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This research introduces a new method for functional brain imaging via a process of
model inversion. By estimating parameters of a computational model, we are able to track
effective connectivity and mean membrane potential dynamics that cannot be directly
measured using electrophysiological measurements alone. The ability to track the hidden
aspects of neurophysiology will have a profound impact on the way we understand and
treat epilepsy. For example, under the assumption the model captures the key features of
the cortical circuits of interest, the framework will provide insights into seizure initiation
and termination on a patient-specific basis. It will enable investigation into the effect
a particular drug has on specific neural populations and connectivity structures using
minimally invasive measurements. The method is based on approximating brain networks
using an interconnected neural population model. The neural population model is based
on a neural mass model that describes the functional activity of the brain, capturing
the mesoscopic biophysics and anatomical structure. The model is made subject-specific
by estimating the strength of intra-cortical connections within a region and inter-cortical
connections between regions using a novel Kalman filtering method. We demonstrate
through simulation how the framework can be used to track the mechanisms involved in
seizure initiation and termination.

Keywords: functional connectivity, neural mass model, model inversion, Kalman filter, epilepsy, seizures,

parameter estimation, effective connectivity

1. INTRODUCTION
This paper presents a model-based framework for imaging neu-
ral dynamics from electrophysiological data. This paper builds
on a rich history of research in computational neuroscience that
has been increasingly focused on the development of generative
models to understand the link between neural activity and neu-
roimaging data (David et al., 2004; Coombes and Terry, 2012;
Moran et al., 2013), with emphasis on two main areas. The first
area of focus is forward modeling, or the mapping of relevant
neuronal variables to recorded data that facilitates the devel-
opment of theoretical predictions. The second area of focus is
inverse modeling, which is the prediction of states, parameters
and neuronal outputs given measured data (David, 2007). The
new research presented in this manuscript provides a framework
that contributes to solving the inversion problem. A key contri-
bution of this paper is the development of an estimation scheme
that is applicable to many alternate neural architectures that can
be described by a core set of equations, which encapsulates our
knowledge of the biophysics of large-scale neural systems.

Large-scale neural models can combine information from
multiple neuroimaging modalities (fMRI, EEG, MEG, etc.),
allowing a systems approach for data analysis. The behavior of
such models is described by system states, whose dynamics are set

by parameters, which are static variables. The systems approach
of conducting analyses allows one to study all interactions as a
whole. This has advantages over correlation-based science, where
correlations do not necessarily reveal causation in large-scale sys-
tems. A systems approach provides a unified picture of both
local properties and remote interactions, and is considered crit-
ical to form an understanding of many of the brain’s activities
(Freeman, 1975; Deco et al., 2008) including seizure generation
(Wendling et al., 2000; Breakspear et al., 2006), which is the focus
of this study. In the context of this study, the local properties are
described by the connectivity strengths between neural subtypes
within the circuitry of a functional processing unit (cortical area
or cortical column) and the remote interactions are the functional
changes that occur between cortical areas.

The definition of cortical connectivity is multi-faceted and is
informed by structural, functional and, more recently, model-
based experimentation and analysis (Friston, 1994; David et al.,
2004). Despite being multi-faceted, it has been hypothesized that
the key characteristics of connectivity within functional process-
ing units in the neocortex can be represented at a high level by
canonical neural circuits that are repeated throughout the neo-
cortex (Douglas et al., 1989; Douglas and Martin, 2004; Haeusler
et al., 2009). These canonical cortical circuits are able to adapt
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to the specific functional requirements of the brain through tem-
poral and spatial fluctuations in their interrelationships (da Costa
and Martin, 2010). The neural mass model (Jansen and Rit, 1995)
that is used for inferring connectivity in this current study can be
considered a simplified form of a canonical cortical circuit.

For biological systems, structure is usually a good starting
point to study functional interactions (Crick and Koch, 2005).
For the brain, this process usually starts with building a map of
the anatomic pathways (Sporns, 2013; Van Essen et al., 2013).
Often quite separately from the anatomical data, functional rela-
tionships are also analyzed through temporal correlations in neu-
roimaging data, which is recorded from spatially distinct regions
of the brain. For example, PET, fMRI, and EEG data have all been
used to infer connectivity within and between regions of cor-
tex using a variety of quantitative measures (Biswal et al., 1995;
Horwitz et al., 1995; Bokde et al., 2001; Horwitz, 2003). A major
challenge lies in consolidating the anatomical data and the func-
tional data to form a unified causative model. This challenge is
addressed by the framework presented in this paper.

This paper is concerned with the investigation of effective con-
nectivity through causal modeling. In the context of this paper,
effective connectivity is defined as the influence one neural area
has on another (Friston, 1994). It is anticipated that the use of
causal models, which encapsulate our knowledge of the anatom-
ical connectivity and biophysics of neural populations in con-
junction with experimental measurements, will provide a more
complete picture of how neural connectivity mediates function.
The generation of patient-specific models will also be benefi-
cial in a clinical context, providing greater insight into the cause
and progression of neurological disorders, such as epilepsy, and
enabling treatment regimes to be investigated through computer
simulations.

Analysis of mesoscopic neural dynamics through the use of
mean-field models has been validated through several alter-
native approaches. For example, the so-called neural mass
model (Wilson and Cowan, 1972; Da Silva et al., 1974; Freeman,
1987) has been able to describe a large range of neural dynam-
ics such as alpha rhythms (Jansen and Rit, 1995), MEG/EEG
oscillations (David and Friston, 2003) and epileptic activ-
ity (Wendling et al., 2002). Neural mass models can also be
easily extended to define additional population types and larger
cortical regions (Babajani-Feremi and Soltanian-Zadeh, 2010;
Cui et al., 2011; Goodfellow et al., 2011). The aforementioned
results motivate the use of the neural mass model as the basis
of a canonical cortical circuit. Furthermore, neural mass mod-
els offer a reasonable trade-off between biological realism and
parsimony, allowing for practical implementation and subse-
quent inversion. Inversion is the key to using recorded data to
estimate the neural states (membrane dynamics of various neu-
ral population subtypes) and parameters (defining connectivity
strengths). Estimation of system variables provides new infor-
mation about underlying population dynamics and physiological
properties that cannot be directly measured using other neu-
roimaging methods (without destroying the tissue). For instance,
the connectivity strength between neural population subtypes
(i.e., pyramidal, spiny stellate and inhibitory interneurons) have
been implicated in seizure generation and have also been found to

be patient-specific (Wendling et al., 2000; Breakspear et al., 2006;
Blenkinsop et al., 2012).

