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One way to study connectivity in visual cortical areas is by examining spontaneous
neural activity. In the absence of visual input, such activity remains shaped by the
underlying neural architecture and, presumably, may still reflect visuotopic organization.
Here, we applied population connective field (CF) modeling to estimate the spatial profile
of functional connectivity in the early visual cortex during resting state functional magnetic
resonance imaging (RS-fMRI). This model-based analysis estimates the spatial integration
between blood-oxygen level dependent (BOLD) signals in distinct cortical visual field maps
using fMRI. Just as population receptive field (pRF) mapping predicts the collective neural
activity in a voxel as a function of response selectivity to stimulus position in visual space,
CF modeling predicts the activity of voxels in one visual area as a function of the aggregate
activity in voxels in another visual area. In combination with pRF mapping, CF locations
on the cortical surface can be interpreted in visual space, thus enabling reconstruction
of visuotopic maps from resting state data. We demonstrate that V1 ➤ V2 and
V1 ➤ V3 CF maps estimated from resting state fMRI data show visuotopic organization.
Therefore, we conclude that—despite some variability in CF estimates between RS
scans—neural properties such as CF maps and CF size can be derived from resting state
data.
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INTRODUCTION
The human visual cortex is a highly complex and intercon-
nected system operating at various temporal and spatial scales,
and as such, non-invasive assessment of the neural correlates
of human visual processing are of great importance. A signifi-
cant contribution toward understanding human visual processing
can be made by studying cortico-cortical interactions between
different visual areas (Heinzle et al., 2011; Haak et al., 2013;
Raemaekers et al., 2013). One way to study these neural corre-
lates is by examining spontaneous blood-oxygen level dependent
(BOLD) co-fluctuations during resting state (Heinzle et al., 2011;
Raemaekers et al., 2013). Given that resting state BOLD fluctu-
ations are partly shaped by the underlying functional and neu-
roanatomical organization (Biswal et al., 1997; Logothetis, 1998;
Raichle et al., 2001; Boly et al., 2007; Deco et al., 2011; Hutchison
et al., 2013a; Wang et al., 2013), analysis of resting state activity
offers a possibility to examine intrinsic functional connectivity
of the visual system as well as the extent of variability of these
processes.

Although functional magnetic resonance imaging (fMRI)
indirectly measures neural activity, accurate methods to map
neural response selectivity in the early visual cortex from the

BOLD signal have been developed (Engel et al., 1997; Smith et al.,
2001; Dumoulin and Wandell, 2008). With these methods, the
unifying concept of classical receptive field (Hubel and Wiesel,
1962) has found its place in fMRI, under the definition of popula-
tion receptive field (pRF). The term pRF was first used to describe
population encoding in macaque early visual areas (Victor et al.,
1994). Used in fMRI, the term describes the aggregate responses
of fMRI recording sites (voxels) to presented stimuli, in terms
of the position and size of the visual field area to which each
recording site responds.

The parametric modeling approach of the pRF techinque has
allowed non-invasive investigation of neural response selectivity,
its cortical organization, and the computational properties of the
visual system. A recent complementary method, called connec-
tive field (CF) modeling (Haak et al., 2013), extends this type of
analysis to model cortico-cortical interactions in terms of spa-
tially localized patterns of functional connectivity. Specifically,
this method enables characterization of a recording site in terms
of aggregate cortical activity in another brain area, thus extend-
ing the concept of receptive field from a description of preferred
locations in visual (stimulus) space to preferred locations on the
cortical surface.
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CF modeling was originally conceived as a method to analyze
responses evoked by visual field mapping (VFM) stimuli, though
the analysis does not use a description of the stimulus. As such,
it could in principle be applied to explore cortico-cortical con-
nectivity profiles during different experimental conditions as well
as resting state. To realize this potential, a number of questions
must be addressed. In this paper, we try to provide answers to
at least four of them. First, how do we measure CF models in the
presence of substantial physiological measurement noise? Second,
how much scan time is sufficient to achieve accurate discrimina-
tion of CF models obtained from resting state data? Third, how
do CF parameters obtained from resting state compare to those
obtained from stimulus-evoked activity? Four, to what extent do
CF parameters vary between resting state scans?

While previous studies have examined cortico-cortical inter-
actions in the early visual cortex during resting state (Heinzle
et al., 2011; Raemaekers et al., 2013), our current study focuses
on the application of the CF method. These previous studies
used model-free approaches whereas the CF method is a model-
based approach. To the extent that the model adequately describes
the underlying neuronal activity, model-based approaches pro-
vide summary descriptions of aggregate neural activity, which is
another reason to examine the application of the CF method to
analyze resting state fMRI data.

