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Most adults consume alcohol with relative impunity, but about 10–20% of users persist (or
progress) in their consumption, despite mounting and serious repercussions. Identifying
at-risk individuals before neuroadaptative changes associated with chronic use become
well ingrained is thus a key step in mitigating and preventing the end stage disease and
its devastating impacts. Explaining liability has been impeded, in part, by the absence
of animal models for assessing initial sensitivity to the drug’s reinforcing properties, an
important endophenotype in the trajectory toward excessive drinking. Here we assess
the initial rewarding effects of the drug in a novel application of the conditioned place
preference paradigm. In contrast to previous studies that have all employed repeated
drug administration, we demonstrated a robust preference for a context paired with a
single exposure to 1.5 g/kg EtOH in male and female subjects of three strains. This model
validates an assay of initial sensitivity to the subjective rewarding effects of alcohol, a
widely used drug with multifarious impacts on both brain and society, and provides a new
tool for theory-driven endophenotypic pharmacogenetic approaches to understanding and
treating addiction.
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INTRODUCTION
Though moderate alcohol use is widespread, a portion of users
accrue a range of serious adverse consequences, yet maintain
excessive consumption (World Health Organization, 2011; Moss
et al., 2012; Rehm et al., 2014). In the face of a growing imbalance
between costs and benefits of drinking, an alcoholic’s irrational
choices inevitably wreak havoc in the lives of family mem-
bers, impair or destroy personal relationships, and compromise
workplace activities and personal health.

Despite decades of basic research, and known heritability
(Reich et al., 1998; Prescott and Kendler, 1999; Enoch, 2013)
neural antecedents for this disease remain obscure. The gap in
understanding reflects the fact that, like other heterogeneous
behavioral traits, the tendency toward excessive drinking is medi-
ated by interactions between a biological predisposition—largely
driven by common variants in many genes—with a multitude of
developmental and other environmental influences (Ducci and
Goldman, 2012). Progress thus rests on parsing the broad clini-
cal complexity into more narrowly defined endophenotypes that
are intermediate in the chain of causality from genes to disease
(Porjesz and Begleiter, 1998; Burmeister, 1999; Seong et al., 2002;
Gould and Gottesman, 2006; Crabbe, 2012). One such heritable,
quantitative component is the pleasurable, subjective response
to the drug, as it depends upon the drug’s influence in multiple

neural pathways, varies across the population, and predicts dis-
ordered drinking (Heath and Martin, 1991; Schuckit and Smith,
1996; Schuckit et al., 1996; Viken et al., 2003; Ray et al., 2010).

Delineating relevant endophenotypes within a diverse clinical
population steers the development of appropriate animal mod-
els, which can play a critical role in elucidating underlying neural
substrates (Gould and Gottesman, 2006; Camarini et al., 2010).
At present, the field lacks an efficient model for assessing the ini-
tial subjective experience to alcohol, contributing to an exigency
in basic studies of the antecedent causes of the disease, and an
emphasis on evaluating consequences of repeated exposure. For
instance, extant models of alcohol reinforcement, including self-
administration, locomotor sensitization, and conditioned place
preference (CPP) all employ multiple drug exposures, and there-
fore fail to isolate initial sensitivity to the rewarding effects of the
drug (Cunningham et al., 2000; Stephens et al., 2010; Bell et al.,
2012). The paucity of animal models for assessing innate liabil-
ity is a major limitation to translating findings in genetics and
molecular and cell biology to the clinic, where diagnosis is based
on self-report or other observations of harm, again following
excessive use, rather than on biomarkers that predict disordered
drinking. Better understanding of the biologically vulnerable phe-
notype would be useful in designing more effective interventions
and treatments.
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Here we describe a new tool to facilitate experimental testing
of particular genetic or neurochemical influences on the initial
rewarding effects of alcohol. Our studies probe innate liability by
assessing subjective reward (Wise and Bozarth, 1987; Newlin and
Thomson, 1999; Ray et al., 2010, 2013) following the conceptual
underpinnings of the classic conditioned place preference (CPP)
paradigm. In this paradigm, pharmacological effects of a drug are
associated with drug-paired environmental cues, and a behavioral
preference for the drug-paired “place” over another associated
with saline administration is used to draw inferences about the
drug’s subjective effects (Cunningham et al., 2006).