It has previously been demonstrated that a model-based neu-
rophysiological framework can be used to image parameters
associated with seizure onset, evolution and termination in an
individual epilepsy patient using ECoG data (Freestone et al.,
2013). The framework presented in this manuscript builds on this
with improvements to the estimation algorithm and an expansion
to include multiple brain regions. Numerous other formulations
exist for fitting spatially extended mesoscopic neural models to
data. For instance, dynamic causal modeling (DCM) is a tech-
nique that is often applied to investigate connectivity of neural
areas using generative models (Friston et al., 2003; Kiebel et al.,
2006). DCM applies Bayesian inference to determine the most
probable configuration of model parameters (i.e., neural cou-
pling coefficients) given a window of recorded data. Therefore, the
resulting model is contextualized by the experimentally applied
stimuli or conditions under which data was generated (Daunizeau
et al., 2011). Another approach has been to apply genetic algo-
rithms to search the parameter space of the model for a structure
that is optimal for generating the observed data (Wendling et al.,
2005; Nevado-Holgado et al., 2012). In relation to the current
work, the aforementioned methods of model optimization can
be used to initialize the inversion technique outlined in this
paper.

The inversion method outlined in this paper is based on the
Kalman filter (Kalman, 1960). The model dynamics are assumed
to adhere to a Markov process and estimation quantities (states
and parameters) are approximated as random variables with
Gaussian distributions. For every electrocorticography (ECoG)
measurement, the multivariate state and parameter distribution
is propagated through the neural population model; then Bayes
rule is used to determine the posterior probability distribution of
parameters given measured data. In the case of a linear model,
this method is known as the augmented Kalman filter, which
provides the optimal (minimizing the variance of the estimation
errors) unbiased estimate for states and parameters. Various ver-
sions of the Kalman filter equations for nonlinear models have
been previously applied for model inversion (Voss et al., 2004;
Schiff and Sauer, 2008; Deng et al., 2009; Freestone et al., 2011;
Aram et al., 2013; Liu and Gao, 2013). However, these stud-
ies were based on either simplified field equations or a single
region population model. A key advantage of the Kalman filter-
based estimation algorithm outlined in this paper over other
expectation maximization or genetic algorithm type schemes is
the ability to track states and parameters in real time. Tracking
in real time provides a greater level of temporal accuracy in
the detection of transitions that underly specific neural activity
(such as seizure generation). Furthermore, this paper demon-
strates a flexible predictive framework that can be readily adapted
to alternative forms of the neural population model (that are
based on the same fundamental building blocks) in order to
reflect our most current understanding of the architecture of the
brain.

The organization of this paper is as follows. The first section
outlines the formulation of the computational model of multi-
ple cortical regions and the algorithm for tailoring the model to
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subject-specific data. Next, example simulations and results are
provided that validate the framework for both single and multiple
cortical areas. We then provide an example specific to study-
ing epilepsy, where we show how the framework can be used to
identify a seizure onset site and the mechanism for seizure ini-
tiation and termination. The final section discusses the benefits
of this approach in a wider context of understanding seizures
and developing much needed new therapies as well as the current
limitations of the proposed framework and directions for further
work.

2. MATERIALS AND METHODS
This section discusses the core biophysics of the mass action of
the cortical regions that are incorporated into our mathemati-
cal model along with the algorithm for tailoring the model to
subject-specific data. Together, the mathematical model and the
estimation algorithm form a lens that focuses on the parameters
that govern connectivity and function of neural networks.

2.1. NEURAL POPULATION MODEL
The neural population model that is used for the framework
is based on the neural mass model. This type of neural model
describes the dynamics of the mean membrane potential of a
population of a specific neuron subtype given firing rate inputs.
Populations of this type with varied parameters can be connected
together to form local networks to describe the dynamics of spe-
cific cortical regions, such as a cortical column. Multiple cortical
regions can then be interconnected to form a large-scale net-
work model. Within this section, the building blocks of all neural
populations of our large-scale network model are presented that
describe the action of the synaptic connections (mean firing rate
to mean membrane potential) and the action of the somas (mean
membrane to firing rate). The notation used to derive the neu-
ral population model in the following section is summarized in
Table 1.

Table 1 | Notation for the neural population model.

Notation Interpretation

αmn Connectivity parameter, population m to n

vmn Post-synaptic potential

zmn Derivative of post-synaptic potential

vn Net mean membrane potential for population n

hmn(t) Post-synaptic response kernel

φm Mean firing rate

g( · ) Sigmoidal activation function

u Input from external unmodeled population

τmn Synaptic time constant

ς Standard deviation of firing thresholds

v0 Mean firing threshold

M Total number of populations in the model

N Total number of intra-region connections

J Total number of regions in the model

K Total number of inter-region connection

δ Time step

2.1.1. Single population model
To derive a population model, we begin by defining the mean
membrane potential of a neural population, vn, as the sum of
contributing mean post-synaptic potentials, vmn, where the post-
synaptic and pre-synaptic neural populations are indexed by n
and m, respectively,

vn =
M∑

m = 1

vmn. (1)

Each post-synaptic potential arises from the convolution of the
input firing rate, φm(t), with the post-synaptic response kernel

vmn(t) = αmn
∫ t
−∞ hmn(t − t′)φm(t′) dt′, (2)

where αmn is a lumped connectivity parameter that incorporates
the average synaptic gain, the number of connections and the
average maximum firing rate of the presynaptic populations. All
lumped connectivity parameters are assumed to be unknown, so
must be inferred from data. The post-synaptic response kernels
denoted by hmn(t) describe the profile of the post-synaptic mem-
brane potential of population n that is induced by an infinites-
imally short pulse from the inputs (like an action potential).
The post-synaptic response kernels are parameterized by the time
constant τmn and are given by

hmn(t) = η(t)
t

τmn
exp

(
− t

τmn

)
, (3)

where η(t) is the Heaviside step function. Typically, αmn and
τmn are assumed to be constants (particularly for current-based
synapses) that define the presynaptic population type. For exam-
ple, GABAergic inhibitory interneurons typically induce a higher
amplitude post-synaptic potential with a longer time constant
than glutamatergic excitatory cells. For the model that we are con-
sidering, the index n (post-synaptic) may represent either pyra-
midal (p), excitatory interneuron (spiny stellate) (e) or inhibitory
interneuron (i) populations.

