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For multimodal Human-Computer Interaction (HCI), it is very useful to identify the
modalities on which the user is currently processing information. This would enable
a system to select complementary output modalities to reduce the user’s workload.
In this paper, we develop a hybrid Brain-Computer Interface (BCI) which uses
Electroencephalography (EEG) and functional Near Infrared Spectroscopy (fNIRS) to
discriminate and detect visual and auditory stimulus processing. We describe the
experimental setup we used for collection of our data corpus with 12 subjects. On
this data, we performed cross-validation evaluation, of which we report accuracy for
different classification conditions. The results show that the subject-dependent systems
achieved a classification accuracy of 97.8% for discriminating visual and auditory
perception processes from each other and a classification accuracy of up to 94.8% for
detecting modality-specific processes independently of other cognitive activity. The same
classification conditions could also be discriminated in a subject-independent fashion
with accuracy of up to 94.6 and 86.7%, respectively. We also look at the contributions
of the two signal types and show that the fusion of classifiers using different features
significantly increases accuracy.
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1. INTRODUCTION
For the last decade, multimodal user interfaces have become
omnipresent in the field of human-computer interaction and in
commercially available devices (Turk, 2014). Multimodality refers
to the possibility to operate a system using multiple input modal-
ities but also to the ability of a system to present information
using different output modalities. For example, a system may
present information on a screen using text, images and videos or
it may present the same information acoustically by using speech
synthesis and sounds. However, such a system has to select an
output modality for each given situation. One important aspect
it should consider when making this decision is the user’s work-
load level which can negatively influence task performance and
user satisfaction, if too high. The output modality of the system
which imposes the smaller workload on the user does not only
depend on the actions of the system itself, but also on concur-
rently executed cognitive tasks. Especially in dynamic and mobile
application scenarios, users of a system are frequently exposed
to external stimuli from other devices, people or their general
environment.

According to the multiple resource theory of Wickens (2008),
the impact of a dual task on the workload level depends on the
type of cognitive resources which are required by both tasks.
If the overlap is large, the limited resources have to be shared

between both tasks and overall workload will increase compared
to a pair of tasks with less overlap, even if the total individual task
load is identical. For example, Yang et al. (2012) showed a study
in which they combine a primary driving task with additional
auditory and visual task of three difficulty levels. They showed
that the difference in the performance level of the driving task
depends on the modality of the secondary task: According to their
results, secondary visual tasks had a stronger impact on the driv-
ing than secondary auditory tasks, even if individual workload of
the auditory tasks was slightly higher than of the visual tasks. For
Human-Computer Interaction (HCI), this implies that when the
interaction strategy of the system must must select from differ-
ent output channels by which it can transfer information to the
user, its behavior should take into account the cognitive processes
which are already ongoing. It is possible to model the resource
demands of cognitive tasks induced by the system itself (see for
example Cao et al., 2009). For example, we know that presenting
information using speech synthesis requires auditory perceptual
resources while presenting information using a graphical display
will require visual perceptual resources. However, doing the same
for independent parallel tasks is impossible in an open-world
scenario where the number of potential distractions is virtually
unlimited. Therefore, we have to employ sensors to infer which
cognitive resources are occupied.
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To some degree, perceptual load can be estimated from context
information gathered using sensors like microphones or cameras.
However, if, for example, the user wears earmuffs or head phones,
acoustic sensors cannot reliably relate acoustic scene events to
processes of auditory perception. Therefore, we need a more
direct method to estimate those mental states. A Brain-Computer
Interface (BCI) is a “system that measures central activity and
converts it into artificial output that replaces, restores, enhances
supplements, or improves natural central nervous system out-
put” (Wolpaw and Wolpaw, 2012). BCIs can therefore help to
detect or discriminate perceptual processes for different modal-
ities directly from measures of brain activity and are therefore
strong candidates to reliably discriminate and detect modality-
specific perceptual processes. As BCIs have many additional uses
for active interface control or for passive user monitoring, they
may be already in place for other tasks and would not require any
additional equipment.

Our system combines two different signal types
[Electroencephalography (EEG) and functional Near Infrared
Spectroscopy (fNIRS)] to exploit their complementary nature
and to investigate their individual potential for classifying
modality-specific perceptual processes: EEG is the traditional sig-
nal for BCIs, recording electrical cortical activity using electrodes.
fNIRS on the other hand captures the hemodynamic response
by exploiting the fact that oxygenated and de-oxygenated blood
absorb different proportions of light of different wavelengths in
the near-infrared spectrum. fNIRS captures different correlates
of brain activity than EEG: While EEG measures an electrical
process, fNIRS measures metabolic response to cognitive activity.
This fact makes it plausible that a fusion of both signal types can
give a more robust estimation of a person’s cognitive state.

BCIs based on EEG have been actively researched since the
1970s, for example in computer control for locked-in patients
(e.g., Wolpaw et al., 1991; Sitaram et al., 2007). BCIs based on
fNIRS have become increasingly popular since the middle of last
decade (Sitaram et al., 2007). The term hybrid BCI generally
describes a combination of several individual BCI systems (or
the combination of a BCI with another interface) (Pfurtscheller
et al., 2010). A sequential hybrid BCI employs two BCIs one after
another. One application of a sequential BCI is to have the first
system act as a “brain switch” to trigger the second system. A
sequential hybrid BCI usually resorts to different types of brain
activity measured by a single signal type (e.g., correcting mistakes
of a P300 speller by detecting error potentials, Spüler et al., 2012).
In contrast, a simultaneous hybrid BCI system usually combines
entirely different types of brain signals to improve the robust-
ness of the joint system. The first simultaneous hybrid BCI that is
based on synchronous measures of fNIRS and EEG was proposed
by Fazli et al. (2012) for classification of motor imagery and motor
execution recordings. The authors reported an improvement in
recognition accuracy by combining both signal types.