MATERIALS AND METHODS
PARTICIPANTS
We recruited four subjects with normal visual acuity (age:
S1 = 26, S2 = 30, S3 = 31, S4 = 40 years old). Experimental
procedures were approved by the medical ethics committee of the
University Medical Center Utrecht.

STIMULUS
Visual stimuli were presented by back-projection onto a
15.0 × 7.9 cm gamma-corrected screen inside the MRI bore. The
subject viewed the display through prisms and mirrors, and the
total distance from the subject’s eyes (in the scanner) to the dis-
play screen was 36 cm. Visible display resolution was 1024 × 538
pixels. The stimuli were generated in Matlab (Mathworks, Natick,
MA, USA) using the PsychToolbox (Brainard, 1997; Pelli, 1997).
The mapping paradigm consisted of drifting bar apertures at var-
ious orientations, which exposed a 100% contrast checkerboard
moving parallel to the bar orientation. After each horizontal
or vertical bar orientation pass, 30 s of mean-luminance stim-
ulus were displayed. Subjects fixated a dot in the center of the
visual stimulus. The dot changed colors between red and green
at random intervals. To ensure attention was maintained, sub-
jects pressed a button on a response box every time the color
changed (detailed procedures can be found in Dumoulin and
Wandell, 2008; Harvey and Dumoulin, 2011). The radius of the
stimulation area covered 6.25◦ of visual angle from the fixation
point.

RESTING STATE
During the resting state scans, the stimulus was replaced with a
black screen and subjects closed their eyes. We chose this so that
there was no visual input; neither from outside the stimulus area

(hence eyes closed) nor from light coming through the eyelids
(hence the black screen). The lights in the scanning room were
off and blackout blinds removed light from outside the room. The
room was in complete darkness.

DATA ACQUISITION
Functional T2∗-weighted 2D echo planar images were acquired
on a 7 Tesla scanner (Philips, Best, Netherlands) using a 32 chan-
nel head coil at a voxel resolution of 1.98 × 1.98 × 2.00 mm, with
a field of view of 190 × 190 × 50 mm. TR was 1500 ms, TE was
25 ms, and flip angle was 80◦. The volume orientation differs
between subjects, though in all cases it was approximately per-
pendicular to the calcarine sulcus. High resolution T1-weighted
structural images acquired at 7T using a 32 channel head coil
at a resolution of 0.49 × 0.49 × 0.80 mm, with a field of view
of 252 × 252 × 190 mm. TR was 7 ms, TE was 2.84 ms, and flip
angle was 8◦. We compensated for intensity gradients across the
image using an MP2RAGE sequence, dividing the T1 by a co-
acquired proton density scan of the same resolution, with a TR
of 5.8 ms, TE was 2.84 ms, and flip angle was 1◦. In total, eight
240-volumes functional scans were acquired; comprising 5 rest-
ing state scans (RS) and 3 interleaved VFM scans. The first scan
was a RS scan. Physiological data were not collected.

PREPROCESSING
First, the T1-weighted structural volumes were resampled to
1 mm isotropic voxel resolution. Gray and white matter were
automatically segmented using Freesurfer and hand edited in
ITKGray to minimize segmentation errors (Teo et al., 1997).
The cortical surface was reconstructed at the white/gray mat-
ter boundary and rendered as a smoothed 3D mesh (Wandell
et al., 2007). Motion correction within and between scans was
applied for the VFM and the RS scans (Nestares and Heeger,
2000). To clean the resting scan signals from DC baseline drift
and reduce high frequency nuisance from physiological variation,
time courses were band pass filtered with a high-pass discrete
cosine transform filter (DCT) with cut-off frequency of 0.01 Hz
and a low-pass 4th order Butterworth filter with cutoff frequency
of 0.1 Hz. Finally, functional data were aligned to the anatom-
ical scans (Nestares and Heeger, 2000) and interpolated to the
anatomical segmentation space.