The inputs to the population, φmn, may come from external
regions, u, or from other populations within the model, gmn(vm),
where

φm =
{

um if m indexes external inputs
g(vm) if m indexes internal inputs

. (4)

The various populations within the model are linked via the
activation function, g( · ), that describes a mean firing rate as
a function of the pre-synaptic population’s mean membrane
potential. The activation function exploits a sigmoidal relation-
ship (limited firing rate due to refractory period of the neurons)
between the mean membrane potential and firing rate of each of
the populations. This sigmoidal nonlinearity may take different
forms, but for this study the error function form is used where
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g(vm) = 1√
2πς

∫ vm

−∞
exp

(
− (z − v0)

2

2ς2

)
dz (5)

= 1

2

(
erf

(
vm − v0√

2ς

)
+ 1

)
. (6)

The quantity ς describes the slope of the sigmoid or, equiva-
lently, the variance of firing thresholds of the presynaptic pop-
ulation (assuming a Gaussian distribution of firing thresholds).
The mean firing threshold relative to the mean resting mem-
brane potential is denoted by v0 (v0 = vthresh + vrest). The resting
membrane potential is not usually explicitly defined for forward
models of this type. However, for inverse models, it is important
to understand how the resting membrane potential is included
in the equations. The parameters of the sigmoidal activation
functions, ς and v0, are usually assumed to be constants.

The convolution in Equation 2 can conveniently be written as
two coupled, first-order ordinary differential equations, which is
a second-order state-space model. This gives the system

dvmn

dt
= zmn

dzmn

dt
= αmn

τmn
φmn − 2

τmn
zmn − 1

τ 2
mn

vmn. (7)

In summary, this single neural population model maps from a
mean pre-synaptic firing rate to a post-synaptic potential. The
terms that are usually considered parameters of the model are
the synaptic time constants, τ , the connectivity constants, α,

the mean firing thresholds, v0, and firing threshold variances, ς .
These parameters can be set to describe connections between spe-
cific neural populations, such as pyramidal neurons, spiny stellate
cells and fast and slow inhibitory interneurons.

2.1.2. Multiple populations for a cortical region
Multiple populations in the form of Equation 7 can be config-
ured and interconnected to represent the circuitry of a cortical
region, such as a cortical column. Each synaptic connection
in the model is described by the set of coupled first-order
ODEs of Equation 7; however, the parameters are connection-
specific. Models exist in the literature describing from two to
five different neural types with two to thirteen synaptic con-
nections (4th to 26th order) (Da Silva et al., 1974; Wang
and Knösche, 2013). Contributions in this regard have been
made by David and Friston (2003); Wendling et al. (2002);
Jansen and Rit (1995) and others. An illustration of the
model of a cortical region used in this study is shown in
Figure 1.

The parameters of the neural populations not only define
the population type, but also the behavior the model of the
cortical region exhibits. For example, for a certain parameter
combination, we obtain a model of a cortical region that will
generate alpha-wave type activity; for another set of parameters,
we obtain a different model that will exhibit epileptic behavior.
The parameters used in this study have been determined previ-
ously for similar models (Jansen and Rit, 1995) and are shown
in Table 2. The parameters to be estimated are the synaptic gain
terms, αmn.

FIGURE 1 | Population model of a cortical region. The left hand side
shows a cross section of the cortical laminar, highlighting the stratification
and different population the various layers. A graphical representation of the
population model is presented on the right hand side, showing three
interconnected neural populations, which are inhibitory interneurons
(supragranular layers), excitatory spiny stellate cells (granular layer), and

pyramidal neurons (infraganualar layers). The specific subtype of neural
population is defined by the parameters that describe the post-synaptic
response kernels. The intra-region connectivity are denoted by αmn, where
the subscript denotes a connection from population m to n. An example of
the post-synaptic potentials that are generated at each connection are also
shown.
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Table 2 | Fixed parameter values for the neural population model that

are not estimated.

Parameter Value

ς 3 mV

v0 6 mV

τup, τpe, τpi , τep 10 ms

τip 20 ms

τd 30.3 ms

um 220

σ 2
u 5.74

δ 1 ms

2.1.3. Multiple region model
Coupling of cortical region j to region k is achieved by connect-
ing the output firing rate of the pyramidal population in region
j to the input of the pyramidal population in region k via a delay
kernel. The delay kernel is of the same form as the post-synaptic
response kernel of Equation 3, but maps a firing rate to a delayed
firing rate. The inputs from the delayed firing rates are modeled
for every pyramidal population using the same form of second-
order model defined in Equation 7. All interconnections between
regions were assumed to have the same delay kernel, which was
parameterized by a time constant, τd (Wendling et al., 2000)
(see Table 2). The delayed firing rates form standard inputs to
the pyramidal cells in the adjoining cortical region and induce
post-synaptic potentials via a convolution kernel as described by
Equation 2. However, the connectivity parameter αjk describes the
interconnection gain between regions rather than between pop-
ulations. In this study, we consider four interconnected cortical
regions as shown in Figure 2. The values of the interconnection
gains for forward simulations were tuned to achieve the desired
behavior in the ECoG outputs, while avoiding saturation of neu-
ral populations. Different interconnection gains were used to
either simulate data consistent with alpha rhythms or to achieve
transition to seizure. Further details about the simulations and
parameters used are given in Section 2.3.

2.1.4. Augmented discrete time state-space model
For notational convenience, the subscripts for the synaptic gains,
denoted αmn and αjk, and the post-synaptic potentials, denoted
by vmn in the previous section, will now be numbered sequentially
from 1 to N + K. N is the number of intra-regional connections
and K is the number of inter-regional connections in the multi-
area model.

The state vector is a concatenation of discrete time values of the
post-synaptic membrane potentials, the derivatives of the poten-
tials, the delayed firing rates (inter-region) and their derivatives
by

x �
[

v1 z1 . . . vN zN vφ,1 zφ,1 . . . vφ,K zφ,K
]�

,

where the large-scale model has N intra-region connections and
K inter-region connections. The subscript φ indicates that the
post-synaptic potential/derivative is associated with the delayed
firing rate from a pyramidal population of a neighboring region.