Our studies in mice provide evidence of robust place prefer-
ence for a context that has been paired once with a moderate
dose of alcohol (EtOH). In contrast to published investigations
of EtOH CPP, this paradigm involves no habituation to the test-
ing apparatus or experimenter handling, the dose of EtOH is
relatively low (1.5 g/kg), and subjects demonstrate robust place
preference after only a single drug exposure.

MATERIALS AND METHODS
SUBJECTS
Mice were either bred in-house (C57BL/6) from stock obtained
from Jackson Laboratory (Bar Harbor, ME), or shipped directly
from Jackson Laboratory (DBA/2) or from Hilltop Laboratories
(Scottdale, PA; Swiss Webster) at 6–7 weeks old. Male and female
mice were included in all studies, in approximately equal numbers
and tested between 8 and 12 weeks of age, in a protocol reviewed
and approved by the Bucknell University Animal Care and Use
Committee and in accordance with the National Institutes of
Health guidelines for ethical and humane animal research.

The colony was maintained on a 12:12 reverse light-dark cycle
(lights off at 09:30) in a temperature (22 ± 2◦C) and humidity
(50 ± 20%) controlled environment. After weaning or arriving
from suppliers, mice were housed 2–5/cage in Plexiglas caging on
Thoren racks, by sex. Water and food were available ad libitum.
Cages were checked daily, but bedding was not changed during
the 5-day experimental period which took place after at least 2
weeks of acclimation to the colony room, in the case of shipped
subjects, and in 60–100 day old subjects.

CONDITIONING APPARATUS
Our apparatus was unbiased, employing two distinct floor tile
patterns available at our local home improvement store. One was
comprised of circles of various sizes, and the other of uniform
square tiles; both were painted the same color red (see Figure 1B).
These floors (42 × 24 cm) served as conditioning contexts, in
a 3 chamber apparatus (Figure 1A) that was otherwise opaque
white Plexiglas. The center chamber was smaller than the others
(11.5 × 24) and intended to be stimulus-neutral with a smooth
black floor.

EXPERIMENTAL PROTOCOL
Experiment 1a, 1b, and 1c
The experimental protocol was conducted over 5 days, including
conditioning on days 1 and 3 and testing on day 5 (subjects were
left undisturbed in home cages on days 2 and 4). The protocol was
fully counterbalanced so that each animal received one injection

of drug and one of saline in either of two distinct contexts, on
either day 1 or 3 (See Table 1).

On each of the three experimental days, subjects were removed
from the colony one cage at a time and taken across the hall
to the dimly lit testing suite where they were weighed and tail
marked with colored marker. Intraperitoneal (i.p.) injections of
either 1.5 g/kg EtOH (20% by volume in saline) or equivolume
saline were administered 10–40 min after weighing and subjects
were placed into one side of the conditioning apparatus. On con-
ditioning days mice were relegated to either side compartment
for 20–30 min, beginning immediately after injection. To avoid
possible confound induced by differential social interaction sub-
sequent to conditioning, all animals in each cage received the
same injection.

On the test day the Plexiglas partitions between chambers were
inverted, opening a 2′′ port allowing free access between cham-
bers, and subjects were placed in the center chamber immedi-
ately following saline (i.p.). The conditioning and testing periods
varied slightly across experiments, ranging from 20 to 30 min.
The apparatus was cleaned using a sponge filled with a dilute,
low-residue detergent between each subject’s exposure.

Experiment 1a employed 8 C57BL/6J mice (5 female and 3
male).

Experiment 1b replicated the protocol of Experiment 1a, but
with double the number of subjects (9 female and 8 male)
to obtain sufficient statistical power to assess for potential sex
differences in the strength of EtOH conditioning.

Experiment 1c also followed the same protocol but employed
DBA/2J (n = 10) and Swiss Webster (n = 6) mice, again using
both male and females.

Experiment 2a and 2b were designed to assess the importance
of two aspects of the general procedure described in Experiment
1: the every-other-day protocol (2a) and the lack of habituation
to the testing procedures before conditioning (2b). For each of
these studies we used C57BL/6J male and female mice (8 per
group) treated as described above with the exceptions as noted.
As always, EtOH-injection day and conditioning context were
counterbalanced.

Experiment 2a assessed whether the spaced protocol consist-
ing of 2 conditioning days and a test day each separated by a day,
could be compressed into a 3 consecutive day paradigm. Here one
group was conditioned and tested on consecutive days, while the
other half of the subjects received the alternate day exposure and
testing as described above.