Zander and Kothe (2011) defined Passive BCI as follows: “a
passive BCI is one that derives its outputs from arbitrary brain
activity arising without the purpose of voluntary control, for
enriching a humanmachine interaction with implicit informa-
tion on the actual user state.” A number of such systems exist to
classify the user’s workload level, for example presented by Heger

et al. (2010) or Kothe and Makeig (2011). Those systems used dif-
ferent EEG feature extraction techniques that are usually related
to the frequency power distribution to classify low and high
workload conditions. Other researchers derived features from
Event Related Potentials (ERPs) in time domain (Allison and
Polich, 2008; Brouwer et al., 2012) or used Common Spatial
Patterns (Dijksterhuis et al., 2013) to discriminate workload
levels. Workload level is typically assessed from subjective ques-
tionnaires or task difficulty. Sassaroli et al. (2008) placed fNIRS
optodes on the forehead to measure concentration changes of
oxyhemoglobin and deoxyhemoglobin in the prefrontal cortex
during memory tasks and discriminated between three different
levels of workload in three subjects. Similarly, Bunce et al. (2011)
discriminate different workload levels for a complex Warship
Commander Task, for which task difficulty was manipulated to
create different levels of workload. They recorded fNIRS from
16 optodes at the dorsolateral prefrontal cortex and saw signifi-
cant differences in oxygenation between low and high workload
conditions. They also observed a difference in signal response
to different difficulty settings for expert and novice users, which
was mirrored by the behavioral data. Herff et al. (2014) showed
that it is possible to classify different levels of n-back difficulty
corresponding to different levels of mental workload on a sin-
gle trials for prefrontal fNIRS signals with an accuracy of up to
78%. Hirshfield et al. (2009) combined EEG and fNIRS data for
workload estimation in a counting task and saw better results
for fNIRS in comparison to frequency based EEG-features. The
authors reported surprisingly low accuracy for their EEG-based
classifier and suspected problems with coverage of relevant sites
and montage-specific artifacts. In contrast, Coffey et al. (2012)
presented results from a similar study but showed worse results
for the fNIRS features. From the available literature, it is hard
to judge the relative discriminative power of the different signal
types. On the one hand, Coffey et al. (2012) and Hirshfield et al.
(2009) cover only a small aspect of general passive BCI research
as they both concentrate on the classification of workload and use
similar fNIRS montages. On the other hand, the experiments are
too different to expect identical results (different cognitive tasks,
different features, etc.). Therefore, there is too little data available
for a final call on the synergistic potential between both modal-
ities and their applicability to specific classification tasks. This
paper contributes to an answer of this question by investigating a
very different fNIRS montage, by including different types of EEG
features to ensure adequate classification accuracy and by looking
at a more specific aspect of cognitive activity, namely processing
of different input modalities.

All the systems mentioned above modeled workload as a
monolithic construct and did not classify the resource types
which contributed to a given overall workload level. While there
exist user studies, e.g., Heger et al. (2011), which show that it
is possible to improve human-computer interaction using this
construct, many use cases—like the mentioned selection between
auditory and visual output modalities—require a more fine
grained model of mental workload, like the already mentioned
multiple resource theory (Wickens, 2008). Neural evidence from a
study by Keitel et al. (2012) of subjects switching between bimodal
and unimodal processing also indicated that cognitive resources
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for visual and auditory processing should be modeled separately.
Most basic visual processing takes place in the visual cortex of the
human brain, located in the occipital lobe, while auditory stimuli
are processed in the auditory cortex located in the temporal lobes.
This clear localization of important modality-specific areas in the
cortex accessible for non-invasive sensors hints at the feasibility of
separating both types of processing modes.

In this paper, we investigate how reliably a hybrid BCI using
synchronous EEG and functional fNIRS signals can perform such
classification tasks. We describe an experimental setup in which
natural visual and auditory stimuli are presented in isolation
and in parallel to the subject of which both EEG and fNIRS
data is recorded. On a corpus of 12 recorded sessions, we train
BCIs using features from one or both signal types to differen-
tiate and detect the different perceptual modalities. This paper
contributes a number of substantial findings to the field of pas-
sive BCIs for HCI: We trained and evaluated classifiers which can
either discriminate between predominantly visual and predomi-
nantly auditory perceptual activity or which were able to detect
visual and auditory activity independently of each other. The lat-
ter is ecologically important as many real-life tasks demand both
visual and auditory resources. We showed that both types of clas-
sifiers achieved a very high accuracy both in a subject-dependent
and subject-independent setup. We investigated the potential of
combining different feature types derived from different signals
to achieve a more robust and accurate recognition result. Finally,
we look at the evaluation of the system on continuous data.

2. MATERIALS AND METHODS
2.1. PARTICIPANTS
Twelve healthy young adults (6 male, 6 female), age between 21
and 30 years (mean age 23.6, SD 2.6 years) without any known
history of neurological disorders participated in this study. All of
them have normal or corrected-to-normal visual acuity, normal
auditory acuity, and were paid for their participation. The exper-
imental protocol was approved by the local ethical committee of
National University of Singapore, and performed in accordance
with the policy of the Declaration of Helsinki. Written informed
consent was obtained from all subjects and the nature of the
study was fully explained prior to the start of the study. All sub-
jects had previous experience with BCI operation or EEG/fNIRS
recordings.

2.2. EXPERIMENTAL PROCEDURE
Subjects were seated in a sound-attenuated room with a dis-
tance of approximately one meter from a widescreen monitor
(24′′ BenQ XL2420T LED Monitor, 120 Hz, 1920 × 1080), which

was equipped with two loudspeakers on both sides (DELL AX210
Stereo Speaker). During the experiment, subjects were presented
with movie and audio clips, i.e., silent movies (no sound; VIS),
audiobooks (no video; AUD), and movies with both video and
audio (MIX). We have chosen natural, complex stimuli in contrast
to more controlled, artificially generated stimuli to keep subjects
engaged with the materials and to achieve a realistic setup.

Besides any stimulus material, the screen always showed a fix-
ation cross. Subjects were given the task to look at the cross at all
times to avoid an accumulation of artifacts. When there was no
video shown, e.g., during audio clips and during rest periods, the
screen pictured the fixation cross on a dark gray background. In
addition to the auditory, visual and audiovisual trials, there were
IDLE trials. During IDLE, we showed a dark gray screen with a
fixation cross in the same way as during the rest period between
different stimuli. Therefore, subjects were not be able to distin-
guish this condition from the rest period. In contrast to the rest
periods, IDLE trials did not follow immediately after a segment
of stimulus processing and can therefore be assumed to be free of
fading cognitive activity. IDLE trials were assumed to not con-
tain any systematic processing of stimuli. While subjects received
other visual or auditory stimulations from the environment dur-
ing IDLE trials, those stimulations were not task relevant and of
lesser intensity compared to the prepared stimuli. In contrast to
AUD, VIS, and MIX trials, there was no additional resting period
after IDLE trials.

