%), 20 occurred in at least four dis-
orders (11%), 28 occurred in at least three disorders (16%), 39
occurred in at least two disorders (22%) (Figures 1A,B).

FIGURE 1 | Venn diagram depicting the overlap of genes across

multiple disorders. (A) For each disorder (ADHD, ASD, BD, MDD, SCZ) the
overlap of top-51 SNPs with associated protein-coding genes is depicted.
For anxiety only 16 protein-coding genes could be retrieved, one overlaps
with ADHD and one with MDD. (B) Summary of the number of genes
shared among disorder. A detailed list of genes can be viewed in
Supplementary Table 1.

THE NHGRI-CROSS-DISORDER GENE SET DOES NOT FORM
INTERCONNECTED PROTEIN-PROTEIN INTERACTION NETWORK AND
DOES NOT SPLIT INTO GO ENRICHED CATEGORIES
With focus on identification of common biological processes
that potentially control disease pathogenesis, we investigated
protein-protein interactions within the NHGRI-cross-disorder
gene set. Contrary to our prediction, when mapping the protein-
coding genes from NHGRI-cross-disorder set to a merged
and curated BioGRID and HPRD protein-protein interaction
database (containing only physical interactions, see Material and
Methods), only 152 proteins and nine interactions were found
(Supplementary Figure 1). The NHGRI-cross-disorder set does
thus not represent an interconnected network on the level of
available direct protein-protein interactions.

Despite a lack of direct interactions, core proteins might be
connected via second interactors that have not yet been identi-
fied in disease-association studies, but might represent molecular
nodes in functional networks. We therefore created a network
from NHGRI-cross-disorder proteins occurring in at least five
disorders (the most shared subset of proteins) and allowed novel
interactors to connect at least two query proteins. Twelve of 15
proteins were connected by six interactors (Supplementary Figure
2). These interactors were proteins involved in ubiquitination
(UBE2I, UBC, CAND1), intracellular Ca2+ signaling (CALM1)
and intracellular cAMP signaling (PRKACA, EP300). Two inter-
actors have been associated with Alzheimer’s disease (CAND1,
UBE2I), but none have yet been associated with neuropsychiatric
disorders. The core interactor, UBC (Ubiquitin C), is a protein
with large number of natural binding partners (n = 8750) thus
interaction is unlikely to be specific for psychiatric disorders.
We consider this result less informative since we have not tested
significance of this network over random sets.

GO enrichment analysis of 15 genes present in at least five
disorders did not highlight any enriched categories, neither did
the GO analysis of the complete NHGRI-cross-disorder gene set.
These results complicate conclusions on functional relatedness of
studied genes.

NHGRI-CROSS-DISORDER GENES ARE ENRICHED IN THE HUMAN
POSTSYNAPTIC DENSITY AND ARE LINKED TO SIMILAR PHENOTYPES
The top-51 genes associated with major neuropsychiatric disor-
ders discovered by GWAS do not interact on the protein level
and (as a whole) do not show enrichment in GO categories.
To address the functional relatedness by other means, enrich-
ment of protein localization in neuronal subcellular structures
was performed. Comprehensive and systematic characterization
of neuronal proteome is not yet available but techniques for
isolation of sub-neuronal compartments and identification of
protein content have improved and proteome data from some
organelles/sub-structures such as nucleus (Dammer et al., 2013),
membrane (Donovan et al., 2012), mitochondria (Stauch et al.,
2014), synaptosome (Morciano et al., 2005) and PSD (Bayes et al.,
2011) are available.

Enrichment analysis of the NHGRI-cross-disorder gene set
in neuronal nucleus, membrane, mitochondria and synaptic
vesicles showed depletion (in fact, membrane, mitochondria
and synaptic vesicles did not contain any proteins from the
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NHGRI-cross-disorder set). Human PSD resulted in signifi-
cant enrichment (score = 1.63; p = 2.09 x 10−3), confirm-
ing contribution of PSD components to pathology of major
neuropsychiatric disorders.

To investigate what phenotypes in model organisms are most
frequently associated to genes from the NHGRI-cross-disorder
sets, enrichment of cross-species phenotypes based on pheno-
type ontology data (Uberpheno; Kohler et al., 2013) was analyzed.
Associated phenotypes were ranked based on their frequency in
the NHGRI-cross-disorder gene sets and investigated for enrich-
ment of phenotype ontology terms relevant to neuropsychiatric
disorders. For the complete list of phenotypes and frequencies,
see Supplementary Table 2. The terms were grouped in five
categories: (1) behavior, (2) brain morphology, (3) neuronal mor-
phology and migration, (4) neuronal activity, and (5) cognition.