ANALYSIS
Population receptive field mapping
Early visual areas V1, V2, and V3 were mapped using the pRF
method (Dumoulin and Wandell, 2008). The method uses a
parameterized forward model of the underlying neuronal popula-
tion, a description of the hemodynamic response (HRF), and the
stimulus aperture. The model we chose corresponds to a circular
Gaussian characterized by three parameters: x and y (positions),
and size (σ). A set of candidate pRF models are combined with the
stimulus aperture to generate predictions of the neural responses
each candidate pRF would produce. Subsequent convolution of
this predicted neural response time course with the HRF give a
set of candidate predicted fMRI response time courses for each
combination of pRF parameters. The best fitting predicted fMRI
time courses and their associated pRF parameters are then chosen
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to summarize the response of each recording site (Dumoulin and
Wandell, 2008).

Connective field mapping
CF model parameters were estimated for both the VFM and RS
scans using the CF modeling method described by Haak et al.
(2013). CF models summarize the activity of each recording site
in a target region of interest (ROI) in terms of the aggregate activ-
ity contributed by a set of recording sites in a source ROI (Haak
et al., 2013). Specifically, the BOLD activity over a particular part
of a source region (the CF) is integrated (summed) to yield the
BOLD activity at a target recording site, whose neural response we
are trying to describe. As we aim to determine the source CF for all
target recording sites within an ROI simultaneously, we describe
a target visual field map ROI (i.e., V2 or V3). As candidate source
CFs are limited to a particular visual field map, this is described as
the source ROI (here, always V1). First, a discrete parameter space
of 2-dimensional Gaussians of different candidate sizes (σ) is gen-
erated for each candidate location (each recording site inside the
source ROI, V1), giving a set of candidate V1-referred CF mod-
els. In the next step, similarly to the pRF approach, a candidate
predicted time course is generated for each candidate CF model
by calculating the Gaussian weighted sum of the measured sig-
nals from the candidate CF (including the preferred recording site
and its neighbors). These candidate time courses predictions are
compared to the measured time course of each recording site in
the target ROI (V2 and V3), and the best fitting prediction and
its associate V1-referred CF parameters are chosen for each target
recording site. Furthermore, because CF preferred locations in V1
cortical surface are associated with preferred visual field positions
during pRF mapping, coordinates in visual space can be inferred
for target recording sites. This allows the reconstruction of visuo-
topic maps even in the absence of stimuli. Note that the size of
a CF represents the Gaussian spread along the cortical surface
(mm) and is defined as the shortest path distance between pairs
of vertices in the 3D mesh associated with the gray/white mat-
ter border. The location and size of the ROIs are defined during
pRF mapping. These parameters (location and size of the source
ROI) may restrict CF position but not CF size. By emphasizing
the spatial profile of functional connectivity, a CF allows to exam-
ine spatially localized connectivity patterns among brain areas. As
with most functional connectivity measures, CF models do not
infer the temporal order of the responses in target and source
recording sites.

Discriminability criterion
By emphasizing local over long-range functional connectivity,
biologically inspired models like pRF and CF are generally robust
to global effects (i.e., physiological noise). Nevertheless, evalu-
ation of model significance can be frustrated by the noisy and
non-stationary nature of the time series obtained from resting
state. To overcome this issue and assess the statistical significance
of CF models estimated from the RS, we apply a strategy based in
surrogate data testing.

First, we distinguish the contribution of topographically orga-
nized BOLD co-fluctuations from spatially uncorrelated random
BOLD fluctuations. This distinction allows defining a criterion

in terms of model discriminability. In this context, we define
discriminability as the distinction between topographically orga-
nized BOLD co-fluctuations and spatially uncorrelated random
BOLD fluctuations. To determine model discriminability, we esti-
mated null distributions from the variance explained (VE) of CF
models obtained from surrogate V1 BOLD time courses. To gen-
erate these surrogate BOLD signals, artificial time courses were
produced with the iterative amplitude adjusted Fourier trans-
form (iAAFT) method (Schreiber and Schmitz, 1996; Venema
et al., 2006). This method randomizes the phase of the origi-
nal signal, but preserves its autocorrelation, linear structure, and
amplitude distribution. The spatial correlation between BOLD
time courses in the source region is lost but their fundamental sta-
tistical properties are preserved. Each CF model estimation was
accompanied of an estimation based on surrogate time courses.
For the present analysis, the null distributions obtained from 240
volumes (each RS scan) are comparable across subjects and target
ROIs (V2 and V3); therefore, we combined all estimates into one
null distribution and used the 5th percentile as discrimination
threshold.

