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ERo AND ITS GENE PROMOTER

Estrogen receptor o (ERa) is a member of the nuclear receptor
superfamily of ligand-dependent transcription factors that regu-
late expression of target genes (Evans, 1988; Kawata, 1995; Parker,
1995; Matsuda et al., 2002; McCarthy, 2008). ERa has a typical
nuclear receptor structure with at least three functional domains:
the ligand-binding domain located in the C-terminal half of the
protein, the DNA-binding domain located centrally, and a vari-
able transactivation domain located in the N-terminal region.
Upon activation by a ligand, estradiol, ERa forms a homodimer
within the nucleus and the dimer complex binds to specific regu-
latory DNA sequences, which are referred to as estrogen respon-
sive elements (EREs), in promoter or enhancer regions of target
genes. After binding to an ERE, the ERa dimer recruits transcrip-
tion co-factors, which leads to gene activation and transcription.
Following transcription, mRNA is translated into proteins that
are the ultimate outcome of the hormone responses. Alternatively,
accumulating evidence suggests that rapid non-genomic actions
of ERa initiated at the plasma membrane through induction of
protein phosphorylation-mediated signal transduction pathways
are also crucial in estrogenic responses (Vasudevan and Pfaff,
2008; Sakamoto et al., 2012). These characteristics of ERa are
common to the other estrogen receptor subtype, ERB (Koehler
et al., 2005).

Expression of the ERa gene is controlled by multiple promot-
ers located upstream of the first coding exon (Kos et al., 2001;
Wilson et al., 2008). In rats, at least four different promoters (C,
0S, ON, and 0B) that can initiate transcription have been identified
and shown to be utilized in an organ- and tissue-specific manner.
The ERa gene transcript from the OB promoter (also designated
as the 1B promoter; Freyschuss and Grandien, 1996; Champagne
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et al., 2006), which corresponds to the C promoter in humans
and mice, is expressed in brain areas involved in sociosexual
behaviors, such as the bed nucleus of the stria terminalis (BNST)
(Emery and Sachs, 1976) (Numan, 1996; Numan and Woodside,
2010), the medial preoptic area (MPOA) (Larsson and Heimer,
1964), and hypothalamic and amygdaloid nuclei (Kawata, 1995;
McCarthy, 2008), as well as in the anterior pituitary, ovary and
uterus (Kato et al., 1998).

ERo IN SOCIOSEXUAL BEHAVIORS

Gene targeting in mice has shown that ERa contributes to various
brain functions, including regulation of sociosexual behaviors in
both sexes (Rissman et al., 1997; Tetel and Pfaff, 2010).

FEMALE SEXUAL BEHAVIOR

ERa knockout (ERaKO) female mice, in which the ERa gene is
disrupted in both alleles throughout the body, completely lack
lordosis behavior, a typical female sexual behavior (Ogawa et al.,
1996). ERaKO females are also deficient in sexual interactions
that precede the lordosis response (Ogawa et al., 1998a). The
estradiol level in gonadally intact ERaKO females is elevated com-
pared to that in wild type females, and thus expression of ERa
in the brain is critical for induction of female sexual behavior.
However, these studies in ERaKO mice did not clarify whether
the deficits were caused by a lack of ERa activation during
development or in adulthood.

Spatiotemporal knockdown of ERa mRNA (ERaKD) medi-
ated by infection with adeno-associated virus (AAV) expressing
small hairpin (sh) RNA against ERa mRNA has been conducted
in adult female mice. When gene silencing was restricted to the
bilateral ventromedial nucleus of hypothalamus (VMH), where
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ERa is strongly expressed, the mice exhibited no sexual behavior
(Musatov et al., 2006), indicating that ERa function in the VMH
in adulthood is a key regulator of female sexual behavior. Female
mice in which expression of ERa was silenced in the MPOA also
exhibited significant reduction in receptive and rejective female
sexual behaviors (Ribeiro et al., 2012).