FIGURE 2 | Phenotype enrichment. −log10(p-value) of cross-species
phenotypes from Uberpheno grouped to broader categories. Significant
terms are depicted in green; ∗∗p < 0.01, ∗p < 0.05.

Figure 2 depicts enrichment expressed as −log10(p) of all terms in
these categories. Despite possible study bias, analysis of associated
cross-species phenotypes revealed that there is phenotype cohe-
sivity underlying genes associated to six major neuropsychiatric
disorders.

The enrichment analysis suggests that rather than influenc-
ing brain structural malformations, the morphology of neurons
(axons and dendrites) and synaptic transmission are important
phenotypes. Some of the very specific behavioral phenotypes that
are linked to NHGRI-cross-disorder genes are abnormal vocaliza-
tion, aggressive behavior, abnormal contextual conditioning, and
hyperactivity. Finally, cognitive impairment and abnormal learn-
ing/memory conditioning are also significantly enriched in the
NHGRI-cross-disorder gene sets.

EXPRESSION ANALYSIS—TISSUE SPECIFICITY
Tissue specificity of genes associated with major neuropsy-
chiatric disorders was investigated through analysis of highest
tissue expression of the NHGRI-cross-disorder gene sets. 166
genes from the NHGRI-cross-disorder gene set was mapped to
Illumina Human BodyMap 2.0. A significant enrichment for
highest expression was found in the brain (Figure 3; p = 2.42
x 10−5). Brain is the top tissue with highest gene expression
for ADHD, Anx, and ASD. For BD, MDD, SCZ, brain is less
prominent and occurs in the same frequency range as white
blood, ovary, and testes. Table 1 summarizes top-4 tissues for each
disorder.

FIGURE 3 | Enrichment of tissues with highest expression in

NHGRI-cross-disorder genes. −log10(p-value) of enrichment of all tissues
with highest expression level of NHGRI-cross-disorder genes. The most
prominent tissue is brain with a significant enrichment of p = 2.42 x 10−5.
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GENES FROM THE NHGRI-CROSS-DISORDER SET CLUSTER IN THREE
CO-EXPRESSION MODULES WITH DISTINCT SPATIO-TEMPORAL
EXPRESSION PATTERNS AND FUNCTIONAL BIASES
One of the major properties of genes involved in regulation of
common biological/cellular process—next to interactions on pro-
tein level—is their co-expression. Besides being the tissue with
highest expression, the brain is logically the area of focus in search
for gene co-expression networks in neuropsychiatric disorders.
Correlation of gene expression was explored with the use of

Table 1 | Top-4 tissues with highest expression for each disorder.

Top-4 Tissues with highest expression

Tissue 1 Tissue 2 Tissue 3 Tissue 4

All Brain
(37/166)

White blood
(25/166)

Testes
(23/166)

Ovary
(15/166)

ADHD Brain (12/48) Testes (7/48) White blood
(6/48)

Ovary (5/48)

Anx Brain (6/14) Adipose
(2/14)

Testes (1/14) Skeletal
muscle
(1/14)

ASD Brain (12/50) White blood
(7/50)

Testes (6/50) Ovary (5/50)

BD White blood
(8/50)

Ovary (8/50) Brain (7/50) Testes (6/50)

MDD White blood
(9/49)

Brain (8/49) Ovary (7/49) Testes (6/49)

SCZ White blood
(9/49)

Testes (8/49) Brain (6/49) Liver (5/49)

the recently released BrainSpan developmental transcriptome:
mapping gene expression in 16 human brain structures across
26 developmental stages (Kang et al., 2011). Clustering 179
NHGRI-cross-disorder transcripts within a weighted gene co-
expression network (using WGCNA; Langfelder and Horvath,
2008) in developing human brain revealed three gene modules
with distinct spatiotemporal expression patterns (Figure 4). The
turquoise module (n = 58 genes) is characterized by low expres-
sion during early fetal development (postconceptional week 16).
The blue module (n = 39 genes) is characterized by high expres-
sion in early fetal development, early childhood (1 year), and at
the age of 30 years. The brown module (n = 17 genes) is charac-
terized by decreased expression and opposite peaks of expression
at 1 and 30 years. Supplementary Table 3 contains the complete
list of genes in all three modules and their connectivity. The mod-
ules do not follow clear and simple developmental expression
trajectory, but they show sharp expression peaks, and troughs
at specific developmental time points (postconceptional week
16, 1 year, 30 years). Disorder-specific gene enrichment analysis
revealed that there is a particular contribution of disease-specific
genes in the co-expression modules: BD genes are enriched in
the blue module, Anx genes are enriched in the brown mod-
ule, while SCZ genes are depleted in the brown module (Table 2
for significant enrichment, depletion and p-values; for complete
enrichment data, see Supplementary Table 4). However, correla-
tion of gene expression in the turquoise module did not show
enrichment in any of the disorder-specific gene list and genes
from this module are distributed throughout all lists. Biological
processes controlled by these genes may represent connecting link
between highly heterogeneous neuropsychiatric disorders.