Experiment 2b was conducted to determine whether prior han-
dling and habituation to the test procedures would influence place
conditioning. Here we preceded the usual 5-day protocol in half
the animals with a 3-day handling procedure during which sub-
jects were removed from the colony room, weighed and injected
with i.p. saline in the testing suite, and allowed access to the
testing apparatus for 10 min.

ADDITIONAL PROCEDURAL NOTES
Our general protocol differed in a few ways from those typ-
ically employed by researchers studying place conditioning
(Cunningham et al., 2006). In addition to the spaced, single-
exposure conditioning of otherwise naïve subjects, all subjects
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FIGURE 1 | Demonstration of single-exposure conditioned place

preference to EtOH. Each apparatus had three compartments including a
neutral center compartment and two conditioning chambers that were
distinguished by the pattern of tile floor (A,B). All experiments were
counterbalanced in terms of the drug-paired conditioning context (Circle or
Square tile) and the day of EtOH exposure (day 1 or 3 of conditioning). After
receiving 1.5 g/kg EtOH on day 1 or 3 of a 5-day protocol, adult C57BL/6J mice
in Experiment 1a (n = 8) preferred the alcohol-paired context to the
saline-paired context on day 5 (C). The nearly 2 min difference between the
time spent on the sides was significantly greater than zero

[t(7) = 5.282, p < 0.01]. (D) Subtracting out time spent in the neutral center
chamber, indicates that on average, subjects spent about 57% of their
onside-time in the EtOH-paired context, as opposed to about 43% in the
saline-paired environment [t(7) = 39.362, p < 0.001]. The experimental
apparatus employed in these studies was unbiased, and subjects were
equally likely to have EtOH on either floor (painted circle or square tile) and
time spent in both contexts was equal on the test day; t(7) = 0.260, p = 0.803
(E). Finally, the day of EtOH administration did not affect CPP as subjects
receiving EtOH on day 1 or 3 showed comparable preference for the
EtOH-paired floor on day 5 [F(1, 7) = 0.277, p = 62] (F). ∗ indicates p < 0.05.
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Table 1 | Depicts the 3 day protocol, occurring across 5 days, and demonstrates how day of EtOH administration and conditioning context

were counterbalanced in all groups.

Experimental

groups

Day 1 Day 3 Test day 5

1 1.5 g/kg EtOH (20% in saline, delivered
i.p.) on circle-floor

Saline on square-floor Saline injection followed by free access to
three compartments (one neutral, 2
conditioning; see Figure 1)

2 1.5 g/kg EtOH (20% in saline, delivered
i.p.) on square-floor

Saline on circle-floor

3 Saline on square-floor 1.5 g/kg EtOH (20% in saline, delivered
i.p.) on circle-floor

Saline injection followed by free access to
three compartments

4 Saline on circle-floor 1.5 g/kg EtOH (20% in saline, delivered
i.p.) square-floor

On days 2 and 4 mice were left undisturbed in their home cages.

were tested at 4–10 h into the dark phase of their light:dark cycle.
We don’t know whether subjects would condition if they were
exposed during the light phase of their cycle because in our lab all
behavioral testing occurs during the animals’ awake/active phase
(they are maintained in a 12:12 reversed light dark cycle with
lights off at 09:30). The only other caveat we would add is that
our animals’ home cage environment was relatively undisturbed
during the 5-day protocol, and (as our studies generally began on
Monday) perhaps not for the day or two preceding the start of the
study. Less robust/more variable results were generated when the
corncob bedding was changed during pilot studies.

DATA ANALYSIS
Data were analyzed in SPSS 21.0. One sample t-tests were carried
out to compare time spent in each side of the experimental appa-
ratus on the test day within groups. We evaluated whether the
absolute value of the difference between saline time and EtOH
time was >0 (or whether the percentage of time spent in the
EtOH-paired context was >50%) to assess place preference (or
aversion). When comparing two groups we analyzed subjects’
behavior using analysis of variance, and in Experiment 1b, with
time of testing, in 5 min bins, in a repeated measure analysis to
evaluate place conditioning across the testing period.