MALE SEXUAL BEHAVIOR

In males, estrogen is produced from testosterone by the enzy-
matic activity of aromatase in the brain and is known to regulate
sexual behavior. Male ERaKO mice show significant impairment
in some components of sexual behavior compared with wild
type mice. ERaKO mice exhibit a normal motivation to mount
females, but reduced levels of intromission and no ejaculation
(Ogawa et al., 1997; Wersinger et al., 1997; Ogawa et al., 1998b;
Scordalakes and Rissman, 2003).

Brain regions responsible for ERa-mediated regulation of male
sexual behavior have been examined using ERaKD by AAV infec-
tion. Male sexual behavior was greatly reduced when ERa expres-
sion was silenced in the MPOA (Sano et al., 2013). In MPOA
ERaKD mice, mount motivation and intromission were reduced,
suggesting that ERa expressed in the MPOA in adulthood is
involved in the control of male sexual motivation and behavior.
Silencing ERa expression in the VMH also caused a reduction in
male sexual behavior, particularly in the number of intromissions
(Sano et al., 2013). This result indicates that ERa function in the
VMH is also important for the expression of male sexual behavior.

FEMALE SOCIAL BEHAVIOR

ERaKO females show increased aggression toward other females
(Ogawa et al., 1996). Gonadally intact ERaKO females vigorously
attack gonadectomized and steroid-primed female intruder mice.
Gonadectomized and steroid-primed ERaKO females placed in
the home cage of males that showed sexual behavior to wild
type females showed extreme rejection of male mounts, whereas
gonadally intact ERaKO females were vigorously attacked by the
males (Ogawa et al., 1996, 1998a). Similarly, ERa gene silencing in
the VMH caused steroid-primed females to reject males (Spiteri
et al.,, 2010a,b). In contrast, ERaKD in the MPOA decreased
aggression toward male intruders, as well as social investigation
behaviors consisting of genital sniffing, touching the back and
chasing (Spiteri et al., 2012).

ERa signaling also contributes to the induction of maternal
behavior toward newborn pups. ERaKO females exhibited greatly
reduced pup retrieval behavior compared with wild type con-
trols (Ogawa et al., 1996). Silencing of ERo mRNA in the MPOA
almost completely abolished maternal behaviors, including nurs-
ing and licking the pups, and significantly increased latency to
pup retrieval (Ribeiro et al., 2012).

MALE SOCIAL BEHAVIOR

Estradiol contributes to male aggressive behaviors at least par-
tially via ERa.. Male-typical offensive attacks are rarely observed
in gonadally intact or gonadectomized and androgen-replaced
ERaKO males (Ogawa et al., 1997, 1998b). ERaKD in the VMH
reduces aggressive behavior, but this effect is not seen for ERaKD
in the MPOA (Sano et al., 2013).

EPIGENETIC CHANGES IN THE ER GENE PROMOTER

Studies using ERa gene targeting techniques suggest that alter-
ation of sensitivity to estrogen by changing the expression level of
ERa in specific brain regions is a crucial feature in the control of
sociosexual behaviors.

SEX DIFFERENCE

The sex of the brain is mostly determined by the effects of
androgen and its metabolite, estradiol. In rodents, androgen is
transiently secreted from the testes during a critical perinatal
period, the so-called androgen surge, and organizes the devel-
oping brain into a masculinized phenotype (Arnold and Gorski,
1984; Kawata, 1995; Matsuda et al., 2008; McCarthy, 2008).
Androgen does not affect the brain directly; instead masculiniza-
tion is largely mediated by estradiol converted from testosterone
by aromatase in the brain. The presence or absence of brief expo-
sure to estradiol during the perinatal period creates permanent
sex differences in the brain including lasting sex differences in
the expression of several genes. ERa expression in the preoptic
area (POA) is higher in females than in males from postnatal day
2 through adulthood (DonCarlos and Handa, 1994; DonCarlos,
1996; Yokosuka et al., 1997). Thus, how the early effects of estro-
gen on the developing brain are permanently maintained is a
fundamental issue in the study of sexual differentiation of the
brain. Epigenetic mechanisms are emerging as important medi-
ators for the maintenance of the hormonal effects (Keverne and
Curley, 2008; McCarthy and Crews, 2008; Matsuda et al., 2012).