The entire recording, which had a total duration of nearly
1 h, consisted of five blocks. Figure 1 gives an overview of the
block design. The first block consisted of three continuous clips
(60 s audio, 60 s video, 60 s audio and video with a break of
20 s between each of them. This block had a fixed duration of 3
min 40 s. The remaining four blocks had random durations of
approximately 13 min each. The blocks 2–5 followed a design
with random stimulus durations of 12.5 ± 2.5 s (uniformly dis-
tributed) and rest periods of 20 ± 5 s (uniformly distributed).
The stimulus order of different modalities was randomized within
each block. However, there was no two consecutive stimuli of the
same modality. Figure 2 shows an example of four consecutive
trials in the experiment. Counted over all blocks, there were 30
trials of each category AUD, VIS, MIX, and IDLE.

The stimuli of one modality in one block formed a coher-
ent story. During the experiment, subjects were instructed to
memorize as much of these stories (AUD/VIS/MIX story) as
possible. In order to ensure that subjects paid attention to the
task, they filled out a set of multiple choice questions (one for
each story) after each block. This included questions on con-
tents, e.g., “what happens after. . . ?”, as well as general questions,

FIGURE 1 | Block design of the experimental setup.
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FIGURE 2 | Example of four consecutive trials with all perceptual modalities.

such as “how many different voices appeared?” or “what was
the color of . . . ?”. According to their answers, all subjects paid
attention throughout the entire experiment. In the auditory con-
dition, subjects achieved an averaged correct answer rate of 85%,
whereas in the visual condition there is a correct answer rate
of 82%.

2.3. DATA ACQUISITION
For fNIRS recording, a frequency-domain oximeter (Imagent,
ISS, Inc., Champaign, IL, USA) was employed. Frequency-
modulated near-infrared light from laser diodes (690 nm or
830 nm, 110 MHz) was conducted to the participants head with
64 optical source fibers (32 for each wavelength), pairwise
co-localized in light source bundles. A rigid custom-made head-
mount system (montage) was used to hold the source and detec-
tor fibers to cover three different areas on the head: one for the
visual cortex and one on each side of the temporal cortex. The
multi-distance approach as described in Wolf et al. (2003); Joseph
et al. (2006) was applied in order to create overlapping light chan-
nels. Figure 3 shows the arrangement of sources and detectors in
three probes (one at the occipital cortex and two at the tempo-
ral lobe). For each probe, two columns of detectors were placed
between two rows of sources each to the left and the right, at
source-detector distances of 1.7 –2.5 cm. See Figure 3A for the
placement of the probes and Figure 3B for the arrangement of
the sources and detectors. After separating source-detector pairs
of different probes into three distinct areas, there were a total of
60 channels on the visual probe and 55 channels on each auditory
probe. Thus, there was a total number of nc = 170 channels. The
sampling frequency used was 19.5 Hz.

EEG was simultaneously recorded with an asalab ANT neuro
amplifier and digitized with a sampling rate of 256 Hz. The
custom-made head-mount system, used for the optical fibers, also
enabled us to place the following 12 Ag/AgCl electrodes according
to the standard 10–20 system: Fz, Cz, Pz, Oz, O1, O2, FT7, FT8,
TP7, TP8, M1, M2. Both M1, and M2 were used as reference.

After the montage was positioned, the locations of fNIRS
optrodes, EEG electrodes, as well as the nasion, pre-auricular
points and 123 random scalp coordinates were digitized with
Visor (ANT BV) and ASA 4.5 3D digitizer. Using each subject’s
structural MRI, these digitized points were then coregistered, fol-
lowing Whalen et al. (2008), in order to have all subjects’ data in
a common space.

FIGURE 3 | Locations of EEG electrodes, fNIRS optrodes, and their

corresponding optical lightpath. The arrangement of fNIRS sources and
detectors is shown projected on the brain in (A) and as unwrapped
schematic in (B) for the two auditory probes (top left and right) and the
visual probe (bottom).

2.4. PREPROCESSING
The preprocessing of both fNIRS and EEG data were performed
offline. Optical data included an AC, a DC, and a phase compo-
nent; however, only the AC intensities were used in this study.
Data from each AC channel were normalized by dividing it by
its mean, pulse-corrected following Gratton and Corballis (1995),
median filtered with a filter length of 8 s, and downsampled from
19.5 to 1 Hz. The downsampled optical density changes �ODc

were converted to changes in concentration of oxyhemoglobin
(HbO) and deoxyhemoglobin (HbR) using the modified Beer-
Lambert law (MBLL) (Sassaroli and Fantini, 2004).

The parameters for differential path-length factor and
wavelength-dependent extinction coefficient within this study
were based on standard parameters in the HOMER2 pack-
age, which was used for conversion process (Huppert et al.,
2009). Values of molar extinction coefficients were taken
from http://omlc.ogi.edu/spectra/hemoglobin/1. Finally, com-
mon average referencing (CAR) was applied to the converted data

1compiled by Scott Prahl using data from: W. B. Gratzer, Med. Res. Council
Labs, Holly Hill, London, and N. Kollias, Wellman Laboratories, Harvard
Medical School, Boston.

Frontiers in Neuroscience | Neuroprosthetics November 2014 | Volume 8 | Article 373 | 4

http://omlc.ogi.edu/spectra/hemoglobin/summary.html
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


Putze et al. Hybrid fNIRS-EEG based classification

in order to reduce noise and artifacts that are common in all
channels (Ang et al., 2012). Thereby, the mean of all channels is
substracted from each individual channel c. It is performed on
both �HbO and �HbR.

EEG data were preprocessed with EEGLAB 2013a (Delorme
and Makeig, 2004). First the data was bandpass filtered in the
range of 0.5–48 Hz using a FIR filter of standard filter order
of 6 (= 3

low cutoff · sampling rate). Then, non-brain artifacts were
rejected using Independent Component Analysis (ICA) as pro-
posed by Jung et al. (2000). In this process, all 10 channels were
converted to 10 independent components. One component of
each subject was rejected based on prefrontal eye blink artifacts.
Finally, the prestimulus mean of 100 ms was substracted from all
stimulus-locked data epochs.

2.5. GRAND AVERAGES
In the following, we calculate Grand Averages of both fNIRS and
EEG signals (in time domain and frequency domain) for the dif-
ferent types of stimuli. This is done to investigate the general
sensitivity of the signals to differences in modality and to moti-
vate the feasibility of different feature types which we define later
for classification.

Figure 4 shows the averaged haemodynamic response func-
tion (HRF) for selected channels of all 12 subjects for labels AUD
(blue), VIS (red), and IDLE (black). The stimulus locked data
trials (blocks 2–5) are epoched by extracting the first 10 s of each
stimulus, and a 2 s prestimulus baseline was substracted from each
channel. There was a clear peak in the HRF in response to a VIS
stimulus on channels from the occipital cortex (channels 141 and
311 in the figure) and a return to baseline after the stimulus is over
after 12.5 s. This effect is absent for an AUD stimulus. Conversely,
the channels from the auditory cortex (channels 30 and 133 in the
figure) react much stronger to a AUD than to a VIS stimulus.