FIGURE 2 | Graphical representation of the four region population

model with differential ECoG measurements. Each region is
interconnected to its immediate neighbor. The inter-region connectivity
strength is governed by the parameter αjk , where j and k ∈ {1, 2, 3, 4} and
j �= k. The differential montage provides a more realistic measurement
model then what is typically used for model inversion.

The parameters to be estimated can also be concatenated into
a vector by

θ �
[
αl,1 . . . αl,N αd,1 . . . αd,K

]�
,

where l denotes local connections within regions (including from
inputs, u), d denotes distant connections between regions. For a
four-region model, assuming the number of connections within
each region is equal, then the number of connections within
each region is equal to N ÷ 4. In this formulation of the model
the parameter vector is written in differential form, with trivial
dynamics as

θ̇ = 0. (8)

The differential form of the parameter vector facilitates augment-
ing the parameters to the state vector for estimation purposes.

The augmented state space vector is created by

ξ �
[

x θ
]�

, (9)
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which has dimensionality ξ ∈ R
nξ where nξ = 3(N + K). The

augmented large-scale state space model is given by

ξ̇ = Aξ + Bξ ◦ g (Cξ) + D (u) ξ , (10)

where ◦ denotes element-wise multiplication. The matrices A, B,
C, and D(u) are defined in Appendix 5.2. The large-scale model
can be written in a compact form that is useful for deriving the
estimation algorithm by

ξ̇ = F (ξ , u) . (11)

It is necessary to discretize the model for estimation purposes.
The Euler method was used for discretizing the model and is pre-
sented in Appendix 5.1. For the Bayesian inference scheme, it is
also necessary to model uncertainty in our model by an additive
noise term. With the inclusion of the additive noise term, wt , the
discrete time augmented state space model is denoted by

ξ t + 1 = Aδξ t + Bδξ t ◦ g
(

Cξ t

)+ Dδ (ut) ξ t + wt (12)

and can be written in compact form by

ξ t + 1 = Fδ

(
ξ t, ut

)+ wt . (13)

The model uncertainty is defined by a zero mean, temporally
white Gaussian with known covariance matrix Q. In forward
models, wt is used as a driving term to simulate unknown input
to the system from afferent connections or from other cortical
regions. However, for model inversion purposes, this additional
term also facilitates estimation and tracking of parameters via
Kalman filtering or other Bayesian inference schemes. For the
Kalman filter, the covariance of wt quantifies the error in the pre-
dictions through the model. If we believed our model is accurate,
then we would set all of the elements of Q to a small value. On
the other hand, a high degree of model-to-brain mismatch can be
quantified by setting the elements of Q to larger values.

2.1.5. Model of ECoG measurements
It is well accepted that the field potentials that are measured with
ECoG are predominately generated by synaptic currents arising
from inputs to the pyramidal neurons (Nunez and Srinivasan,
2006). In our model, these currents are linearly proportional
to the mean membrane potential of the pyramidal population.
Therefore, the ECoG signal is modeled as the mean membrane
potential of the pyramidal population, which is the sum of the
incoming post-synaptic membrane potentials.

For the multi-region neural population the ECoG measure-
ment is taken to be the difference between neighboring regions.
This provides a differential montage that is compatible with
experimental data. Typically, the generators of ECoG signals are
modeled by the individual mean membrane potentials of the
pyramidal populations, effectively ignoring the differential nature
of actual ECoG recordings. In this paper, we demonstrate that
parameters can be accurately estimating when using the more
realistic measurement model.

The measurement model that relates the ECoG measurements
to the augmented state vector, ξ t , is given by

yt = Hξ t + vt, (14)

where vt ∼ N (0, R) is a zero mean, spatially and temporally
white Gaussian noise process with a standard deviation of 1 mV,
that simulates measurement errors. For model inversion pur-
poses, the variance of vt quantifies the confidence we have in the
measurements. The matrix H defines a summation of the mem-
brane potentials (corresponding to pyramidal populations) that
contribute to each ECoG channel along with the differential mon-
taging scheme. The number of channels used in this case was
equal to the number of regions (four), as seen in Figure 2.

2.2. A KALMAN FILTER FOR THE POPULATION MODEL
The aim of the Kalman filter is to estimate the most likely

sequences of states, ξ̂
+
t , and the associated error covariances, P̂+

t ,
given (uncertain) knowledge of the biophysics and anatomy of
the brain regions of interest combined with the noisy ECoG mea-
surements, yt . The optimal state estimates can be formally stated
using the expectations

ξ̂
+
t = E

[
ξ t |y1, y2, . . . , yt

]
(15)

P̂+
t = E

[
(ξ t − ξ̂

+
t )(ξ t − ξ̂

+
t )�

]
, (16)

which are known as the a posteriori state estimate and state esti-
mate covariance, respectively. The a posteriori state estimate is
computed by correcting the a priori state estimate, which is a
prediction though our model and defined as

ξ̂
−
t = E

[
ξ t |y1, y2, . . . , yt − 1

]
, (17)

using a weighted difference between a prediction of the observa-
tions and the actual noisy measurements. The a posteriori state
estimate is calculated by updating the prediction using measured
data by

ξ̂
+
t = ξ̂

−
t + Kt

(
yt − Hξ̂

−
t

)
︸ ︷︷ ︸

ECoG prediction error

. (18)

The weighting to correct the a priori augmented state estimate,
Kt , is known as the Kalman gain (Kalman, 1960). The Kalman
gain is calculated using the available information regarding the
confidence in a prediction of the augmented states through the
model and the observation model that includes noise by

Kt = P̂−
t H� (HP̂−

t H� + R
)−1

, (19)

where

P̂−
t = E

[(
ξ t − ξ̂

−
t

) (
ξ t − ξ̂

−
t

)�]
(20)
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is the a priori state estimate error covariance, R is the observation
noise covariance, and H is the observation matrix. For a linear
observation function, the a posteriori covariance is then updated
by using the Kalman gain to provide the correction

P̂+
t = (I − KtH) P̂−

t . (21)

Practically, the actual state is not known so the Kalman filter must

be initialized with the best guess for ξ̂
+
0 and P̂+

0 , which provides
the a posteriori state estimate and state estimate covariance for
time t = 0. The a priori state estimate for time t = 1 can then be
computed by propagating the initial guess through the model and
taking the expectation,

ξ̂
−
t = E

[
Fδ

(
ξ̂

+
t − 1, ut − 1

)]
(22)

= E

[
Aδ ξ̂

+
t − 1 + Bδ ξ̂

+
t − 1 ◦ g

(
Cξ̂

+
t − 1

)
+ Dδ (ut − 1) ξ̂

+
t − 1

]
(23)

= Aδ ξ̂
+
t − 1 + E

[
Bδ ξ̂

+
t − 1 ◦ g

(
Cξ̂

+
t − 1

)]
+ Dδ (ut − 1) ξ̂

+
t − 1(24)

Generally, for nonlinear systems, the solution to this expectation
is not known. Therefore, approximations are often used, such as
the extended and unscented Kalman filters, respectively.