Second, we estimated the amount of data that is sufficient to
discriminate RS-based CF models by examining the dependence
of discrimination accuracy on data quantity. First, CF models
were calculated for different amounts of RS data (both for original
and for surrogate data). Segments of 40, 80, 120, 160, 200, and 240
volumes starting from the beginning of each RS scan were used.
Next, VE estimates (adjusted for the degrees of freedom in each
amount of volumes) were grouped according to their correspond-
ing segment length, obtaining original and null VE distributions
for each amount of volumes. These distributions allow the appli-
cation of a receiver-operator characteristic (ROC) analysis. By
assessing the performance of a binary classifier as its discrim-
ination threshold is varied, ROC analysis provides quantitative
measures of model discrimination performance. To discriminate
CF models attributed to genuine BOLD co-fluctuations from
those attributed to random BOLD activity, the corresponding VE
cutoff threshold is moved from 0 to 1 across the original and
the null distributions, producing a contingency matrix of true
positives (hits), false positives (false alarms), true negatives (cor-
rect rejections), and false negatives (miss). Using the contingency
matrix, values of true positive rate (sensitivity) and false positive
rate (1-specificity) are computed and plotted as ROC curves. In
ROC space, a diagonal line corresponds to random discrimina-
tion. The area under the ROC curve (AUC) is commonly used
to quantify classifier discriminability, with a value of 0.5 corre-
sponding to random, and a value of 1 to perfect, classification.
We choose informedness as our discriminability index, which cor-
responds to twice the area between the curve and the diagonal:
2∗AUC-1 (Hanley and McNeil, 1982; Fawcet, 2006). It has the
advantage that 0 represents random, and 1 represents perfect clas-
sification. Finally, we estimated the dependence of discrimination
accuracy on the EV cutoff threshold by calculating the F1 score
for each amount of volumes.

Spatial analysis
In the spatial domain, we estimate CF size change and position
scatter during RS using VFM-based size and position as reference.
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First, to assess CF position variability in the RS, we assume
that CFs are topographically organized. This implies that neural
activity in neighboring cortical locations in the target ROI may
correlate with neural activity in neighboring cortical locations
inside the source ROI that represent the same portions of visual
space, as shown by VFM. This assumption allows us to estimate
position variability as position scatter of V1-referred CFs by cal-
culating their displacement on the V1 cortical surface with respect
to their VFM-based reference positions.

We proceeded as follows: for each recording site in the target
ROI, position scatter was calculated as the shortest distance along
the cortical manifold between the VFM-based center position and
the RS-based position. This distance was computed in millime-
ters using Dijkstra’s algorithm (Dijkstra, 1959). Estimates whose
associated models scored a VE above discrimination threshold
(0.35 VE) were retained. To quantify the variability in position
scatter for each subject and each RS scan, the median (to assess
tendency) and the median absolute deviation (MAD; to assess dis-
persion) were calculated for each RS scan and subject. To assess RS
scan-to-scan variability, we also calculated these values for all RS
scan pairs. In order to determine a possible influence of cortical
distance (i.e., shared vasculature, spatial blurring), we compared
position scatter as a function of the distance between CF cen-
ters and their associated recording sites in the target area. We
then compared position scatter as a function of VFM-based ref-
erence eccentricity. Finally, agreement in eccentricity estimates
was quantified by calculating linear correlation coefficients for
VFM- and RS-based eccentricities.

Second, we examined differences in size for V1 ➤ V2 and V1 ➤

V3 models between RS- and VFM-based estimates. RS-based size
estimates for V1 ➤ V2 and V1 ➤ V3 from all participants were
grouped by map combination and compared to those obtained
based on VFM using a two-sample Kolmogorov–Smirnov test
(KS-test). Subsequently, we examined the relation of RS-based CF
size as a function of VFM-reference eccentricity by binning eccen-
tricity in bins of 1◦ and calculating linear fits over the mean with
bootstrapped confidence intervals (1000 iterations).

RESULTS
DERIVING CONNECTIVE FIELD MODELS BASED ON RESTING STATE
fMRI DATA
Our first analysis concerned two questions: whether CF mod-
els could be obtained in presence of substantial physiological
measurement noise; and, if the models obtained could be discrim-
inated based in the contribution of genuine spontaneous BOLD
co-fluctuations. Figure 1 shows the distributions of VE for actual
(blue) and surrogate (black) RS data. We used the VE of CFs
obtained from surrogate RS data as null-distribution (240 vol-
umes, TR: 1.5 s). The VE cutoff threshold was estimated based
on the 5th percentile of the null-distributions and lies around
∼0.35 VE for all subjects. The majority of the models have a
VE that exceeds this cutoff threshold. Importantly, this analysis
demonstrates that the estimation of CF models based in genuine
spontaneous BOLD co-fluctuations is possible even in presence
of substantial physiological measurement noise. Nevertheless, we
cannot determine the effect that these confounds exerts in the
estimation of CF parameters.