Figure 5 shows the first second of ERP waveforms of condi-
tions AUD (blue), VIS (red), and IDLE (black), averaged across

FIGURE 4 | Grand averaged HRFs of HbO (top) and HbR (bottom) for

visual (left) and auditory (right) channels. Depicted are averages for the
classes AUD (blue), VIS (red), and IDLE (black). The area shaded in gray
marks the average duration of a stimulus presentation.

all 12 subjects. It shows distinctive pattern for auditory and visual
stimuli when comparing electrodes at the visual cortex with elec-
trodes at more frontal positions. It is also widely known that
frequency responses can be used to identify cognitive processes.
Figure 6 shows power spectral density on a logarithmic scale at
a frontal midline position (Fz), at the ocipital cortex (Oz) and
the temporal lobe (FT7). The plots indicate that especially visual
activity can be easily discriminated from auditory activity an no
perceptual activity. This fact becomes especially evident at elec-
trode site Oz. The alpha peak for the AUD condition is expected,
but unusually pronounced. We attribute this to the fact that the
VIS stimuli are richer compared to the AUD stimuli as they often
contain multiple parallel points of interest and visual attractors
at once. The difference between VIS and AUD trials does also
not only involve perceptual processes but also other aspects of
cognition, as they differ in content, processing codes and other
parameters. On the one hand, this is a situation specific to the
scenario we employed. On the other hand, we argue that this
difference between visual and auditory information processing
pertains for most natural conditions. We will investigate this issue
by looking at the discriminability of AUD and IDLE conditions
and also at the influence of alpha power on overall performance.

2.6. CLASSIFICATION
In this study, we first aimed to classify auditory against visual per-
ception processes. Second, we wanted to detect auditory or visual
processes, i.e., we classify modality-specific activity vs. no activ-
ity. Third, we wanted to detect a certain perception process in
presence of other perception processes.

To demonstrate the expected benefits of combining the fNIRS
and EEG signals, we first explored two individual classifiers for
each signal domain, before we examined their combination by
estimating a meta classifier. The two individual fNIRS classifiers
were based on the evoked deflection from baseline HbO (HbO
classifier) and HbR (HbR classifier). The EEG classifiers were

FIGURE 5 | Grand averaged ERPs of all 3 conditions at 4 different

channel locations. Depicted are averages for the classes AUD (blue), VIS
(red), and IDLE (black).
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FIGURE 6 | Power Spectral Density of three EEG signals at Fz, Oz, FT7 for three different conditions. Depicted are averages for the classes AUD (blue),
VIS (red), and IDLE (black).

based on induced band power changes (POW classifier) and the
downsampled ERP waveform (ERP classifier).

2.6.1. fNIRS features
Assuming an idealized haemodynamic stimulus response, i.e., a
rise in HbO (HbO features) and a decrease in HbR (HbR features),
stimulus-locked fNIRS features were extracted by taking the mean
of the first few samples (i.e., topt − w

2 , . . . , topt) substracted from
the mean of the follwing samples (i.e., topt, . . . , topt + w

2 ) in all
channels c of each trial, similar to Leamy et al. (2011). Equation 1
illustrates how the feature was calculated.

f HbOc = 2

w

⎛
⎝

topt + w
2∑

topt

�[HbO]c(t) −
topt∑

topt − w
2

�[HbO]c(t)

⎞
⎠

f HbRc = 2

w

⎛
⎝

topt + w
2∑

topt

�[HbR]c(t) −
topt∑

topt − w
2

�[HbR]c(t)

⎞
⎠

(1)

2.6.2. EEG features
For POW, the entire 10 s of all 10 channels were transformed to the
spectral domain using Welch’s method, and every other frequency
component in the range of 3–40 Hz was concatenated to a 38-
dimensional feature vector per channel. ERP features were always
based on the first second (onset) of each trial. First, the ERP
waveform underlied a median filter (kmed = 5 ≈ 0.02s), followed
by a moving average filter (kavg = 13 ≈ 0.05s). A final down-
sampling of the resulting waveform (kdown = kavg) produced a
20-dimensional feature vector for each channel.

In the end, all features, i.e., HbO, HbR, POW, and ERP,
were standardized to zero mean and unit standard deviation
(z-normalization).

Four individual classifiers were trained based upon these four
different feature types. Each classifier yielded a probability dis-
tribution across (the two) classes. Using those individual class
probability values, we further evaluated a META classifier, based
on decision fusion: The META classifier was based on the weighted
sum pmeta = ∑

m wm · pm of the class probability values pm of
each of the four individual classifiers (m = HbO, HbR, POW, and
ERP) with weight wm. The class with higher pmeta, i.e., the maxi-
mum likelihood class, was then selected as the result of the META
classifier.

The weights wm were estimated based on the classification
accuracy on evaluation data (i.e., labeled data which is not part
of the training data but available when building the classifier).
Specifically, those classification accuracies that were higher than
baseline (pure chance, i.e., 0.5 for the balanced binary classi-
fication conditions) were linearly scaled to the interval [0, 1],
while those that were below baseline were weighted with 0,
and thus, not incorporated. Afterwards, the weight vector w =
[wHbO, wHbR, wPOW, wERP]T was divided by its 1-norm in order to
sum all of its elements to 1.

For the first three classifiers (HbO, HbR, and POW) a regular-
ized linear discriminant analysis (LDA) classifier was employed
(implemented following, Schlogl and Brunner, 2008 with a
shrinkage factor of 0.5, as determined on evaluation data), while
a soft-margin linear support vector machine (SVM) was used for
the ERP classifier (using the LibSVM implementation by Chang
and Lin, 2011 with default parameters). This was done because
we expected the first three feature sets to be normally distributed
(i.e., LDA is optimal), while we expected the more complex and
variable temporal patterns of an ERP to require a more robust
classification scheme. Note that this design choice was validated
by evaluating both types of classifiers for all types of features on a
representative subset of the data corpus. This ensured that in the
reported results we used the classifier which leads to the optimal
classification accuracy for every feature set.