We approximate the expectation by

E

[
Bδ ξ̂

+
t − 1 ◦ g

(
Cξ̂

+
t − 1

)]
≈ Bδ ξ̂

+
t − 1 ◦ E

[
g
(

Cξ̂
+
t − 1

)]
, (25)

where the accuracy of the approximation depends on the width of
the distributions for the parameters, Bξ+

t − 1. Since we are assum-
ing the parameters are unknown with the possibility of slow
changes, a small amount of uncertainty is added. For known
parameters, Equation 25 would be exact. Therefore, the accuracy
of the approximation improves as parameter estimates converge
toward their actual values.

In an effort to improve state and parameter estimation accu-
racy, a new innovation in this study is an analytic solution to the
expectation of the mean membrane potential, which is modeled
as a Gaussian, transformed by the sigmoid. To show the solution,
we first point out that

γ jξ̂
+
t − 1 = v̂t,j (26)

corresponds to the total pre-synaptic mean membrane poten-
tial of the jth neural population, where γ j is a row vector
from the adjacency matrix, C, which is described in detail in
Appendix 5.2. Also, the variance of the pre-synaptic mean mem-
brane potential is

γ jP̂
+
t − 1γ

�
j = σ̂ 2

t,j. (27)

The analytic solution for the expectation of a Gaussian distributed
random variable (total membrane potential of the respective pop-
ulation) transformed by the sigmoid error function, g( · ), is
given by

E

[
g
(
γ jξ̂

+
t − 1

)]
= 1

2

⎛
⎜⎜⎝erf

⎛
⎜⎜⎝ γ jξ̂

+
t − 1 − v0√

2
(
ς2 + γ jP̂

+
t − 1γ

�
j

)
⎞
⎟⎟⎠+ 1

⎞
⎟⎟⎠.(28)

The derivation of this new result is shown in Appendix 5.3.
The a-priori covariance is approximated using the unscented

transform, which approximates the statistics of a multivariate
Gaussian that undergoes a nonlinear transformation (Julier and
Uhlmann, 1997). The approximation is given by

P̂−
t ≈

2nx∑
i = 0

Wi

(
f
(
X i

t − 1, u
)

− ξ̂
−
t

) (
f
(
X i

t − 1, u
)

− ξ̂
−
t

)�
,

(29)

where X i
t − 1 is a matrix of sigma vectors, which are carefully

chosen samples from the distribution of x̂+
t − 1, and Wi are vec-

tors of weights associated with the transform. For completeness,
the method of computing the sigma vectors and the weights is
provided in Appendix 5.4.

It is likely that the parameters and states described by a cortical
circuit will be subject to identifiable physiological constraints that
should be included in an inversion problem in order to exploit
all available information. There are various ways to constrain
the parameter space by truncating the distribution of the prior
(Simon, 2006). In this study, a computationally simple method
known as “clipping” (Kandepu et al., 2008) was used to con-
strain the synaptic gains. Upper and lower bounds on synaptic
gain estimates were enforced during the calculation of the poste-
rior distribution by imposing limits on the analytic calculation
of the mean and on the sample space of the unscented trans-
form (used to approximate the covariance). The bounds were set
larger than proposed ranges for the intra-regional parameters of
a multi-area neural mass model, determined by Babajani-Feremi
and Soltanian-Zadeh (2010). The bounds for the constraints are
shown in Table 3.

2.3. SIMULATIONS FOR VALIDATION
In order to test the performance capabilities of the model-based
framework, it is necessary to use data where the actual parameter
values are known. While it is impossible to accurately measure
parameter values in an experiment, it is possible to know the
actual values when using data that is generated in a forward
simulation. Therefore, artificial data was used to test the estima-
tion performance. This type of test does not guarantee that the
method will work with clinical recordings, but provides a proof
of principal based on the assumption that our neural population
model provides a reasonable representation of cortical dynamics.
Considering the wide range of phenomena that the population
model has been able to describe and the wide acceptance in the
literature, this assumption is a reasonable starting point.

In order to test the robustness of the estimation algorithm, a
Monte Carlo simulation was performed by testing the estimation
algorithm with 50 realizations of synthetic data, each with a differ-
ent unknown input. For each of the realizations, the parameters
were set such that the model generated activity with a dominate
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spectral peak at around 10 Hz (alpha activity). The parameter val-
ues are shown in Table 4. The accuracy of parameters estimates
(connectivity gains) are measured in terms of percentage bias and
were taken as the absolute difference between the estimated and
true values at the end of each simulation. Simulations were run
for 60 s for the single-region model and 100 s for the four-region
model, as the parameter estimates were observed to converge
well within this time. For state tracking, only the results of the
post-synaptic potentials are shown, although the derivatives of
the post-synaptic potentials were also tracked. State accuracy was
measured by the root mean squared (RMS) error over 1 s of data,
since the states (and their estimates) are dynamic. The RMS error
was measured from the final second of the simulation, when
parameter estimates were assumed to be constant. Results are also
presented for a single realization for both the single and four
region models (normal and epileptiform) in order to illustrate the
convergence properties over time of the parameter estimates. The
parameters used to simulate the epileptic-type behavior seen in
the simulated seizure transition are given in Table 5. The bounds
that were used to constrain the parameter estimates are shown in
Table 3.