DNA methylation is a well characterized epigenetic change that
contributes widely to transcriptional regulation (Nakao, 2001;
Felsenfeld and Groudine, 2003). In the genome, the 5 position
of the cytosine pyrimidine ring in the 5'-CpG-3’ dinucleotide is
frequently modified with a methyl group. In general, the extent
of CpG methylation in a promoter region is inversely correlated
with the transcription level of the gene: higher methylation causes
suppressed gene expression. The DNA methylation status of the
CpG-rich region in the 1st intron of the ERa gene across the life
span has been examined in the POA and the mediobasal hypotha-
lamus (MBH), which includes the VMH (Schwarz et al., 2010).
On postnatal day 1, during the critical period of sexual differen-
tiation, two of seven CpG sites (one of these sites differs between
the POA and MBH) have a significantly lower methylation rate
in males than in females in both the POA and MBH (Figure 1).
This difference is a result of estradiol exposure because treatment
of females with estradiol 24 h before sample collection induces
a methylation pattern identical to that in males. These site spe-
cific modifications of DNA methylation may be involved in the
maintenance of ERa expression in males to facilitate the effect of
estradiol during the androgen surge.

The histone acetylation status in the ERa gene promoter
also shows a sex difference during the critical perinatal period.
Histone acetylation is a well-characterized epigenetic modifica-
tion that is important in transcriptional regulation (Kouzarides,
2007; Graff and Tsai, 2013). Histone acetylation neutralizes the
positive charge of the histone tail and reduces its attraction to
the negatively charged DNA, thereby loosening the nucleosome
and allowing access of transcriptional factors, thus enhancing
gene transcription. Acetylation levels of histone H4 at the ERa
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FIGURE 1 | Summary of DNA methylation status in the ERx gene in association with sociosexual behaviors. E, embryonic day; P postnatal day.

OB promoter in the MPOA are higher in males than females on
embryonic day 21 (Matsuda et al., 2011), suggesting prevention
of downregulation of ERa expression in males.

The extent of methylation of CpG sites in the 1st intron of
the ERa gene increases through development in both male and
female MPOA and the sex difference detected on postnatal day 1
is abolished by postnatal day 20 (Schwarz et al., 2010) (Figure 1).
In addition, an analysis of DNA methylation of the ERa 0B pro-
moter in the POA on postnatal day 8 showed that the average
methylation across 17 CpG sites was significantly higher in males
compared with females (Kurian et al., 2010) (Figure 1). Two of
the 17 CpG sites had significantly greater methylation in males
and methylation at 6 other CpG sites was detected only in males.
Estradiol treatment of females in the neonatal period increased
methylation of the ERa promoter to a similar level to that in
males. These findings suggest that sex differences in ERa gene
expression may result from sex differences in DNA methylation
patterns. A similar difference of methylation pattern at a specific
CpG site in the ERa promoter has been seen in the amygdala
(Edelmann and Auger, 2011), a brain area important for social
and emotional processing, on postnatal day 10 (Figure 1).

The histone acetylation status is inversely correlated with DNA
methylation (Matsuda et al., 2011). Histone H4 acetylation dif-
ferences in the ERa OB promoter on embryonic day 21 were
rearranged by postnatal day 3, at which time acetylation lev-
els in males declined in correspondence with the developmental
decrease in testosterone. The acetylation status of histones is
controlled by the balance of enzymatic activity of histone acetyl-
transferases and histone deacetylases (HDACs), which remove
the acetyl group from an acetylated histone. Thus, HDAC activ-
ity during the early postnatal period may be involved in the
regulation of sexually dimorphic ERa expression in the MPOA
(Figure 2). HDAC2 and -4, which are expressed in the developing

male

=-=== female

androgen surge
in male

FIGURE 2 | Developmental changes in histone acetylation status in the
ER« OB promoter in the preoptic area in male and female rat.
E, embryonic day; P postnatal day.