For evaluation of the proposed hybrid BCI, we define a num-
ber of binary classification tasks. We call each different classi-
fication task a condition. Classification was performed for each
modality and feature type separately as well as for the com-
bined META classifier. In the subject-dependent case, we applied
leave-one-trial-out cross-validation (resulting in 60 folds for 60
trials per subject). To estimate parameters of feature extrac-
tion and classification (topt and w from Equation 1 for each
fold, fusion weights wm), we performed another nested 10-
fold cross-validation (i.e., in each fold, we have 53 trials for
training and 6 trials (5 trials in the last fold) for evaluation)
for the train set of each fold. The averaged accuracy in the
inner cross-validation is used for parameter selection in the
outer cross-validation. This procedure avoided overfitting of the
parameters to the training data. In the subject-independent case,
we performed leave-one-subject-out cross-validation, resulting
in a training set of 660 trials and a test set of 60 trials
per fold.
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To evaluate those classifiers for the discrimination and detec-
tion of modality-specific processing, we define a number of
binary classification conditions. Table 1 lists all defined classi-
fication conditions with the corresponding classes. All classi-
fication conditions are evaluated in a cross-validation scheme
as described above. For each condition, we investigate both a
subject-dependent classifier and a subject-independent classifier
setup. As evaluation metric, we look at classification accuracy.
Furthermore, we compare the performance of the individual
classifiers (which only use one type of feature) with the META
classifier and analyze the contribution of the two types of sig-
nals (EEG and fNIRS) to the different classification conditions.
Additionally, we analyze the generalizability of the different detec-
tors for modality-specific activity (lines 1–3 in Table 1) by evalu-
ating the classifiers on trials with and without other independent
perceptual and cognitive activity. Finally, we look at the classi-
fication performance on continuous data. For this purpose, we
evaluate a subset of the classification conditions on windows
extracted from continuous recordings without alignment to a
stimulus onset.

3. RESULTS
Table 2 summarizes the recognition accuracy for all different con-
ditions for the subject-dependent evaluation. The first entry is

Table 1 | Binary classification conditions for evaluation.

Condition Class 1 Class 2

AUD vs. VIS AUD VIS

AUD vs. IDLE AUD IDLE

VIS vs. IDLE VIS IDLE

allAUD vs. nonAUD AUD, MIX VIS, IDLE
allVIS vs. nonVIS VIS, MIX AUD, IDLE

For each condition, we list the class labels which define the corresponding

classes.

Table 2 | Stimulus-locked classification accuracies (in %) for

subject-dependent classification.

HbO HbR POW ERP META p

AUD vs. 79.4 (2.5) 74.3 (3.3) 93.6 (1.6) 93.3 (1.6) 97.8* (0.7) 0.006
VIS

AUD vs. 80.0 (2.7) 74.7 (3.1) 71.9 (3.0) 91.4 (1.7) 95.6* (1.6) 0.028
IDLE

VIS vs. 83.8 (2.7) 78.1 (3.3) 90.7 (1.7) 81.9 (2.8) 96.4* (0.9) 0.002
IDLE

allAUD vs. 67.2 (3.1) 62.8 (3.3) 69.7 (2.0) 85.9 (1.7) 89.0* (1.5) 0.003
nonAUD

allVIS vs. 68.5 (2.9) 64.7 (2.9) 91.5 (1.9) 81.9 (1.9) 94.8* (1.3) 0.019
nonVIS

Average 75.8 70.9 83.5 86.9 94.7 –

An asterisk in the META column indicates a significant improvement (α = 0.05)

over the best corresponding individual feature type. Given in parantheses are

standard errors of the mean. The last column indicates the p value of the

statistical comparison of META and the best single-feature classifier. Highest

classification accuracy for each condition is given in bold font.

a discriminative task in which the classifier learns to separate
visual and auditory perceptual activity. We see that for all four
individual classifiers, a reliable classification is possible, albeit
EEG-based features perform much better (HbO: 79.4% vs. POW:
93.6%). The fusion of all four classifiers, META, yields the best
performance, significantly better (paired, one-sided t-test, α =
0.05 with Bonferroni-Holm correction for multiple comparisons)
than the best individual classifier by a difference 4.2% absolute.
This is in line with the results of the meta analysis by D’Mello
and Kory (2012), who found modest, but consistent improve-
ments by combining different modalities for the classification of
inner states. Figure 7 shows a detailed breakdown of recognition
results across all subjects for the example of AUD vs. VIS. We see
that for every subject, recognition performance for every feature
type was above the trivial classification accuracy of 50% and the
performance of META was above 80% for all subjects.

In the next step, we evaluated subject-independent classifica-
tion on the same conditions. The results are presented in Table 3.
Averaged across all conditions, classification accuracy degrades
by 6.5% compared to the subject-dependent results, resulting
from higher variance caused by individual differences. Still, we
managed to achieve robust results for all conditions, i.e., subject-
independent discrimination visual and auditory processes is fea-
sible. We therefore decided to report subsequent analyses for the
subject-independent systems as those are much preferable from
an HCI perspective.

The AUD vs. VIS condition denotes a discriminination task,
i.e., it classifies a given stimulus as either auditory or visual.
However, for an HCI application, those two processing modes
are not mutually exclusive as auditory and visual perception can
occur in parallel and can also be both absent in idle situations. We
therefore need to define conditions which train a detector for spe-
cific perceptual activity, independently of the presence or absence
of the other modality. Our first approach toward such a detec-
tor for auditory or visual perceptual activity is to define the AUD
vs. IDLE and the VIS vs. IDLE conditions. A classifier trained
on these conditions should be able to identify neural activity
induced by the specific perceptual modality. In Tables 2, 3, we
see that those conditions can be classified with high accuracy
of 95.6% and 96.4% (subject-dependent), respectively. To test
whether this neural activity can still be detected in the presence
of other perceptual processes, we evaluate the classifiers trained
on those conditions also on MIX trials. We would expect a per-
fect classifier to classify each of those MIX trials as VIS for the
visual detector and AUD for the auditory detector. The top two
rows of Table 4 summarize the results and show that the classi-
fier still correctly detects the modality it is trained for in most
cases.

A problem of those conditions is that it is not clear that a
detector trained on them has actually detected specific visual
or auditory activities. Instead, it may be the case that it has
detected general cognitive activity which was present in both
the AUD and VIS trials, but not in the IDLE trials. To analyze
this possibility, we evaluated the classifier of the AUD vs. IDLE
condition on VIS trials (and accordingly for VIS vs. IDLE eval-
uated on AUD). We present the results in the bottom two rows of
Table 4. Both classifiers were very inconsistent in their results and
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FIGURE 7 | Stimulus-locked recognition rates of AUD vs. VIS for subject-dependent, as well as for subject-independent classification. Recognition
rates of the META classifier are indicated by a gray overlay on top of the individual classifiers’ bars.