FIGURE 4 | Co-expression clusters among NHGRI-cross-disorder genes.

(A) Topological overlap matrix plot (TOMplot), a heatmap depicting the
topological overlap matrix supplemented by hierarchical clustering

dendrograms. Modules are depicted in colors (turquoise, blue, and brown).
(B) Expression heatmap plots for each module. The following abbreviations
are used: postconceptional weeks (pcw), months (mo), years (yrs).
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Splitting of NHGRI-cross-disorder gene sets into tight co-
expression modules turned out to be helpful in identification of
genes with shared molecular functions. Follow-up GO enrich-
ment analysis revealed distinct biological processes behind the
three modules. The turquoise module was enriched for regulation
of gene expression (GO:0010468; p = 2.62 x 10−4; FDR q = 7.88
x 10−2), regulation of metabolic process (GO:0019222; p = 7.15 x
10−5; FDR q = 2.87 x 10−2), and protein binding (GO:0005515;
p = 4.77 x 10−6; FDR q = 1.31 x 10−3). The blue module was
enriched for neuron projection guidance (GO:0097485; p = 8.13
x 10−4; FDR q = 6.56 x 10−1) and axon guidance (GO:0007411;
p = 8.13 x 10−4; FDR q = 3.28 x 10−1), and the brown module is
enriched for response to stress (GO:0006950; p = 4.2 x 10−4; FDR
q = 2.41 x 10−1).

MOUSE ORTHOLOGS OF NHGRI-CROSS-DISORDER GENE SETS CAN BE
GROUPED IN PRINCIPAL COMPONENTS BASED ON THEIR
AMYGDALAR CO-EXPRESSION PATTERNS
Adequate probes for the vast majority of genes from the NHGRI-
cross-disorder set were identified within the INIA Amygdala
Cohort Affy MoGene 1.0 ST (Mar11) RMA Database (e.g., see
Supplementary Tables 9,10 depicting probes for anxiety and
SCZ-associated mouse orthologs, respectively). Following PCA,
for each of the six disorders, two synthetic expression PCs

Table 2 | Significant enrichments or depletions of disorder-specific

genes in three co-expression modules identified by weighted

correlation network analysis (WGCNA).

Module Disorder Enrichment p-value

Brown Anx 3.13 4.98 x 10−2

Blue BD 2.09 1.00 x 10−2

Brown SCZ 0.15 2.57 x 10−2

individually accounting for >10% of total variance in the probe
set expression were identified. Together, these PCs accounted for
30–45% of the total variance in expression of these probe sets
(e.g., see Supplementary Figures 3, 4 depicting the scree plots for
the anxiety and SCZ-associated mouse ortholog PCs). Altogether,
12 synthetic expression PC traits were created.

EXPRESSION-PHENOTYPE CORRELATIONS SUPPORT THE VALIDITY OF
THE CROSS-SPECIES APPROACH FOR ANALYZING THE CONTRIBUTION
OF GENETIC COMPONENTS TO NEUROPSYCHIATRIC DISORDERS
Eight relevant anxiety-related traits, based upon Yang et al.
(2008), were identified in the BXD database (Supplementary
Table 11). PCA revealed that the two top PCs together accounted
for >80% in total variance of these anxiety traits (Supplementary
Figure 5). A significant correlation between one of these
anxiety-phenotype PCs and an anxiety-expression PC was noted
(rho = 0.81, praw = 0.012, padj = 0.047, Figure 5A). Four rele-
vant prepulse inhibition-related traits, based upon Loos et al.
(2012), have been identified in the BXD database (Supplementary
Table 12). PCA revealed that the top PC accounted for >90% in
total variance of these prepulse inhibition traits (Supplementary
Figure 6). A significant correlation between the top prepulse
inhibition-related PC and an SCZ-expression PC was noted
(rho = 0.57, praw = 0.006, padj = 0.012, Figure 5B).