RESULTS
EXPERIMENT 1
Preference for an environment once paired with 1.5 g/kg EtOH
is evident in three strains and both sexes of mice (Figures 1–3).
Figures 1C,D show that after receiving 1.5 g/kg EtOH on day
1 or 3 of a 5-day protocol, adult C57BL/6J mice (n = 8) pre-
ferred the alcohol-paired context to the saline-paired context on
day 5. The nearly 2 min difference between the time spent on
the sides was significantly greater than zero [t(7) = 5.282, p <

0.01; Figure 1C]. Subtracting out time spent in the neutral cen-
ter chamber indicates that on average, subjects spent 57.5% of
their onside-time in the EtOH-paired context (±1.46 s.e.m.), as
opposed to about 42.5% in the saline-paired environment [two-
tailed t(7) = 39.362, p < 0.001; Figure 1D]. Figure 1E depicts the
time spent in the two contexts, which did not differ: t(7) = 0.260,
p > 0.05. It also did not matter whether mice were conditioned

to EtOH effects on day 1 or day 3 of the study, as demonstrated
by ANOVA F(1, 7) = 0.277, p > 0.05.

Experiment 1b indicated that the sexes equally prefer a con-
text associated with a single exposure to 1.5 g/kg EtOH over
one paired with saline. We replicated findings in Experiment 1a
(Figure 1) with a larger cohort of male and female C57BL/6J
mice (8 male and 9 female naïve, adult subjects). Again, we con-
ditioned and tested over 20 min, on each of days 1, 3, and 5.
Figure 2A shows that both male and female subjects spent more
time in the EtOH-paired context than in the saline-associated
context on day 5 [>57%, t(7) = 2.17, p < 0.05] and 59% [t(7) =
14.21, p < 0.01], respectively, but did not differ from each other:
F(1, 15) = 0.30, p = 0.592. The preference for the EtOH-paired
chamber was evident across the test period, non-significantly
increasing from about 55% during the first 5 min to nearly 62%
during the last 5 min of testing as seen in Figure 2B (all test
points were significantly greater than 50% by t-test, and the
repeated measure ANOVA was >0.05 for time, with no significant
interaction).

Single-exposure CPP also generalizes to other strains of mice.
Experiment 1c demonstrated that place preference for a context
associated with a single, moderate dose of EtOH is also evident
in the DBA/2J inbred, as well as outbred Swiss Webster mice.
These data are depicted in Figure 3: DBA/2J mice developed CPP
to the EtOH-paired context [58.4 ± 3.94; mean ± s.e.m.; two
tailed t(9) = 14.804, p < 0.001; Figure 3A] as did outbred Swiss
Webster mice [59.1 ± 2.64; two tailed t(5) = 22.396, p < 0.001;
Figure 3B].

EXPERIMENT 2
CPP was not evident in a concentrated 3-day protocol where
subjects were conditioned on days 1 and 2 and tested on day 3,
although again, spaced conditioning and assessment trials reliably
resulted in place preference for male and female C57BL/6J mice
(Figure 4A). T-test confirmed that only the Alternate group spent
more than 50% of their time in the EtOH-paired context [one-
tailed t(7) = 2.172, p < 0.05, vs. consecutive t(7) = 0.166, p >

0.05]. Habituating animals to injections and the testing apparatus
before conditioning also attenuated CPP to EtOH (Figure 4B).
Only experimentally naïve subjects evidenced place preference
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FIGURE 2 | Experiment 1b demonstrated that both sexes equally prefer

a context associated with a single exposure to 1.5 g/kg EtOH over a

context paired with saline. We replicated findings in Experiment 1a
(Figure 1) with a larger cohort of male and female C57BL/6J mice (8 male
and 9 female naïve, adult subjects). Again, we conditioned and tested over
20 min, on each of days 1, 3, and 5. (A) Both male and female subjects

spent more time in the EtOH-paired context than in the saline-associated
context on day 5 [>57 and 59%, respectively, but did not differ from each
other: F(1, 15) = 0.30, p = 0.592]. (B) Preference for the EtOH-paired
chamber was evident across the test period and tended to increase with
time (from about 55% during the first 5 min to nearly 62% during the last
5 min of testing). ∗ indicates p < 0.05.

FIGURE 3 | Single-exposure CPP generalizes to other strains of mice

(Experiment 1c). (A) Male and female naïve adult DBA/2J mice (n = 10)
were subjected to the standard 5-day, single exposure protocol, and readily
developed CPP to the EtOH-paired context [58.4 ± 3.94; mean ± s.e.m.;
t(9) = 14.804, p < 0.001]. Likewise, (B) outbred Swiss Webster mice
evinced a robust CPP in the single-exposure, spaced protocol [59.1 ± 2.64;
t(5) = 22.396, p < 0.001; n = 6]. ∗ indicates p < 0.05.

[one-tailed t(7) = 5.129, p < 0.01, vs. handled t(9) = 1.168,
p > 0.05].