brain and are related to steroid hormone signaling (Leong
et al., 2005; Bicaku et al., 2008; Graff and Tsai, 2013), have
been identified as candidate molecules regulating this process
(Matsuda et al., 2011). The amount of HDAC2 and -4 binding
to the ERa promoter on postnatal day 1 is higher in males than in
females in the MPOA, while mRNA levels for HDAC2 and —4 do
not differ between the sexes. The importance of HDAC activity in
masculinization of the brain in the early postnatal period has been
shown by both behavioral and morphological analyses. Inhibition
of HDAC:s in vivo by intracerebroventricular infusion of a HDAC
inhibitor (trichostatin A) or an antisense oligodeoxynucleotide
directed against mRNA for HDAC2 and —4 in newborn male rats
results in significant reduction of male sexual behavior in adult-
hood (Matsuda et al., 2011). Administration of another HDAC
inhibitor (valproic acid) to male mice on postnatal days 1 and 2
eliminates the development of the sex difference in the volume of
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the principal nucleus of the BNST (Murray et al., 2009), which is
normally larger in males than females.

These findings provide insights into the molecular mecha-
nisms underlying the developmental consequences of sexually
dimorphic ERa expression mediated by epigenetic modifications
in the MPOA. During the prenatal androgen surge and subse-
quent activation of ERa, the acetylation status of histones in
the ERa promoter region is increased in males to maintain ERa
expression. After the androgen surge, inactivation of ERa due
to the decline in ligand levels leads to recruitment of HDAC2
and -4 to promoters and the acetylation status of the promoter
is reduced (Figure 2). Following the change in histone acetyla-
tion, methylation of DNA in the ERa promoter region is increased
to a greater extent in males (Figure 3). This results in contin-
uous lower expression of ERa compared with females, which
is appropriate for execution of masculinized brain functions.
These processes are not evident in females due to the absence
of an androgen surge, and the consequent higher sensitivity to
estrogen with higher expression of ERa may induce feminized
brain functions.

INDIVIDUAL DIFFERENCES

As described above, perinatal estradiol exposure contributes to
lasting sex differences in ERa expression. However, early social
experience can also alter ERa expression and associated behav-
iors. Variations in maternal care in rats distinguished by levels of
whole-body licking and grooming (LG) by the dam exert a lasting
influence on some neuroendocrine and behavioral characteristics
of offspring in adulthood (Francis et al., 1999; Liu et al., 2000;
Champagne et al., 2001; Cameron et al., 2005, 2008a,b; Prior
et al., 2013). Offspring of dams that display high levels of LG
(high LG) exhibit more modest hypothalamic-pituitary-adrenal
responses to stress, enhanced cognitive ability, a higher level of
maternal behavior, and altered sexual behavior in comparison to
offspring of dams with low levels of LG (low LG). The effect of an
individual difference in maternal behavior is transmitted across
generations (Champagne and Meaney, 2007). Adult female off-
spring of high LG mothers display increased pup LG, compared
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FIGURE 3 | Developmental changes in epigenetic status in the ERx 0B
promoter in the preoptic area in male rat. E, embryonic day; P postnatal
day.

with adult female offspring of low LG mothers. Cross-fostering,
in which pups born to high-LG mothers are fostered at birth to
low-LG mothers and vice versa, has shown a direct relationship
between maternal care actually received and individual charac-
teristics, suggesting that an epigenetic mechanism underlies the
transgenerational inheritance of the individual behavioral differ-
ences. Variation of neonatal maternal care has been associated
with ERa expression (Champagne et al., 2003) and DNA methyla-
tion of the ERa promoter in the MPOA (Champagne et al., 2006).
Females that received high LG exhibited elevated ERa expression
in adulthood compared with females that received low LG. DNA
methylation patterns across the ERa 0B promoter differed sig-
nificantly, with 7 of 14 CpG sites exhibiting significantly greater
methylation in offspring of low LG dams compared to those from
high LG dams (Figure 1). These findings suggest that environ-
mental differences during development are programmed in the
brain as a different pattern of epigenetic marks, and that this leads
to differences in neuroendocrine and behavioral characteristics
after maturity.