GENETIC COMPONENTS ARE SHARED ACROSS ALL DISORDERS
Examination of correlations between the 12 synthetic expres-
sion PC traits described above (Figure 6A) suggested that they
could be grouped into two distinct sets, or Master PCs, each
accounting for nearly 50% of total variance (Figure 6B). A fac-
tor loading analysis revealed that 8–9 synthetic PC traits, coming
from all six disorders, contributed to each of the Master PCs
(Figure 6C, see also Figure 6A, bottom two rows). Thus, the two
Master PCs synthesized from the combined list of individual

FIGURE 5 | Expression-phenotype correlations. Correlations between the
top-2 synthetic PCs derived from the expression profile of the mouse
orthologs of the NHGRI-cross-disorder gene set and relevant mouse
behavioral phenotypes are depicted. (A) Correlation between the top PCs

derived from the expression profile of the anxiety probe set and the top PCs
derived from anxiety-related behavioral traits. (B) Correlation between the top
PCs derived from the expression profile of the SCZ probe set and the top PC
derived from prepulse inhibition-related behavioral traits.
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FIGURE 6 | Correlations between the top-12 synthetic PC traits. (A)

Second-order correlations between all 12 synthetic PC traits, two per
disorder, are depicted. The number appearing at the end of each trait
name (first column) denotes the percent of total variance for each PC
generated from a disorder’s top-51 gene-set mouse orthologs
co-expression vector. The bottom two rows depict the second-order
(termed Master) PCs that were generated by correlating the 12 synthetic
PC traits amongst themselves. Lower left cells list Pearson

product-moment correlations; upper right cells list Spearman rank order
correlations. Each cell also contains the n of cases. Values higher than 0.7
are displayed in red; those between 0.7 and 0.5 in orange; between −0.5
and −0.7 in green; values lower than −0.7 are in blue. Scree plot (B)

depicts the percentage of total variance across the 12 synthetic PC traits
(>45%) that is accounted for by each one of the Master PCs. Factors
loading plot (C) depicts the relative vector-wise contribution to both Master
PCs arriving from each of the 12 disorder-specific PC traits.

disorders’ top PCs are shared by all six neuropsychiatric dis-
orders. Notably, these Master Traits most probably represent
distinct co-expression vectors as they are poorly inter-correlated
(rho = −0.27, p > 0.05).

BIOLOGICAL UNDERPINNING OF THE SHARED GENETIC
COMPONENTS—TRANSLATIONAL EVIDENCE FROM MICE
For each of the Master PCs, the top-500 correlations across
all records of the Amygdala Cohort Database, ranked by the
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Genetic Correlation (Spearman’s rho), were strong (absolute
value ranging from 0.7 to 0.9), and highly significant (p < 10−8,
Supplementary Tables 5, 6). Enrichment analysis revealed 29
significantly enriched GO categories for each one of the top-500-
correlated gene lists (Supplementary Tables 7, 8). Enrichment
patterns relevant to biologic processes (Figure 7A), molecular
function (Figure 7B), and cell compartment (Figure 7C) corre-
sponding to each one of the genetic components were strikingly
distinct. The first genetic component shared across all disorders
seems to be involved in CNS development and located preferen-
tially in neural projections (padj ∼ 10−8 each). As such, it was
specifically implicated in axonogenesis and dendrite formation
(padj ∼ 10−8 for both). This component was also enriched in
genes located to the synapse (padj ∼ 10−7), with special focus
on calcium influx through both voltage-gated and ligand-gated
(AMPA-receptor) channels (padj ∼ 10−4 and padj ∼ 10−3, respec-
tively). On the other hand, the second genetic component shared
across all disorders was mainly enriched in genes whose products
are located in the cytoplasm (padj ∼ 10−11) and are involved in
catalyzing metabolic processes (padj ∼ 10−3) as well as in facil-
itating localization and transport (padj ∼ 10−3 each) of various
substrates and in binding of both proteins and RNA (padj ∼ 10−2

each).