Table 3 | Stimulus-locked classification accuracies (in %) for

subject-independent classification.

HbO HbR POW ERP META p

AUD vs. VIS 70.3 (2.2) 65.7 (2.2) 84.3 (2.2) 90.4 (1.3) 94.6* (1.3) 0.02
AUD vs.
IDLE

64.0 (1.9) 61.9 (1.6) 66.1 (1.4) 84.2 (2.1) 86.9* (2.0) 0.002

VIS vs.
IDLE

72.2 (2.8) 69.0 (4.0) 82.5 (2.9) 75.3 (2.6) 89.9* (1.8) 0.01

allAUD vs.
nonAUD

60.6 (2.0) 58.8 (1.4) 41.7 (7.2) 85.6 (2.1) 84.7 (1.3) 0.85

allVIS vs.
nonVIS

62.7 (2.6) 62.0 (2.6) 84.2 (1.9) 73.1 (2.8) 86.7* (1.4) 0.003

Average 66.0 63.5 71.8 81.7 88.6 –

An asterisk in the META column indicates a significant improvement (α = 0.05)

over the best corresponding individual feature type. Given in parantheses are

standard errors of the mean. The last column indicates the p value of the

statistical comparison of META and the best single-feature classifier. Highest

classification accuracy for each condition is given in bold font.

Table 4 | Subject-independent classification accuracy of classifiers (in

%) for AUD vs. IDLE and VIS vs. IDLE, evaluated on different trials

from outside the respective training set.

Trained on. . . Evaluated on. . . HbO HbR POW ERP META

AUD vs. IDLE MIX 67.1 63.6 47.5 88.6 88.4
VIS vs. IDLE MIX 69.3 68.4 69.0 84.7 77.6
AUD vs. IDLE VIS 66.3 66.7 52.6 48.8 48.5
VIS vs. IDLE AUD 59.5 61.4 49.3 50.5 48.2

“detected” modality-specific activity in nearly half of the trials,
which actually did not contain such activity.

To train a classifier which is more sensitive for the modality-
specific neural characteristics, we needed to include non-IDLE
trials in the training data as negative examples. For this pur-
pose, we defined the condition allAUD vs. nonAUD, where the
allAUD class was defined as allAUD = {AUD, MIX} and the
nonAD was defined as nonAUD = {IDLE, VIS}. Now, allAUD

Table 5 | Subject independent correct classification rate (in %) and

confusion matrix for the allAUD vs. nonAUD and the allVIS vs.

nonVIS conditions, broken down by original labels.

AUD VIS IDLE MIX

allAUD 328 53 54 278

nonAUD 32 307 306 82

% correct 91.1 85.3 85.0 77.2

allVIS 65 339 64 318

nonVIS 295 21 296 42

% correct 81.9 84.2 82.2 88.3

contains all data with auditory processing, while nonAUD con-
tained all data without, but potentially with other perceptual
activity. The condition allVIS vs. nonVIS was defined anal-
ogously. Tables 2, 3 document that a detector trained on these
conditions was able to achieve a high classification accuracy. This
result shows that the new detectors did not only learn to separate
general activity from a resting state (as did the detectors defined
earlier). If that would have been the case, we would have seen a
classification accuracy of 75% or less: For example, if we make
this assumption in the allVIS vs. nonVIS condition, we would
expect 100% accuracy for the VIS, MIX and IDLE trials, and
0% accuracy for the AUD trials, which would be incorrectly clas-
sified as they contain general activity but none which is specific
to visual processing. This baseline of 75% is outperformed by our
classifiers for detection. This result indicates that we were indeed
able to detect specific perceptual activity, even in the presence
of other perceptual processes. For additional evidence, we look
at how often the original labels (AUD, VIS, IDLE, MIX) were
classified correctly in the two new detection setups by the META
classifier. The results are summarized in Table 5 as a confusion
matrix. We see that all classes are correctly classified in more than
75% of all cases, indicating that we detected the modality-specific
characteristics in contrast to general cognitive activity.

The results we presented in Tables 2, 3 indicate that fusion
was useful to achieve a high recognition accuracy. Still, there
was a remarkable difference between the results achieved by the
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FIGURE 8 | fNIRS-META (red) vs. EEG-META (blue) evaluated for both subject-dependent and subject-independent classification for different

conditions.

classifiers using fNIRS features and by classifiers using EEG fea-
tures. This was true across all investigated conditions and for both
subject dependent and subject independent classification. We sus-
pect that the advantage of the META classifier was mostly due to
the combination of the two EEG based classifiers. In Figure 8,
we investigated this question by comparing two fusion classifiers
EEG-META and fNIRS-META which combined only the two
fNIRS features or the two EEG features, respectively. The results
show that for the majority of the conditions, the EEG-META clas-
sifier performed as good as or even better than the overall META
classifier. However, the fNIRS features contributed significantly
to the classification accuracy for both conditions AUD vs. IDLE
and VIS vs. IDLE (p = 0.003 and p = 0.01, respectively for the
difference of EEG-META and META in the subject-dependent
case).

To exclude that the difference was due to the specific fNIRS fea-
ture under-performing in this evaluation, we repeated the analysis
with other established fNIRS features (average amplitude, value of
largest amplitude increase or decrease). The analysis showed that
we could not achieve improvements by exchanging fNIRS feature
calculation compared to the original feature. We conclude that
the difference in accuracy was not caused by decisions during fea-
ture extraction. Overall, we see that fNIRS-based features were
outperformed by the combination of EEG based features for the
most investigated conditions but that it could still contribute to a
high classification accuracy in some of the cases.

There are however some caveats to the dominance of EEG fea-
tures. First, the ERP classifier is the only one of the four feature
types which is fundamentally dependent on temporal alignment
to the stimulus onset and therefore not suited for many appli-
cations of continuous classification. While the employed fNIRS
features also use information on the stimulus onset (as they essen-
tially characterize the slope of the signal), only the ERP features
rely on specific oscillatory properties in a range of milliseconds
(compare Figures 5 and 4), which cannot be extracted reliably
without a stimulus locking. Second, concerning the POW classi-
fier, we see in Figure 6 a large difference in alpha power between
VIS and AUD. As both types of trials induce cognitive activity, we
did not expect the AUD trials to exhibit alpha power (i.e., idling
rhythm) nearly at an IDLE level. We cannot completely rule out

that this effect is caused at least in parts by the experimental
design (e.g., because visual stimuli and auditory stimuli differed
in complexity) or subject selection (e.g., all subjects were famil-
iar with similar recording setups and therefore easily relaxed).
Therefore, we need to verify that the discrimination ability of
the POW classifier does not solely depend on differences in alpha
power. For that purpose, we repeated the evaluation of AUD
vs. VIS with different sets of band pass filters, of which some
excluded the alpha band completely. Results are summarized in
Figure 9. We see that as expected, feature sets including the alpha
band performed best. Accuracy dropped by a maximum of 9.4%
relative when removing the alpha band (for the subject dependent
evaluation from 1–40 Hz to 13–40 Hz). This indicates the upper
frequency bands still contain useful discriminating information.