Examination of the developmental emergence of LG-mediated
epigenetic variation (Pena et al., 2013) indicated a significant dif-
ference in DNA methylation rate at the ERa Ob promoter between
high LG and low LG individuals on postnatal day 21, but not
on postnatal day 6 (Figure 1), concomitant with the appearance
of different ERo mRNA expression. Another epigenetic change,
histone methylation, which is catalyzed by histone methyltrans-
ferases (HMT), does not change the overall charge of the histone
tail, but increases basicity and hydrophobicity, which enhances
histone affinity for DNA (Zhang and Reinberg, 2001; Martin and
Zhang, 2005). Therefore, histone methylation is generally cor-
related with transcriptional repression, although methylation of
some residues can result in transcriptional activation. Histone H3
trimethylation at lysine 9 (H3K9me3) and lysine 4 (H3K4me3)
are epigenetic marks for repressed and active gene transcription,
respectively. Comparison of the histone methylation status at the
ERa OB promoter in the MPOA between high LG and low LG
females showed reduced H3K9me3 and increased H3K4me3 in
high LG offspring on postnatal day 21, but not on postnatal day 6.
These findings suggest that the influence of the amount of mater-
nal care on epigenetic effects is apparent between postnatal days
6and 21.

There is a difference between the sexes in the amount of mater-
nal care. Mother rats preferentially lick and groom their male
offspring more than their female offspring (Moore, 1992). This
phenomenon implies that somatosensory stimuli associated with
maternal grooming, as well as hormone exposure, influence brain
masculinization. Simulated maternal grooming (SMG) by stimu-
lation of the anogenital region of female pups with a paintbrush
from postnatal days 5 to 7 increases ERa 0B promoter CpG
methylation to a similar level to that in males on postnatal day 8
(Kurian et al., 2010) (Figure 1). ERa expression in the POA on
postnatal day 10 was significantly reduced in female pups that
received SMG compared to control female pups. These results
suggest that maternal grooming may contribute to brain sex orga-
nization through programming differences in ERa expression
through the epigenetic machinery. A similar effect of SMG on the
methylation pattern at a specific CpG site in the ERa promoter
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has been detected in the amygdala on postnatal day 10 (Edelmann
and Auger, 2011) (Figure 1). However, there is a difference in the
direction of the effect of maternal care between the two studies:
ERa expression was enhanced in high LG females, but reduced
in SMG-stimulated females. This may indicate that SMG does
not exhibit actual maternal grooming effect, but sensory stimu-
lation during neonatal period has lasting effect on the expression
of ERa gene in the POA by altering DNA methylation status of its
promoter.

In addition to the postnatal social, physiological and environ-
mental stimuli, differences in the embryonic hormonal milieu can
also have a lasting influence on the development of sociosexual
behavior in the offspring brain, resulting in individual variation
of behavioral characteristics in adulthood within the same sex.
In polytocous animals, the sex-specific positioning of fetuses can
result in a natural variation of the hormonal environment dur-
ing intrauterine development due to diffusion of androgen from
neighboring male siblings. During the late gestational period,
both the blood and brain concentrations of testosterone are
higher in female fetuses that grow between two male siblings
(2M females) compared with growth between two female sib-
lings (2F females) (vom Saal and Bronson, 1980; Pei et al., 2006).
Corresponding to this different level of androgen exposure, 2M
females show greater aggressiveness and less sexual receptivity
than 2F females in adulthood (vom Saal, 1984, 1989). It can
be hypothesized that there may be intrauterine position-related
differential ERa expression in the VMH, and ERa expression
levels have been found to differ between 2M and 2F female off-
spring (Mori et al., 2010), with ERa expression in the VMH being
higher in 2M females than 2F females. CpG sites across the ERa
Ob promoter region in the VMH were more densely methylated
in 2F females than in 2M females (Figure 1), showing a nega-
tive correlation between ERa expression levels in the VMH and
DNA methylation frequency in the ERa promoter. These findings
indicate that programming effects induced by the intrauterine
position may be mediated by epigenetic modification.

CONCLUSION

ERa expressed in specific brain areas controls various sociosex-
ual behaviors in both sexes. The ERa level is correlated with
differences in the magnitude of expression of these behaviors
between the sexes and among individuals. Epigenetic program-
ming appears to play central roles in the lasting regulation of
ERa expression in response to the hormonal, social, and physi-
ological environment during development. It will be of interest to
determine the mechanisms that link these environmental cues to
patterns of epigenetic modification in the ERa promoter.
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