FIGURE 1 | Distributions of variance explained. Histogram of relative
frequency of recording sites in V1-referred connective field models in V2 as
a function of their variance explained. The black distribution represents the
hypothesis of non-discriminability (noisy and spatially uncorrelated signals
obtained with the IAAFT method) and was generated by fitting connective
field models to surrogate BOLD signals. The blue distribution illustrates a
typical outcome for an actual resting state scan.

In addition, we examined the dependence of discrimination
accuracy on the amount of volumes included in the analysis. To
do so, we calculated VE (adjusted for degrees of freedom) for
actual and surrogate data for various amounts of volumes and
applied a ROC analysis. Figure 2 summarizes the results of the
analysis for a single subject (Subject 3). First, it shows the VE
distributions for actual (black) and surrogate data (red) as a func-
tion of the amount of volumes included in the analysis. VE drops
with the number of volumes, but drops more sharply for the sur-
rogate data (Figure 2A). The resulting ROC curves are shown
in Figure 2B; they show detection probability as a function of
false alarm probability for each amount of volumes. Detection
probability increases with the amount of volumes. Figure 2D
shows discrimination accuracy (F1 score) as a function of the VE
threshold for each amount of volumes analyzed.

This analysis also indicates that CF modeling could be based
on even shorter scan periods with retaining reasonable discrimi-
nation accuracy. However, fewer models are expected to lie above
threshold. Finally, it must be noted that, even though this analysis
provides a strategy to optimize modeling accuracy by adjust-
ing the VE cutoff threshold, in the remaining analysis we use a
threshold of 0.35 VE, which corresponds to the 5th percentile of
the null-distribution obtained after grouping the VE of surrogate
RS-based models from all scans and subjects.

SPATIAL ASPECTS OF RESTING STATE CONNECTIVE FIELD MAP
ESTIMATION
The next question we address is whether the topographical maps
based on RS data have similar characteristics as the one based
on VFM data (our current reference). Also, how variable are the
results between RS scans? To provide an impression of this vari-
ability, Figure 3 shows both VFM and RS derived CF maps for
a single participant (maps for other participants are shown in
Supplementary Materials). V2 and V3 CF parameter maps (V1-
referred) are plotted on a smoothed 3D mesh representing gray
matter along the cortical surface. Eccentricity, polar angle and size
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FIGURE 2 | Overall modeling performance characteristics for a single

subject. (A) Dependence of variance explained on the amount of volumes.
The whisker box-plots illustrates the distributions of variance explained
adjusted by degrees of freedom. Red distributions were obtained from RS
data and black distributions from surrogate RS data. The central mark is the
median, the edges of the box are the 25th and 75th percentiles, and the
whiskers indicate the most extreme data points with an interquartile range
of 1.5 (Tukey box-plot). (B) Receiver operating characteristic (ROC) curves
corresponding to each amount of volumes. (C) Discriminability increases as
a function of the amount of volumes (we choose discriminability index in
the form of informedness: 2∗AUC-1, equivalent to Gini coefficient). (D)

Discrimination accuracy (F1 score) as a function of the adjusted EV cut-off
threshold for each amount of volumes (colors as in B). Data are for V1 ➤ V2
CF models from subject 3.

(σ) are plotted in three columns. In top row of panels, CF param-
eters estimated based on VFM data are shown. These maps serve
as our reference. In the lower rows of panels, these same parame-
ters are plotted for all RS scans. As shown previously (Haak et al.,
2013), the VFM derived maps show a clear retinotopic organiza-
tion (note that in the context of CF modeling, eccentricity and
polar angle maps are inferred from a pRF mapping and associ-
ated to each recording site in the source region, in this case V1).
In some RS scans eccentricity and polar angles maps resembles the
VFM-based reference, although some variability can be observed
(Figure 3, RS4, RS5). To quantify the variability of the individual
maps, the median position displacement in CF cortical location
(relative to the VFM reference and between all RS scan pairs; in
mm) and the MAD were calculated for RS1 to RS5 (values are
reported in the legend of Figure 3). These values confirm the
impression that RS4 and RS5 most clearly resemble the visuotopic
organization observed in the VFM-based maps (results are shown
for participant 3, those for the other participants are shown in the
Supplementary Material).