DISCUSSION
In the present study we have systematically evaluated com-
mon and distinct gene sets and biological processes associated
with major neuropsychiatric disorders using multiple, conver-
gent approaches. A key problem that we had to address in this
study was how to go about generating minimally biased lists of
genes linked to each of the six highly diverse types of psychiatric
disorders. We have benefitted greatly from large GWASs that sys-
tematically survey most of the genome. The GWAS coverage for
the six disorders we have analyzed was far from uniform, in the
case of SCZ the top-51 genes were extracted from a larger num-
ber of studies than ASD and most notably for anxiety disorders.
These differences in coverage might introduce some bias in our
list, which we have tried to avoid by analyzing similarly sized gene
sets.

We have extracted a well-curated list of 180 genes based on
top findings in GWAS with p-values of <10−5 across six psychi-
atric disorders: ADHD, Anx, ASD, BD, MDD, SCZ. A set of genes
shows overlaps between five out of the six disorders (n = 15).
Interestingly, genes with association to Anx show poor overlap
(1/16 overlaps with ASD and 1/16 overlaps with MDD). Small
overlap of Anx genes with other neuropsychiatric disorders might
point to their distinct character but might also be explained by
lower number of genes identified by GWAS with p-values of 10−5.

Two common approaches were used to investigate shared
functions of genes associated with major neuropsychiatric disor-
ders: protein-protein interactions and co-expression. Analysis of
protein-protein interactions did not show any meaningful inter-
connected modules, which might be influenced by the fact that
protein-protein interaction databases are still largely incomplete,
and a number of unreported interactions may occur (Mosca
et al., 2013). Next to direct protein-protein interactions, genetic
interactions from model organisms, and interactions within

pathways can be valuable information for a functional relation
between seemingly unrelated genes. Spatiotemporal analysis of
gene expression correlation in human brain (using BrainSpan
developmental transcriptome data; Kang et al., 2011) has iden-
tified three co-expression modules. Although GO enrichment of
the whole list (180 genes) did not highlight any functional cate-
gories, analysis of the co-expressed genes resulted in enrichment
of the modules. This suggests that co-expression is a meaning-
ful factor in exploring disease gene specificity. The biological
process with highest enrichment of the largest module (n = 58
genes) was regulation of gene expression, the second largest mod-
ule (n = 39 genes) was enriched for neuron projection guidance
and the smallest module (n = 17 genes) showed enrichment in
response to stress. It is of note that genes from Anx list were
enriched in this small module.

Despite the fact that GO enrichments for the second and third
module did not withstand correction for multiple testing, the
enriched GO categories we identified represent molecular targets
that have previously been implicated in different neuropsychi-
atric disorders and/or processes and cellular organelles for which
involvement in neuropsychiatric disorders makes biological sense.
For instance, regulation of gene expression for several genes, such
as BDNF, has been previously implicated in various psychiatric
disorders (Boulle et al., 2012). Moreover, differential expression
of genes with a postulated role in the formation of neural projec-
tions, such as AHI1, have been implicated in psychiatric disorders
such as SCZ (Amann-Zalcenstein et al., 2006; Ingason et al., 2010;
Slonimsky et al., 2010), and ASD (Alvarez Retuerto et al., 2008)
as well as in modulation of emotional phenotypes and stress vul-
nerability in relevant Ahi1 knockout mouse models (Xu et al.,
2010; Lotan et al., 2014). The fact that these same processes
came out when using the current approach is intriguing. The
approach we used, which is essentially hypothesis-free owing to
its reliance on GWASs, differs from the approaches undertaken by
the studies mentioned above, which focused a priori on relevant
candidate genes. By doing so, the current findings arguably pro-
vide further rationale for targeting these processes in the context
of neuropsychiatric disorders.

Next to traditional resources (represented by protein-protein
interaction, weighted co-expression network, and GO), we took
advantage of cross-species phenotypes data associated with major
neuropsychiatric disorder genes (Kohler et al., 2013). We have
identified specific phenotypes related to behavior, cognition, neu-
ronal morphology, and neuronal activity to be over-represented
in 110 genes associated with major neuropsychiatric disorders.
Orthologous phenotypes, so called phenologs, have been shown
to reveal functionally coherent gene networks, which can serve as
models for systematic discovery of unique genes associated with
disease (Mcgary et al., 2010); Woods et al. (2013) have shown
predictions for atrial fibrillation, epilepsy and seizures using phe-
nolog networks. Moreover, defining disease-specific phenotypes
is initial step toward cross-species phenotype-expression corre-
lation, which may add to translational validity of cross-species
approaches.