3. RESULTS
3.1. COMPARISON OF ANALYTIC MEAN AND UNSCENTED

TRANSFORM
The performance of the modified Kalman filter and the unscented
Kalman filter were compared in order to quantify the increase
in estimation performance from using the analytic mean. Both
methods approximated the covariance of the joint distribution
using the unscented transform. Since the mean and covari-
ance cannot be considered separately when the distribution is
propagated through the neural population model, the Kalman
filter that uses the analytic mean is really an approximation of
a Gaussian distribution. However, the difference between the
standard UKF and this novel application of the Kalman fil-
ter, which is tailored to the neural population model, is that

Table 3 | Parameter constraints used in the clipping method of the

estimation algorithm.

Parameter Lower bound Upper bound

αup 0 300

αep, αpi , αpe 0 20, 000

αip −40, 000 0

αjk , αkj 0 5000

Table 4 | Connectivity parameters to simulate an alpha rhythm in the

multi-region population model.

Parameter Value Parameter Value

αup 3.2 α21, α41 76

αep 1755 α12, α32 63

αpi 548.4 α23, α43 44

αip −3712.5 α14, α34 70

αpe 2197

the new approach based on the analytic mean has the poten-
tial to improve state and parameter estimation for this particular
application.

Tables 6, 7 show the mean estimation bias for intra-
connectivity gains and post-synaptic potentials (PSPs) of a single
cortical region. Table 6 demonstrates that the analytic mean
approach is approximately twice as accurate as the UKF for state
tracking of vup, vpi and vip and has equal accuracy with the UKF
for vep and vpe. This is consistent with the parameter estimates in
Table 7, which shows that the analytic mean method gave two to
three times improved accuracy over the UKF for αup, αpi and αip

(and has the same accuracy for αep and αpe). Figure 3 shows the
results for the entire Monte Carlo simulation and again demon-
strates that the Kalman filter using an analytic mean outperforms
the UKF for the single region model. Figures 3A,B show that the
intra-connectivity gain estimation is within 60% for all parame-
ters for the UKF and less than 25% for the analytic mean method.

Table 5 | Connectivity parameters used to simulate epileptic behavior

in the multi-region population model.

Region 1 Regions 2, 3, 4 Interconnectivity

αup 8.1 αup 3.2 α21, α41 1.6

αep 4387 αep 1755 α12, α32 162.5

αpi 1370.9 αpi 548.4 α23, α43 162.5

αip −3712.5 αip −3712.5 α14, α34 162.5

αpe 5483.7 αpe 2197

Table 6 | Mean bias (over 50 simulations) of the post-synaptic

potential estimates for a single region model of alpha rhythms, with

comparison between the UKF and the new modified Kalman filter.

Post-synaptic potential RMS Bias (mV)

Unscented transform Analytic mean

vup 0.57 0.32

vep 0.26 0.24

vpi 0.47 0.16

vip 0.58 0.31

vpe 0.30 0.29

Table 7 | Mean bias (over 50 simulations) of the connectivity gain

estimates for a single region model of alpha-type rhythms, with

comparison between the UKF and the new modified Kalman filter.

Connectivity gain Bias (%)

Unscented transform Analytic mean

αup 7.33 3.45

αep 1.07 1.05

αpi 13.29 4.01

αip 24.01 7.69

αpe 0.73 0.58
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FIGURE 3 | Comparison of the estimation results from the modified

Kalman filter with the unscented Kalman filter from the Monte-Carlo

simulation (50 realizations). (A) The bias for parameter estimation as a
percentage of the true value for the connectivity gain using the UKF. (B)

The bias for parameter estimation as a percentage of the true value for the
connectivity gain using the analytic mean. (C) RMS error for state tracking
of the post synaptic potentials using the UKF. (D) RMS error for state
tracking of the post synaptic potentials using the analytic mean. The center
line of the box plots shows the median error and the box covers are the
25th to 75th percentiles. The whiskers cover the entire range of errors that
are not considered outliers, which are shown by the dots. The outliers are
determined to be outside q1 − 1.5(q3 − q1) to q3 + 1.5(q3 − q1) where q1

and q3 denote the 25th and 75th percentiles.

Figures 3C,D show that the bias for tracking of PSPs is consis-
tently less than 1.4 mV for the UKF and less than 0.7 mV for the
analytic mean approach. On the whole, these results demonstrate
the value of the novel application of the modified Kalman filter
for the neural population model.

3.2. SINGLE REGION MODEL
Figure 4 shows an example of state tracking and parameter esti-
mation for a single cortical region. The plots show that the
algorithm was able to reliably track all postsynaptic potentials
and estimate all connectivity gains in the region. This remarkable
result was achieved using only the noisy ECoG signal and knowl-
edge of the structure of the cortical circuit. Figure 4 also shows
that the standard deviation of the estimated parameters also con-
verged, which demonstrates the filter was performing as expected.
The standard deviation of the estimate for αip remained larger
than the estimates for the other connectivity gains, as it had the
largest bounds representing greater uncertainty.

Figures 3B,D show the results for parameter estimation and
state tracking using the Kalman filter with the analytic mean
for a Monte Carlo simulation with 50 realizations. Both fig-
ures demonstrate good accordance for estimation results to the
actual states and parameters, with the possible exception of the

FIGURE 4 | Estimation results showing convergence of parameters in

the single region model. 30 s of ECoG data simulating an alpha rhythm
from a single region model was used. Each panel shows the PSP (upper)
and connectivity gain (lower) estimates. The actual states are shown in red
and the estimated values are shown in black. The gray shaded regions
show the estimated standard deviation estimates of the connectivity gains.
The scale in the lower left of each subpanel is distinct for the PSP (LHS) and
connectivity gain (RHS) (A) PSP and connectivity gain for spiny stellate to
pyramidal connection. (B) PSP and connectivity gain for pyramidal to
inhibitory interneuron connection. (C) PSP and connectivity gain for
pyramidal to spiny stellate connection. (D) PSP and connectivity gain for
inhibitory interneuron to pyramidal connection. (E) PSP and connectivity
gain for external input to pyramidal connection.

inhibitory-to-pyramidal connectivity gain estimate (αip) when
using the standard unscented Kalman filter.

From Figure 3D and Table 6 it can be seen that the bias of
the state (PSP) tracking was consistently less than 0.7 mV and
the mean RMS bias was less than 0.4 mV for all the poten-
tials when using the modified filter. The amplitude of the PSPs
was on the order of 10–30 mV, thus an average bias of less
than 0.4 mV represents satisfactory performance. The tracking
of post-synaptic potential induced from the input, vup, was the
worst performer. This is to be expected since it is linked to the
connection from the stochastic input, u(t), and the pyramidal
population. Figure 3B and Table 7 show that the mean estimation
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FIGURE 5 | Post-synaptic potential and connectivity gain estimation

results for the four region model showing parameter convergence.