Figure 4A plots the change in V1-referred CF center position
between RS- and VFM-based reference position as a function of
VE (of the RS model). CFs with higher VE show smaller corti-
cal displacements. The majority of CFs (as indicated by the heat
map) have a high VE and show relatively small displacements.
Figure 4B shows a distance effect for V1 ➤ V2 (R = 0.90, p <

0.0001) but not for V1 ➤ V3 (R = 0.11, p < 0.0001). Figure 4C
shows that there are no systematic deviations from the median
cortical displacement as a function of eccentricity. Figure 4D
shows a good agreement between RS- and VFM-based eccen-
tricities (V1 ➤ V2: R = 0.97, p < 0.0001; V1 ➤ V3: R = 0.70,
p < 0.0001).

Figure 5 shows VFM- and RS-based V1-referred CF size dis-
tributions for V2 and V3 (data grouped over all scans and
participants, N = 4). RS-based CF size tend to be smaller than
those estimated based on VFM data (V1 ➤ V2: p < 0.0001, KS-
test = 0.240; V1 ➤ V3: p < 0.0001, KS-test = 0.0001). Moreover,
we cannot confirm a difference in RS-based CF size estimates for
V1 ➤ V2 or V1 ➤ V3 (p = 0.0065, KS-test = 0.015).

Figure 6 plots the relationship between CF size and eccentric-
ity for VFM- and RS-based estimates. The left panel shows that
VFM-based CF size estimates for V1 ➤ V2 do not increase signif-
icantly with eccentricity (black line), whereas those for V1 ➤ V3
do (yellow line). The right panel shows that RS-based CF size for
V2 (black line) and V3 (yellow line) do not increase significantly
with eccentricity.

Together, the analyses shown in Figures 5, 6 show that RS-
based CF size estimates are smaller than those estimated based on
VFM. In RS, CF size does not appear to increase with eccentricity,
neither within the visual hierarchy.

DISCUSSION
CONNECTIVE FIELD MODELS CAN BE ESTIMATED BASED ON RESTING
STATE DATA
We have shown that connective field (CF) modeling can be
based on resting state (RS) data. This indicates that sponta-
neous blood-oxygen level dependent (BOLD) co-fluctuations in
the early visual cortex state preserves fine-grained topographic
connectivity structure. While this preservation of topographic
connectivity corroborates results of previous studies (Heinzle
et al., 2011; Raemaekers et al., 2013) our study goes beyond these
by examining both the topography and the spatial properties of
the functional connections. In order to assess the statistical signif-
icance of our CF estimates, we determined a variance explained
(VE) cutoff threshold taking into account the VE of CF models
based on surrogate RS data (Figure 1). This involves disrupt-
ing the phase correlations across recording sites in the source
region of interest (ROI) in order to destroy the local structure
of BOLD co-fluctuations. Furthermore, we examined the depen-
dence of discrimination accuracy on the amount of data and
found six minutes of scanning (240 volumes using a TR of 1.5 s
at 7T) to be more than sufficient to achieve good discrimination
(Figure 2).

AGREEMENT BETWEEN RESTING STATE AND VISUAL FIELD MAPPING
BASED CONNECTIVE FIELD PARAMETERS
Although data obtained during RS provide different informa-
tion than data obtained during stimulation, a comparison of
the maps estimated from RS to those estimated based on visual
field mapping (VFM) reveals a fairly close agreement between
the two (Figure 3). Some RS maps show patterns of visuotopic
organization that agree well with their VFM reference (Figure 3,
RS4, RS5). Nevertheless, we observed substantial variability in CF
model parameters for different RS scans. We quantified the degree
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FIGURE 3 | Visualization of connective field maps for a single subject.