We show that NHGRI-cross-disorder genes are enriched in
the PSD, a dense and highly specialized structure in postsynap-
tic membrane of neurons. The proteins localizing to the PSD
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FIGURE 7 | Enrichment analysis based on GO terms for Master PC1’s (left

column) and Master PC2’s (right column) top-500 correlated gene set.

Significant enrichment of genes included in GO terms relevant to (A) biological
processes, (B) molecular functions, and (C) cellular components. Only
significantly enriched GO categories are depicted. Bubbles are color-coded
according to the adjusted log10 p-value of the top-correlated genes enrichment
relative to the whole mouse genome. Blue and green bubbles are GO terms
with more significant p-values than the orange and red bubbles. The bubbles’ x

and y coordinates were derived by applying multidimensional scaling to a
matrix of the GO terms’ semantic similarities; consequently, their closeness on
the plot should closely reflect their closeness in the GO graph structure i.e. the
semantic similarity. GO terms are based on the Gene Ontology Consortium
available at: http://www.geneontology.org/. GO enrichment analysis was
performed using WebGestalt: an integrated system for exploring gene sets in
various biological contexts (Zhang et al., 2005), available at: http://bioinfo.

vanderbilt.edu/webgestalt/.
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have been identified through proteomic studies (Bayes et al.,
2011), where they function to concentrate and organize neuro-
transmitter receptors in the synaptic cleft and ensure for proper
communication between neurons. Deficits in neuronal commu-
nication, as a consequence of impaired synaptic plasticity have
been proposed as one of the common causes of neuropsychi-
atric disorders but significance of this observation has not been
demonstrated. Results of the enrichment analysis of genes linked
to six major neuropsychiatric disorders therefore confirm the role
of PSD in disease pathology.

Looking into tissue specificity by using simplified information
linking each gene to tissue with highest expression revealed that
genes associated to SCZ, BD, and MDD are not highly expressed
only in brain but also in other tissues, such as white blood.
Association of immune system disturbances with SCZ has been
already described (Miller et al., 2011) and current research has
been to a greater extent focusing on interface between immunol-
ogy and mental illness (Arolt et al., 2002).

Based on observed cohesivity in gene expression and enrich-
ment in cross-species phenotypes, we focused on utilization of
expression-phenotype correlation for analysis of genetic compo-
nents shared across disorders. To achieve this, we took advantage
of GeneNetwork—a web-based internet resource that embeds
coherent behavior, genotype, and expression data from 28 geno-
types of BXD mice (Wang et al., 2003). BXD mice were generated
by crosses of C57BL/6J and DBA/2 inbred strains and all pro-
genies are fully inbred strains with different parent haplotypes,
which makes them an ideal model for study of correlations
between RNA expression and biological traits and mapping the
traits to QTLs.

When establishing the mouse orthologs of the NHGRI-cross-
disorder gene sets, the amygdala region was chosen based upon
biological and practical considerations. Biologically, it is a key
region for regulation of emotion and has been consistently impli-
cated in the pathogenesis of all major neuropsychiatric disorders
(Catani et al., 2013). Moreover, structural and functional connec-
tivity of the amygdala is involved in modulating complex pheno-
types at the cognitive-emotional interface (Lotan et al., 2014), and
is thus highly relevant across mental disorders. Practically, based
upon estimates of mRNA expression for 50 genotypes of BXD
mice in the basolateral region with balanced samples of males
and females, the amygdala data set is one of the larger and higher
quality “expression genetics” data sets available within the BXD
database, with good annotation and high coverage by the array.
In line with these observations, probes with at least moderate
expression values could indeed be identified for the vast major-
ity of relevant mouse orthologs. Theoretically, other regions such
as prefrontal cortex, hippocampus, midbrain, and striatum could
also have been profiled for establishing the mouse orthologs.
Although comparing orthologs from different brain regions could
provide complementary information, as different regions within
the BXD database were profiled using different array platforms,
direct comparison might be difficult.

In order to determine whether analysis of genetic components
shared across disorders could be performed using the elegant
GeneNetwork platform based on the BXD database, the feasi-
bility of a cross-species approach needed to be demonstrated.