ECoG data was obtained over a 50 s simulation using the four region model
to generate alpha-type rhythms. The filter output for PSP tracking is over a
short time segment and the connectivity gain estimation is for the entire
simulation. The actual states are shown in red and the filter output is
shown in black. The gray bar around the plot of the connectivity gain
estimates shows the standard deviation of the estimate. (A) PSP and
interconnectivity gains from region one to two (upper) and four (lower). (B)

PSP and interconnectivity gains from region two to one (upper) and three
(lower). (C) PSP and interconnectivity gains from region four to one (upper)
and four to three (lower). (D) PSP and interconnectivity gains from region
three to four (upper) and three to two (lower).

bias for all of the connectivity coefficients (slow states) was less
than 22% with a mean of less than than 8%. It is anticipated that
this level of accuracy in state estimation will provide a strong
basis for a classification algorithm that distinguishes between

FIGURE 6 | Post-synaptic potential estimation results in the four

region model from a Monte-Carlo simulation. Each subplot shows the
RMS bias for state tracking of a PSP associated with a specific synapse
over 50 simulations. (A) RMS bias for vup. (B) RMS bias for vpi . (C) RMS
bias for vpe. (D) RMS bias for vjk . (E) RMS bias for vep. (F) RMS bias for vip.
(G) RMS bias for vkj . ECoG data was obtained using the four-region model
generating alpha-type rhythms, with different stochastic input for every
simulation. For every subplot, the centerline of the boxplots are the median
and the edges are the 25th and 75th percentiles. Outliers are determined
to be outside q1 − 1.5(q3 − q1) to q3 + 1.5(q3 − q1) where q1 and q3

denote the 25th and 75th percentiles.

healthy and abnormal oscillations (such as observed during
seizures).

3.3. FOUR REGION MODEL
Figure 5 shows an example estimation result for the four region
model. The four region model has four times as many measure-
ments that are inputs to the filter, as there are additional ECoG
voltage signals (one per region). However, the dimensionality of
the system is more than four times larger than the single column,
as each new column introduces an equal number of intra-regional
connections as well as two inter-regional connections with its
neighbors. In Figure 5, only the inter-regional connections are
shown, although all of the PSPs and connectivity gains were esti-
mated. The results that are presented in Figure 5 demonstrate that
the estimation method was capable of scaling up from a single
region model to a larger model of coupled regions, while main-
taining the ability to simultaneously estimate all the connectivity
gains and track the PSPs associated with every synapse. The ability
to scale up to a larger area is crucial in order to apply estimation
to patient-specific models of epilepsy.

Figures 6, 7 show the estimation bias over 50 simulations for
the connectivity gains and PSP tracking, respectively. Each simu-
lation was run for 100 s (as in Figure 5) with a different randomly
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FIGURE 7 | Connectivity estimation results in the four region model

from a Monte-Carlo simulation. Each subplot shows the estimation bias
as a percentage of the true value for the connectivity gain for every synapse
over 50 simulations. (A) Bias for αup . (B) Bias for αpi . (C) Bias for αpe. (D)

Bias for αjk . (E) Bias for αep. (F) Bias for αip . (G) Bias for αkj . ECoG data was
obtained using the four-region model generating alpha-type rhythms, with
different stochastic input for every simulation. For every subplot, the
centerline of the boxplots are the median and the edges are the 25th and
75th percentile. Outliers are determined to be outside q1 − 1.5(q3 − q1) to
q3 + 1.5(q3 − q1) where q1 and q3 denote the 25th and 75th percentiles.

generated sequence for u(t) as external input. Tables 8, 9 summa-
rize the mean (over the 50 simulations) values of the estimation
biases for both fast and slow states. Figure 6 and Table 8 show that
the RMS bias for PSP tracking was consistently less than 1.5 mV
and the mean RMS bias was less than 1 mV for all connections.
The amplitude of the PSP signals was on the order of 10–30 mV
and the variance of noise added to the ECoG voltages was 1 mV.
Therefore, the bias for PSP tracking represents a high level of
accuracy. As was seen for the single region model, the tracking
performance was less accurate for vup due to the stochastic input
that generates this PSP.

Figure 7 and Table 9 show that the estimation bias for the con-
nectivity gains was less than 40% and the mean bias was less than
10%, except for αip and αjk which were less than 15%. The param-
eter estimation accuracy for the coupled model compared with
the single region model was comparable in terms of the mean
value for all connectivity gains. Over the entire Monte Carlo sim-
ulation, the estimation performance for αep, αpi and αpe were
similar to the single region model. The decrease in performance
is most evident for αip (from within 20% to within 40%). This is
consistent with the results from the single region model where αip

was the least accurate of the estimated gains. The estimation per-
formance for αjk and αkj cannot be compared to the single region
model. However, the estimation accuracy of the interconnectivity
gains was worse than the intra-region gains (apart from αip). It

Table 8 | Mean RMS estimation bias (over 50 realizations in mV) for

post-synaptic potential tracking in the multi-region model.

R1 R2 R3 R4

vup 0.72 0.71 0.91 0.71

vep 0.51 0.61 0.74 0.57

vpi 0.78 0.88 0.95 0.84

vip 0.63 0.74 0.74 0.62

vpe 0.26 0.26 0.32 0.24

vjk 0.14 0.13 0.11 0.07

vkj 0.19 0.15 0.12 0.2

Table 9 | Mean bias (over 50 realizations in %) for connectivity

parameter estimates in the multi-region model.

R1 R2 R3 R4

αup 6.11 3.6 7.32 6.15

αep 1.05 1.24 1.35 0.63

αpi 6.87 4.01 6.68 4.91

αip 12.21 7.62 13.02 9.14

αpe 1.94 2.16 2.06 2.58

αjk 7.76 8.28 12.92 8.35

αkj 4.48 4.81 8.01 4.94

is difficult to pinpoint sources of error for this parameter, as all
of the estimated states are highly interactive with each other. A
potential source of the decreased accuracy for αjk and αkj (as well
as αup) is that their values are an order of magnitude smaller than
the other estimated connectivity gains, which can lead to numeri-
cal problems for the Kalman filter equations. On the whole, the
consequences of scaling up the model from a single region to
four coupled regions has not resulted in major loss of estimation
accuracy.