From left to right: eccentricity, polar angle, and size. Top panel corresponds
to visual field mapping (VFM)-based estimates. Lower panels show
parameter estimates for each resting state (RS) scan. For V1 ➤ V2 CF
models, the position displacement in CF cortical location (in mm) between
VFM- and RS-based estimates for RS1 to RS5 is: median (MAD) = 10.0 (5.4);
8.5 (5); 5.8 (3.7); 3.8 (3.4); and 4.1 (3.0), respectively [total = 5.4 (3.9)].
Corresponding position displacement values between RS4 and RS5 (the RS
scans with lowest displacement: 4.1 (3.1); between RS1 and RS2 (the RS

scans with highest displacement): 8.5 (5.8); between RS1 and RS4: 10.5
(6.6); when grouping results for all RS scan pairs: 8.6 (5.9). For V1 ➤ V3 CF
models, the corresponding values are: 13.6 (6.3); 14.4 (6.8); 7.9 (5.4); 6.7 (5.5);
and 7.1 (4.2) [total = 8.7 (5.5)]. Eccentricity and polar angle are inferred from
V1 pRF mapping (see Materials and Methods for details). Data are for V1 ➤

V2 and V1 ➤ V3 models estimated for subject 3 (data for other subjects
included in Supplementary Materials). A threshold of 0.35 VE was applied.
Median cortical displacements reflect the agreement between RS and VFM
maps and between different RS maps.

of agreement by measuring CF position scatter as the cortical
displacement between RS- and VFM-based CF cortical positions
and show that the median cortical displacement reflects the agree-
ment observed in Figure 3 (data for other subjects are shown
in Supplementary Materials). Besides the observed variability in
visuotopic organization, CF size estimates obtained for RS scans
were generally smaller than those obtained for VFM (Figure 5).

Moreover, contrary to estimates based on VFM, RS-based CF size
did not increase with eccentricity neither throughout the visual
hierarchy (Figure 6).

SPATIAL CHANGES: POSSIBLE MECHANISMS
In the absence of visual input, changes in CF size and variability
in CF position may reflect a reduction in the amount of spatial
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FIGURE 4 | Position scatter for V1-referred connective fields for a

single subject. (A) Joint histogram of cortical displacement in V1-referred
CF centers as a function of adjusted VE. The goodness of fit tends to
decrease with larger displacements (colorbar depicts frequency of voxels
after grouping data from all RS scans; the number of voxels that entered
the analysis is: 1622 for V1 ➤ V2 and 1467 for V1 ➤ V3). (B) Position
scatter as a function of the distance from the target voxel. A cortical
distance effect can be seen in V1 ➤ V2 (R = 0.90, p < 0.0001) but not in
V1 ➤ V3 (R = 0.11, p < 0.0001). (C) No systematic deviations from the

median distance are observed for eccentricity (data was binned in
eccentricity bins of 0.25◦). Points represent the median of each bin and
error-bars the median absolute deviation for the corresponding bin. (D)

There is good agreement between RS-based eccentricity and VFM
reference eccentricity (V1 ➤ V2: R = 0.97, p < 0.0001; V1 ➤ V3: R = 0.70,
p < 0.0001) (data was binned in eccentricity bins of 0.25◦. Points
represent the median of each bin and error-bars the median absolute
deviation for the corresponding bin). Data are from subject 3. A cutoff
threshold of 0.5 VE (F1 ∼0.85) was applied in (B–D).

FIGURE 5 | V1-referred connective field size during visual field

mapping and resting state scans grouped over participants (N = 4).

Resting state based CF size is generally smaller than their visual field
mapping based CF size (V1 ➤ V2: p < 0.0001, KS-test = 0.240; V1 ➤ V3:
p < 0.0001, KS-test = 0.0001). CF size does not increase in the visual
hierarchy when measured during resting state (p = 0.0065, KS-test =
0.015). A cutoff threshold of 0.35 VE was applied.

integration and selectivity, respectively. Possible mechanisms
underlying these changes in CFs may involve temporal restructur-
ing of corticothalamic network activity in a state-dependent way
(Mastronarde, 1989; Wörgötter et al., 1998; Andolina et al., 2007;
Britz and Michel, 2011), as well as intracortical processing medi-
ated by horizontal connections and feedback signals from higher

FIGURE 6 | Relation between eccentricity and V1-referred connective

field size in visual areas V2 (black) and V3 (yellow) grouped over

participants (N = 4). Resting state based size estimates do not increase
with eccentricity. Eccentricity was binned in intervals of 1◦. Dots indicate
the mean of VE-weighted CF size for each bin. Linear fits were calculated
for these means. Dashed lines correspond to the 95% bootstrap
confidence interval of the linear fit (1000 iterations). A cutoff threshold of
0.35 VE was applied.