Specifically, we initially wanted to assess the translational valid-
ity of such an analysis by establishing (expected) correlations
between expression patterns of the mouse orthologs of the
NHGRI-cross-disorder gene sets and relevant behavioral traits.
To this end, we selected two different neuropsychiatric disor-
ders, anxiety disorders and SCZ, and correlated their mouse-
ortholog expression profile with relevant behavioral phenotype.
As we aimed to use common paradigms, anxiety-related behav-
ior was assessed with classic approach–avoidance anxiety tests
(Cryan and Sweeney, 2011), while SCZ-related phenotypes were
assessed with the prepulse inhibition paradigm that is indicative
of disrupted sensorimotor gating (Powell et al., 2012). Notably,
prepulse inhibition, formerly regarded as having construct and
predictive validity for the psychotic domain of SCZ, has been
recently considered to reflect a unique endophenotype that is
at the interface of psychosis and cognition. As such, and going
beyond SCZ, deficits in prepulse inhibition have also been impli-
cated across a spectrum of affective disorders (Kohl et al., 2013).
Moreover, it has recently been suggested that this paradigm could
predict the impact of drugs or psychotherapy on cognitive per-
formance in neuropsychiatric patients (Koch et al., 2014). Hence,
our expression-phenotype results regarding anxiety and prepulse
inhibition support the translational validity of the cross-species
analytic approach that we have used in this manuscript.

In doing the cross-species analysis, there had been two rel-
evant approaches for capturing the cross-disorder “essence” (if
indeed there is such an essence). In the first approach, a PCA
limited only to genes that are shared by most disorders would
have been performed. We thought this option had two major
disadvantages: (a) No single gene was associated with all six
disorders, making the cross-disorder analysis a priori somewhat
incomplete, and (b) from the clinical perspective, as the bound-
aries between disorders (i.e., the phenotype) are often vague and
arbitrary, focusing only on genes that are shared by a minimal
number of (supposedly) distinct disorders may be inherently sub-
ject to the same flaws of the current diagnostic system (Faravelli
et al., 2012). In the second approach, one starts with the entire
NHGRI-cross-disorder gene set, which obviously includes many
genes that are not shared across disorders, and then uses a two-
stage PCA. In this sort of analysis, the mouse neurobiology (or
BXD database) identifies the cross-disorder genetic components.
Obviating the need of relying on previous assumptions regarding
the validity of current psychiatric classification, such data-driven
approaches could offer more valid identification of independent
components in neurobiological systems (Wessel and Ullsperger,
2011). In the current manuscript, we have used a combination of
both approaches; while the first was implemented in the human-
based analysis, the second approach was used for the cross-species
analysis. Naturally, in the future other possibilities for analyzing
the data could be implemented.

The data suggesting the existence of significant cross-disorder
genetic components sheds important light on the ongoing
debate concerning the current classification systems in psychia-
try. Current diagnostic systems for mental disorders rely upon
presenting signs and symptoms, with the result that current def-
initions do not adequately reflect relevant neurobiological and
behavioral systems—impeding not only research on etiology and
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pathophysiology, but also the development of new treatments
(Cuthbert and Insel, 2013). The NIMH began the RDoC project
in 2009 to develop a research classification system for mental
disorders based upon dimensions of neurobiology and observ-
able behavior. RDoC supports research to explicate fundamental
dimensions that cut across current heterogeneous disorder cate-
gories, realizing the fact that future diagnostic systems will largely
depend on ongoing advances in genetics and neuroscience. In this
respect, the robust cross-diagnostic data presented above, point-
ing to highly shared, albeit modest, genetic components that lies
at the core of the major neuropsychiatric disorders, yields support
to the dimensional approach outlined.

After verifying that both Master PCs receive substantial con-
tribution from each and every disorder, we tried to elucidate
their biological meaning. A main computational advantage of the
GeneNetwork platform is that it treats synthetic PCs as indepen-
dent traits, thus enabling the user to correlate them with other
traits of interest. Thus, for the enrichment analysis, we chose to
include the top-500 genes that co-express with each Master PC
across the BXD strains’ amygdalae. While the relatively large gene
list enables adequate power to detect enrichment relative to the
reference set, the high correlation coefficients between all 500
genes and their respective Master PC ensures that the genes used
for the enrichment analysis do in fact closely resemble the vector
of the Master PC that they are intended to reflect.