DISCUSSION
Among many factors contributing to alcohol dependence and its
constellation of adverse consequences is the subjective experience
to the drug. Though no doubt compounded by a host of inter-
vening influences, retrospective reports from alcoholics suggest
that early experiences with intoxication are perceived as especially
salient and pleasurable (Haertzen et al., 1983; de Wit and Phillips,
2012; Bardo et al., 2013). These reports are in line with the com-
mon sense notion that the reinforcing effects of the drug, while
varied in the overall population, are especially potent in those at
risk for problem drinking. The model described here provides a
new and facile tool for investigating the host of influences con-
tributing to this liability in drug naïve subjects, since it assesses
subjective rewarding effects of initial drug exposure.

The subjective response to alcohol has been well studied in the
clinic since Schuckit first demonstrated that men with a positive
family history experienced blunted effects of alcohol compared
to men without such a family history (Schuckit, 1980). Over the
past few decades, the Low Level of Response Model (LLRM) has
been widely investigated, characterizing subjective response as a
phenotypic risk factor for alcohol use disorders (Schuckit, 1984;
Schuckit and Smith, 1996, 2000, 2001; Schuckit et al., 2007; Trim
et al., 2009). Researchers have also looked for, and found, physio-
logical correlates of the LLRM including ataxia (Schuckit, 1985),
hormone release (Schuckit et al., 1987a,b, 1988b; Schuckit, 1988)
brain activity (Schuckit et al., 1988a; Ehlers and Schuckit, 1991;
Trim et al., 2010) and specific molecular markers (Schuckit et al.,
1999; Hu et al., 2005; Corbin et al., 2006; Hinckers et al., 2006;
Webb et al., 2011).

Despite these many correlations, there is still much that
remains to be done in terms of explaining initial sensitiv-
ity to the drug and its relationship to future dependence, as
well as successfully designing interventions to mitigate a risk-
prone phenotype. For example, there are reports contradict-
ing the LLRM, including a number of studies failing to repli-
cate the effect and others finding greater response to alcohol
in high-risk populations (e.g., Lex et al., 1994; Earleywine,
1995; Moss et al., 2012). Partly because of such contradic-
tions (Newlin and Thomson, 1999), proposed an alternative
Differentiator Model (DM), suggesting that future liability is
predicted by a “favorable” balance of enhanced positive effects
(most prominent on the rising limb of the blood/brain alcohol
curve) along with attenuated sensitivity to less reinforcing, sedat-
ing effects (evident, especially, as metabolism outpaces absorp-
tion) and this idea also has some support (e.g., Martin et al.,
1993; King et al., 2002; Erblich et al., 2003; Marczinski et al.,
2007). Two groups recently attempted to clarify the issue by
meta-analyses (Morean and Corbin, 2010; Quinn and Fromme,
2011) but concur that the extant literature is not definitive,
in part because of the variability across clinical studies and
populations.
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FIGURE 4 | Place preference is not evident with massed conditioning

trials or in subjects that have been habituated to the testing

procedures and environment, though spaced conditioning across 5

days in unhabituated/unhandled C57BL/6J subjects yields robust

CPP to a single exposure of EtOH. (A) Conditioning and testing over
a 3 day, rather than 5 day period did not produce EtOH place
preference. Half of the mice (n = 8/group) were administered saline and
1.5 g/kg EtOH in a counterbalanced fashion on day 1 and 2, and tested

on day 3 (Consecutive), and the others participated in the alternate
conditioning protocol (injections on days 1 and 3; undisturbed days 2
and 4; tested on day 5). Only the Alternate group spent more than
50% of their time in the EtOH-paired context [one-tailed t(7) = 2.172,
p < 0.05]. (B) Habituating animals to injections and the testing
apparatus before conditioning blocked CPP to EtOH. Only experimentally
naïve subjects evidenced place preference [one-tailed t(7) = 5.129,
p < .001; n = 8/group]. ∗ indicates p < 0.05.

Slow progress in understanding the role of subjective expe-
rience on future outcomes can also be attributed to the fact
that basic researchers have lacked appropriate animal models
for studying the phenotype. Translating the clinical observa-
tions to basic studies where experimental control and manipu-
lation can better parse cause and effect will be helpful in testing
specific aspects of this broad and complex phenotype, and in
turn, inform more targeted approaches in the clinic (Crabbe,
2012).