The previous analysis showed that different features con-
tributed to different degrees to the classification result. Therefore,
we were interested in studying which features were stable pre-
dictors of the ground truth labels on a single trial basis. The
successful person-independent classification was already an indi-
cation that such stable, generalizable features exist. To inves-
tigate which features contributed to the detection of different
modalities, we calculated the correlation of each feature with the
ground truth labels for the conditions VIS vs. IDLE and AUD
vs. IDLE.

For the POW features, we ranked the electrode by their high-
est absolute correlation across the whole frequency range for each
subject. To see which features predicted the ground truth well
across all subjects, we averaged those ranks. The resulting aver-
age rankings are presented in the first two columns of Table 6. We
note that for the VIS vs. IDLE condition, electodes at the occip-
ital cortex were most strongly correlated to the ground truth. In
contrast, for the AUD vs. IDLE condition, those electrodes can be
found at the bottom of the ranking. For this condition, the high-
est ranking electrodes were at the central-midline (it was expected
that electrodes above the auditory cortex would not contribute
strongly to the AUD vs. IDLE condition as activity in the auditory
cortex cannot be captured well by EEG). The low SD also indi-
cates that the derived rankings are stable across subjects. We can
therefore conclude that the POW features were generalizable and
neurologically plausible.
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FIGURE 9 | Classification accuracy for different filter boundaries for the POW feature set, evaluated for both subject-dependent (left half) and

subject-independent (right half) classification for different conditions.

Table 6 | Average rankings of electrode positions derived from

correlation of POW and ERP features to ground truth labels.

Rank VIS vs. IDLE AUD vs. IDLE VIS vs. IDLE AUD vs. IDLE

1 Oz (2.5) Pz (2.3) O1 (2.6) Cz (3.0)

2 O2 (2.2) Cz (2.4) O2 (2.9) Fz (1.4)

3 Pz (2.2) Fz (1.7) Oz (3.1) Pz (3.0)

4 TP8 (3.2) TP8 (2.3) TP8 (3.0) TP7 (2.7)

5 TP7 (2.8) TP7 (1.9) Fz (2.2) FT8 (2.7)

6 Fz (3.4) FT7 (3.0) TP7 (2.9) TP8 (2.3)

7 O1 (1.5) O2 (2.8) Pz (3.1) FT7 (2.4)

8 Cz (2.2) FT8 (3.0) Cz (2.3) O1 (0.8)

9 FT8 (3.6) O1 (3.3) FT7 (2.6) Oz (1.6)

10 FT7 (2.4) Oz (2.6) FT8 (3.0) O2 (2.1)

We then ranked the frequency band features by their highest
absolute correlation across the whole electrode set for each subject
and average those ranks across subjects. We observed the highest
average ranks at 9.5 Hz and at 18.5 Hz. Especially for the first peak
in the alpha band, we observed a low SD of 6.2, which indicates
that those features were stable across subjects.

For the ERP features, we repeated this analysis (with time win-
dows in place of frequency bands). The two rightmost columns of
Table 6 show a similar picture as for the POW features regarding
the contribution of individual electrodes: Features from elec-
trodes at the occipital cortex were highly discriminative in the
VIS vs. IDLE condition, features from central-midline elec-
trodes carried most information in the AUD vs. IDLE condition.
Regarding time windows, we observe the best rank for the win-
dow starting at 312 ms, which corresponds well to the expected
P300 component following a stimulus onset. With a SD of 2.9,
this feature was also ranked highly across all subjects.

To investigate the reliability of the derived rankings, we con-
ducted Friedman tests on the rankings of all participants. Those
showed that all investigated rankings (with one exception) yielded
a significant difference in average ranks of the items. The result-
ing p-values are given in Table 7. This indicates that the rankings
actually represent a reliable, person-independent ordering of
features.

Table 7 | Resulting p-values for Friedman tests to investigate whether

the calculated average feature rankings are statistically significant.

Feature Condition Ranking by . . . p-value

ERP AUD vs. IDLE Electrodes < 10−5

ERP AUD vs. IDLE Time windows < 10−10

ERP VIS vs. IDLE Electrodes 0.12

ERP VIS vs. IDLE Time windows < 10−10

POW AUD vs. IDLE Electrodes < 10−3

POW AUD vs. IDLE Frequency bands < 10−10

POW VIS vs. IDLE Electrodes < 10−2

POW VIS vs. IDLE Frequency bands < 10−10

The analysis for fNIRS features differed from the EEG fea-
ture analysis because of the signal characteristics. For example,
the fNIRS channels were spatially very close to each other and
highly correlated. Therefore, we did not look at features from
single fNIRS channels. Instead, we differentiated between the dif-
ferent probes. For the VIS vs. IDLE condition, the channel which
yielded the highest absolute correlation was located above the
visual cortex for 75% of all subjects (averaged across both hBO
and HbR). For the AUD vs. IDLE condition, the channel with the
highest absolute correlation was located above the auditory cor-
tex for 91.6% of all subjects. This indicates that the fNIRS signals
also yielded neurologically plausible features which generalized
well across subjects. When comparing HbO and HbR features, the
HbO features were correlated slightly higher to the ground truth
(19.6% higher maximum correlation) than the HbR features,
which corresponds to their higher classification accuracy.

The classification setups which we investigated up to this
point are all defined on trials which are locked at the onset of
a stimulus. The detection of onsets of perceptual activity is an
important use case for HCI applications: The onset of a percep-
tual activity often marks a natural transition point to react to
a change of user state. On the other hand, there are use cases
where the detection of ongoing perceptual activity is relevant.
To investigate how the implemented classifiers perform on con-
tinuous stimulus presentation, we evaluated classification and
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detection on the three continuous segments (60 s of each AUD,
VIS, MIX) which were recorded in the first block for each sub-
ject. As data is sparse for those segments, we only regard the
subject-independent approach. To extract trials, the data was seg-
mented into windows of a certain length (overlapping by 50%).
We evaluated the impact of the window size on the classifica-
tion accuracy: For window sizes of 1, 2, 4, 8, and 16 s, we end
up with 120, 60, 30, 15, and 8 windows per subject and class,
respectively. Those trials are not aligned to a stimulus onset. We
used the same procedure to extract POW features as for the onset-
locked case. The ERP feature was the basis of the best non-fusion
classifier but is limited to detecting stimulus onsets. Therefore,
we excluded it from the analysis to investigate the performance of
the remaining classifiers. For both feature types based on fNIRS,
we modified the feature extraction to calculate the mean of the
window, normalized by the mean of the already elapsed data. The
other aspects of the classifier were left unchanged.