cortical stages (Rao and Ballard, 1999; Steriade, 2000; Llinás and
Steriade, 2006; Botelho et al., 2014; Schmid and Keliris, 2014).
Decreased corticothalamic feedback and cortical lateral inhibition
in the absence of visual input likely plays a role in the shrinkage
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of CFs, as well as in the reduced visuotopic organization observed
on the higher-scatter CF maps. These input changes might adjust
the balance between excitation and inhibition in cortical neuronal
populations that eventually shapes cortico-cortical connectivity
as a function of stimulation, behavioral context, and physiolog-
ical state (Kosslyn et al., 1995; Lehmann et al., 1998; Rao and
Ballard, 1999; Steriade, 2000; Martínez-Trujillo and Treue, 2004;
Slotnick et al., 2005; Womelsdorf et al., 2008; Greenberg et al.,
2012; Haak et al., 2012). During resting state, a variety of ongoing
processes may modulate connectivity between visual areas. In par-
ticular, the transitional period from wakefulness to sleep leads to a
progressive inhibition of synaptic transmission through thalamic
relay neurons (Steriade, 2000; Llinás and Steriade, 2006), which is
another possible cause to the changes observed.

Another reason to speculate that there may be differences
between the RS and VFM results is related to the origin of the
BOLD signal. Given that the majority of the brain’s energy bud-
get is devoted to ongoing intrinsic activity (i.e., RS), the metabolic
costs of the adjustment between excitation and inhibition may
reflect in the BOLD signal. The relative contribution of excitation
and inhibition to the BOLD signal changes between the RS and
VFM scans. Inhibitory functions, which may be supported more
by oxidative mechanisms than by excitatory signaling, may con-
tribute less to the measured BOLD signal (Buzsaki et al., 2007). As
a consequence, resting state BOLD co-fluctuations may provide a
different picture of the neural connections.

LIMITATIONS AND FUTURE DIRECTIONS
The current study assesses CF properties in four healthy
participants. Even though the results are consistent between
participants, further studies involving more participants are
advised. Moreover, the CF models were estimated based on
entire RS scans. As such, they only estimate average CF
properties and do not capture temporal variations in these.
To establish the possible neural mechanisms underlying the
observed changes in CF properties, further research is still
necessary. In its current implementation, the present method
cannot determine the precise factors that contribute to this
variability. Large-scale network interactions, physiological pro-
cesses and measurement noise might all influence the variabil-
ity observed. Important to note is, however, that biologically
inspired methods like pRF and CF modeling that emphasize
local connectivity are generally robust to global effects like
physiological noise.

In future studies, extending the present analysis with dynamic
functional connectivity metrics (Sakoğlu et al., 2010; Kiviniemi
et al., 2011; Allen et al., 2012; Hutchison et al., 2013b), might
help to disclose relevant temporal and spatial repertories in
various experimental conditions allowing to study phenomena
that unfold over time, such as attention, contextual modulation,
and object recognition. Adding independent measures of neural
activity like electroencephalography (Yuan et al., 2012) or other
neurophysiological recordings seems a promising path to capture
relevant temporal variations in neural activity. Future analyses
could also take into account simultaneously recorded physiolog-
ical data and draining veins in the preprocessing of the data, as
these are known to influence resting state functional connectivity

estimates (Birn et al., 2001; Logothetis et al., 2009; Winawer et al.,
2010; Heinzle et al., 2011; Haak et al., 2013). Lastly, it should be
noted that some of the possible mechanisms underlying changes
in CF properties are based on animal models (Wörgötter et al.,
1998; Steriade, 2000; Haupt et al., 2004; Llinás and Steriade,
2006; Andolina et al., 2007; Womelsdorf et al., 2008). Because
certain experimental manipulations are not possible in human
subjects, comparative approaches between humans and animal
models are needed to bridge the gap in RS-fMRI investigations
(Hutchison and Everling, 2012; Mantini et al., 2012). Examining
the correspondence of functional and anatomical connectivity in
homologous brain architectures will help to further elucidate the
mechanisms underlying neural activity.

CONCLUDING REMARKS
We have shown that CF estimates can be obtained based on RS
data. We observed good agreement can be observed between RS-
and VFM-based maps, and between different RS-based maps.
This implies that local functional connectivity in visual cortical
areas during resting state, as measured with CF modeling, may
reflect the underlying neural architecture. However, we found that
CF estimates may vary between RS scans even for high VE scans.
The present study cannot determine to what extent this variabil-
ity is explained by genuine changes in the neural properties of the
visual system or by various external sources of noise. Nevertheless,
we show that neural properties such as CF maps and CF size can
be derived from RS data.
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