The assay described here should provide a useful tool for basic
researchers since it is a behavioral model of drug reward associ-
ated with first exposure. In contrast to previous studies of CPP
in rodents, this paradigm does not employ habituation to the
conditioning apparatus or procedure, nor does it depend upon
repeated EtOH exposure (Cunningham et al., 2006). Drug con-
ditioning and reward assessment (which could be automated)
requires only 90 min per subject, a circumstance that would be
helpful for high throughput studies. Moreover, the dose used in
our experiments (1.5 g/kg) is lower than that typically employed
in the place preference model (again, follow Cunningham et al.,
2006 for a comprehensive discussion of the CPP protocol). These
differences may represent advantages for probing antecedent
factors that influence the likelihood of developing drug
dependence.

In addition to being entirely conducted during three manip-
ulation sessions across 5 days, conditioned reward to EtOH was
robustly demonstrated in three strains of mice (two inbred and
one outbred), both sexes, and subject to pharmacological manip-
ulation. The inbred strains employed here, the C57BL/6J and
DBA/2J are widely used by researchers investigating addiction. In
fact, substantial strain differences in oral consumption of EtOH,
first described over 50 years ago (McClearn and Rodgers, 1959)
have been used as a basis for a multitude of studies aimed at
identifying causes of alcoholism. That the non-preferring DBA
strain readily shows CPP to a single dose of EtOH, adds to the

growing body of literature suggesting that such strain differences
don’t mirror differences in the subjective rewarding properties of
the drug (Grahame and Cunningham, 1997; Green and Grahame,
2008; Blednov et al., 2012).

Assuming that initial alcohol reward is impacted by multiple
genetic loci—a supposition that is widely embraced across the
fields of behavioral genetics and pharmacogenetics (Reich et al.,
1998; Prescott and Kendler, 1999; Liu et al., 2004) an animal
model targeting this intermediate phenotype could help advance
the field. The commercial availability of inbred, recombinant
inbred, transgenic, and selected lines of mice, presumably evinc-
ing a range of responses to this probe, will help elucidate innate
factors that contribute to the clinical variation in susceptibility
to alcoholism. As with all animal models, value lies in assessing
and explaining particular aspects of clinical observations, ulti-
mately proffering targeted interventions for use in humans, and
narrowing a translational gap.

Additional factors, beside genetic, might also be fruitfully
investigated. For instance, selective antagonists might be used
to assess neurochemical contributions such as those from
endogenous opioids or other peptides (Froehlich et al., 2000;
Gianoulakis, 2009; Walker et al., 2012; Ubaldi et al., 2013), as
well as classical or novel neurotransmitters and their receptors
(Pava and Woodward, 2012; Trudell et al., 2014). Moreover, devel-
opmental and other environmental manipulations (e.g., stress,
housing conditions; Clarke et al., 2012) can be readily evaluated
in a single-exposure CPP paradigm.

It remains to be determined whether or not a single expo-
sure to other reinforcing substances will lead to a CPP. It may
be that some, but not all abused drugs are reinforcing from the
start, while others require neuroadaptation to mediate subjective
reward. The fact that CPP in our model was attenuated by prior
habituation and handling, for instance, could suggest that the
behavioral changes indicative of initial subjective reward to alco-
hol depend upon the novelty of the context. If so, the subjective
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reward we demonstrated might result more from negative, than
positive, reinforcement. If so, sedative-anxiolytic drugs might
also be reinforcing in a model such as ours, while reward from
other classes of drugs, such as stimulants, might benefit from
habituation prior to conditioning and/or multiple drug expo-
sures. Novel environments are considered mildly stressful, and
in such contexts the anxiolytic effects of alcohol might be expe-
rienced as especially reinforcing. If so, more anxious subjects
(either by “nature” or “nurture”) should demonstrate stronger
CPP (Dockstader and van der Kooy, 2001), and could be use-
ful in understanding the relationship between anxiety disorders
and alcohol use disorders that has been well substantiated in the
clinic (e.g., Kushner et al., 2005; Brady et al., 2007; Farris et al.,
2012).

Worldwide, addiction may be the most formidable health
problem, affecting about 1 in every 5 people over the age
of 14 (World Health Organization, 2011). Though alcoholism,
like other complex heterogenous traits, results from a dense
constellation of interacting influences, a better understanding of
the initial subjective rewarding effects will facilitate theory-driven
approaches to treating this devastating disorder. The single-
exposure CPP to alcohol demonstrated in our studies provides
a new tool for investigating factors that predict disordered drink-
ing. Because at least some of the antecedent factors are present
before, and evident upon, first exposure to the drug, interven-
tions and treatments for the disease critically depend upon better
understanding the vulnerable predisposition.
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