FIGURE 10 | Accuracy for subject-independent classification of AUD vs.

VIS on continuous data. Results are in dependency of window size.

Figures 10, 11 summarize the results of continuous evaluation.
The results are mostly consistent with our expectations and the
previous results on stimulus-locked data. For all three regarded
classification conditions, we achieve an accuracy of more than
75% for META, i.e., reliable classification does not solely depend
on low-level bottom-up processes at the stimulus onset. Up to
the threshold of 16 s, there was a benefit of using larger windows
for feature calculation. Note that with growing window size, the
number of trials for classification drops, which also has an impact
on the confidence interval for the random baseline (Mueller-Putz
et al., 2008). The upper limit of the 1% confidence interval is
52.4% for a window size of 1 s, 53.4% for 2 s, 54.9% for 4 s, 56.9%
for 8 s, and 59.5% for 16 s. This should be kept in mind when
interpreting the results, especially for larger window sizes. The
EEG feature yields a better classification accuracy than the two
fNIRS-based classifiers in two of the three cases. For the allAUD
vs. nonAUD situation however, the POW classifier does not exceed
the random baseline and only the two fNIRS based classifiers can
achieve satisfactory results. Therefore, we see that when ERP fea-
tures are missing in the continuous case, the fNIRS features can
substantially contribute to classification accuracy in the case of
allAUD vs. nonAUD.

4. DISCUSSION
The results from the previous section indicate that both the
discrimination and detection of modality-specific perceptual pro-
cesses in the brain is feasible both in a subject-dependent as well
as a subject-independent setup with high recognition accuracy.
We see that the fusion of multiple features from different signal
types led to improvement in recognition accuracy significantly.
However, in general fNIRS-based features were outperformed by
features based on the EEG signal. In the future, we will look closer
into other reasons for this gap and potential remedies for it. One
difference between fNIRS and EEG signals is the lack of advanced
artifact removal techniques for fNIRS that have been applied
with some success in other research on fNIRS BCIs (Molavi
and Dumont, 2012). Another difference is that the coverage of
fNIRS optodes was limited mainly to the sensory areas, but our

FIGURE 11 | Accuracy for subject-independent classification of allAUD vs. nonAUD (left) and allVIS vs. nonVIS (right) on continuous data. Results
are in dependency of window size.
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EEG measures may include robust effects generated from other
brain regions, such as the frontal-parietal network. Activities in
these regions may be reflecting higher cognitive processes trig-
gered by the different modalities, other than purely perceptual
ones. It may be worthwhile to extend the fNIRS setup to include
those regions as well. Still, we already saw that fNIRS features
can contribute significantly to certain classification tasks. While
evaluation on stimulus-locked data allows a very controlled eval-
uation process and is supported by the very high accuracy we can
achieve, this condition is not very realistic for most HCI applica-
tions. In many cases, stimuli will continue over longer periods of
time. Features like the ERP feature explicitly model the onset of
a perceptual process but will not provide useful information for
ongoing processes. In future work, we will investigate such con-
tinuous classification on the longer, continuous data segments of
the recorded corpus.

Following the general guidelines of Fairclough (2009), one
limitation in validity of the present study is the fact that there may
be other confounding variables that can explain the differences
in the observed neurological responses to the stimuli of different
modalities. Subjects were following the same task for all types of
stimuli; still, factors like different memory load or increased need
for attention management due to multiple parallel stimuli for
visual trials may contribute to the separability of the classes. We
address this partially by identifying the expected effects, for exam-
ple in Figure 4 comparing fNIRS signals from visual and auditory
cortex. Also the fact that detection of both visual and auditory
processing worked on MIX trials shows that the learned patterns
were not only present in the dedicated data segments but were
to some extend generalizable. Still, we require additional experi-
ments with different tasks and other conditions to reveal whether
it is possible to train a fully generalizable detector and discrimi-
nator for perceptual processes. Finally, we also have to look into a
more granular model with a higher sensitivity than the presented
dichotomic characterization of perceptual workload.

The evaluation was performed in a laboratory setting but with
natural and complex stimulus material. The results indicate that
such a system is robust enough to use it for the improvement an
HCI system in a realistic scenario. We saw that both EEG and
fNIRS contributed to a high classification accuracy; in most cases,
the results for the EEG-based classifiers were more accurate than
for the fNIRS based ones. Whether the additional effort which
is required to apply and evaluate a hybrid BCI (compared to a
BCI with only one signal type) depends on the specific applica-
tion. When only one specific classification condition is relevant
(e.g., to detect processing of visual stimuli), there is always a
single optimal signal type which is sufficient to achieve robust
classification. The benefit of a hybrid system is that it can poten-
tially cover multiple different situations for which no generally
superior signal type exists. Another aspect for the applicability
of the presented system for BCI is the response latency, which
also depends on the choice of employed features. The ERP fea-
tures react very rapidly to but are limited to situations, in which
a stimulus onset is present. Such short response latency (less than
1 s) may be useful when an HCI system needs to immediately
switch communication channels or interrupt communication to
avoid perceptual overload of the user (for example, when the user

unexpectedly engages in a secondary task besides communicat-
ing with the HCI system). In such situations, the limitation to
onsets is also not problematic. On the other hand, if the system
needs to assume that the user is already engaged in a secondary
task when it starts to observe him or her (i.e., to determine the
initial communication channel at the beginning of a session), it
is not sufficient anymore to only respond to stimulus onsets. For
those cases, it may be worthwhile to accept the latency required
by the fNIRS features and also the POW feature for a classification
of continuous perceptual activity.

We conclude that we demonstrated the first passive hybrid
BCI for the discrimination and detection of perceptual activ-
ity. We showed that robust classification is possible both in a
subject-dependent and a subject-independent fashion. While the
EEG features outperformed the fNIRS features for most parts of
the evaluation, the fusion of multiple signals and features was
beneficial and increased the versatility of the BCI.
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