Results of the GO-based enrichment analysis suggested that
the two genetic components shared across all disorders repre-
sent distinct sets of biological processes, molecular functions and
cellular components. The first genetic component seems to be
involved in CNS development, located preferentially in neural
projections and synapse, implicated in axonogenesis and dendrite
formation and modulates calcium influx through glutamatergic
neurotransmission. As all of these processes and functions have
been extensively implicated across all neuropsychiatric disorders,
the contribution of such a genetic component to all major disor-
ders seems highly plausible. Moreover, many of these molecular
functions, such as calcium influx and excitatory neurotransmis-
sion, are targeted by the currently available psychoactive and
other somatic treatments (Baldinger et al., 2014), thus grant-
ing this genetic component predictive validity as well. Notably,
the “neural projections” GO term was also significantly enriched
in our enrichment analysis of cross-disorder genes co-expressed
during human brain development (blue module, Figure 5). The
fact that two different analytical approaches converged on the
same biological process lends further support to its common
and central role in the pathogenesis of common neuropsychiatric
disorders.

In contrast to the first genetic component, the second genetic
component shared across all disorders was mainly enriched in
genes whose products are located in the cytoplasm and are
involved in catalyzing metabolic processes as well as in facilitating
localization and transport of various substrates and in binding of
both proteins and RNA. Although these intra-cellular processes
do not “pop-up” as the “usual suspect” when it comes to neu-
ropsychiatric disorders, they have been consistently implicated
in neuropsychiatric disorders such as SCZ (Prabakaran et al.,
2004), BD (Baek et al., 2013), ASD (Raymond et al., 2014), and

MDD (Hoyo-Becerra et al., 2014). Moreover, many psychotropic
drugs seem to modulate such intra-cellular processes, adding fur-
ther predictive validity to this genetic component (Lauterbach,
2013). Importantly, as mentioned above with respect to “neu-
ral projections,” protein binding and regulation of metabolic
processes pop-out also in our GO enrichment results from
cross-disorder genes co-expressed in developing human brain
(turquoise module, Figure 4), highlighting once again the con-
vergence of different analytical approaches on similar biological
processes.

In addition to the genetic components shared across disorders,
the data suggest that the majority of genes and factor loading
associated with each specific disorder is unique. In this respect,
it could be hypothesized that a common (pathologic) molecular
infrastructure located to neural projections, cytoplasm (or possi-
bly both) may be necessary to induce a primary vulnerability to
develop a neuropsychiatric disorder. Further distinct molecular
processes which build-up on top of this common infrastructure
ultimately lead, in certain patients, to the development of one or
another specific neuropsychiatric disorder.

One limitation of the current study is that although logical and
plausible, the above-mentioned hypothesis is somewhat specula-
tive as it cannot be induced straightforwardly from our results.
For instance, there is no way to know from the current GWASs
design which combinations of genes are associated with a clin-
ical disorder at the individual patient level. Moreover, GWAS
derives data points to genes, not to causative mutations, which
may alter gene expression, protein structure or both. Needless
to say that addressing this complexity is beyond the scope and
resolution of the analysis presented in this manuscript. Another
important limitation of the current study is its reliance, on part,
on data obtained from animal models of neuropsychiatric disor-
ders. Many of the symptoms of major neuropsychiatric disorders
are dependent on the processing of complex psychological and
cognitive concepts that clearly cannot be measured in animals,
such as paranoid delusions or “fear of losing control or going
crazy.” It is thus clear from the clinical presentation of these dis-
orders that they can never be fully emulated as a syndrome in
animals (Crawley, 2007). Therefore, our findings derived from
the cross-species approach are inherently limited in their gener-
alizability upon translation back to humans. Nevertheless, given
the substantial conservation of genetic, neurochemical and neu-
roanatomical features seen across mammals (Arguello and Gogos,
2006), theoretically, studying the genetic determinants of animal
behavioral response, could, by inference, promote our under-
standing of the genetic basis of human behavior under both
normal and pathological states (Cryan and Holmes, 2005).

CONCLUDING REMARKS
We have combined genetic risk factors identified in SCZ, BD,
ADHD, ASD, MDD, and Anx disorders based on top findings in
GWAS from NHGRI catalog. We have scored these genes based
on the highest number of overlap between these disorders and
found 15 genes affected in five disorders, 20 affected in four or
more disorders, 28 genes affected in three or more disorders, and
39 genes with overlap between two disorders. 141 genes do not
overlap.
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We demonstrated that although these disorders share a rela-
tively small set of genes, there are two fundamental yet distinct
genetic components, or vectors, that are both shared by all six
disorders. While the first component is involved in CNS develop-
ment, neural projections and synaptic transmission, the second
component is implicated in various cytoplasmic organelles and
cellular processes such as metabolism, transport and binding.
Although both components were implicated in each and every
disorder, their overall genetic (and possibly pathophysiologic)
contribution to the development of common neuropsychiatric
disorders may be modest.
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