3.4. SIMULATION OF AN EPILEPTIC SEIZURE
Figure 8 shows a simulated ECoG time series with transitions
from a background rhythm to seizure-like oscillations and back.
The transitions were achieved in the forward simulation by ramp-
ing the amplitude of the excitatory gains of one cortical region
(region 1 in Figure 8) and then decreasing them back to their
usual values. The values used to generate the seizure-type behav-
ior are shown in Table 5. In order to ensure that the seizure-like
oscillations would spread from one region to the neighboring
regions, the interconnectivity between the first area (where the
seizure was initiated) to its neighbors was increased from the pre-
vious example over the entire time course of the simulation, while
the interconnectivity gains from all other regions back to the first
region were decreased (as shown in Table 5).

Figure 9 shows the estimation results of the connectivity
gains for each cortical area during the simulated seizure. In
order to track parameter changes (compared with the previ-
ous estimation when parameters were assumed to be static),
additional uncertainty was added to the estimate error covari-
ance in the Kalman filter (see Appendix 5.4. ). The addi-
tional uncertainty was required to inflate the estimation error
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FIGURE 8 | Simulation of an epileptiform transition. ECoG signals were
obtained using a 100 s forward simulation and adjusting the connectivity
gains from alpha to seizure rhythms and vice versa (see Tables 4, 5). The
simulation output shows the epileptiform activity rapidly spreading from
Region 1 (where the pathology was simulated), to the rest of the network.
The figure also shows a graphical representation of the model of the
differential measurement function. The blue and red sub-panels show
example alpha and seizure-type rhythms, respectively.

covariance to capture unmodeled transitions in parameter val-
ues. It is clear that the method has successfully identified the
transitions in the cortical region that led to the seizure gen-
eration, as the filter tracked the increase in these gains for
region 1, while accurately estimating the corresponding con-
nectivity gains for the other cortical regions that remained
constant.

It can be seen from Figure 9A that the estimation accuracy
for αup was lower than the other connectivity gains due to the
stochastic input. The estimated interconnectivity gains that were
associated with inputs to region 1 (the epileptic region), α21 and
α41, also do not quite converge (Figures 9F,G) the actual val-
ues. This could be due to the much smaller magnitude of these
gains compared with the corresponding interconnectivity gains

FIGURE 9 | Results from tracking pathological changes in the

connectivity gains that lead to epileptiform activity. In each subplot, the
red line shows the actual values. (A–G) Show the estimation results from
Region 1, where the internal excitatory connectivity gains were transiently
increased to induce the epileptiform discharge. The mean is shown by the
black line and the gray shaded area shows the standard deviation of the
estimate. (H–N) Show the estimates from the non-pathological regions (no
change in parameters from baseline), where the solid lines show the mean
and shaded regions show the standard deviation of the parameters.

in the other regions. From Figure 9D, it can also be noted that
the estimation accuracy of inhibitory to pyramidal connectivity,
αip, did not converge to the actual value in first part of the sim-
ulation (alpha rhythm), which was also consistent with previous
results. However, the estimates of αip converged to actual values
during the seizure and had a lower estimation standard deviation,
which can be attributed to the higher signal-to-noise ratio during
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larger amplitude oscillations. If this method of estimation can be
translated for use on real data, it has the potential to provide valu-
able insight into the cause and spread of seizures and enable more
informed treatment measures for epilepsy patients.

4. DISCUSSION
This paper presented a framework for model inversion that facil-
itates estimation and imaging of the physiological properties of
the brain using electrocorticography (ECoG) data , under the
assumption that the model captures the key features of the corti-
cal circuits of interest. Tracking of the mean membrane potentials
of the various neural populations and connectivity parameters
(within and between cortical regions) may provide a clear pic-
ture of the causal relationships between cortical dynamics and
seizures. The link between physiological parameters and data will
undoubtedly improve detection and treatment outcomes across a
range of pathologies.

We have demonstrated that is possible to reliably track the
post-synaptic potentials and estimate the connectivity parame-
ters of a large-scale neural population model. This demonstration
highlights the power of combining the prior information we have
about neural dynamics and cortical structure (that is encoded in
the computational model) to estimate the parameters of interest.
For the single region case, the average prediction bias for connec-
tivity parameters is less than 8% and the average RMS error in
the mean post-synaptic potential estimates within the local cir-
cuit was less than 0.4 mV (the peak to peak potential of a typical
post-synaptic potential was approximately 20 mV). We demon-
strated that the framework can be scaled up to a larger-scale
model (of four cortical regions) with more realistic measure-
ments without a major decrease in estimation accuracy. The
average estimation error remained less than 10% except for three
parameters (errors in αip, αjk, and αkj were less than 15%). The
tracking of post-synaptic potentials in the four-region model had
mean RMS error of less than 1 mV. Importantly, we demonstrated
the ability to track slow changes in the connectivity parame-
ters, that led to transitions to and from seizures. Traditionally,
functional neuroimaging methods have been very successful, but
limited to determining where and when seizures occur. This new
method can be used with ECoG data to also determine the mecha-
nisms. This knowledge will provide opportunities to develop new
therapies.

Traditionally, amplitude, frequency and phase correlations in
neuroimaging data have been used as features to study connectiv-
ity. While these techniques imply a causal relationship, they can be
misleading. For instance, correlations that arise between multiple
microelectrode neural recordings could be the result of neurons
independently responding to a common stimulus or could be
caused by synaptic coupling between neural populations (Friston,
1994). Other possibilities that need to be taken into account
are neural populations receiving a common modulatory input
from another unobserved region of the brain, or indirect cou-
pling between neural populations where connectivity is affected
via multiple regions (Friston, 1994). Questions about the sources
of correlation in neural recordings are difficult to disambiguate
without resorting to more invasive methods of measurement. On
the other hand, computational models can directly infer cortical

connectivity patterns and neural dynamics from data, providing
the probable cause of empirical observations. The degree to which
such causal relationships correspond to the true state of the cortex
is limited by the model uncertainty, just as correlations iden-
tified using other types of neuroimaging are limited by spatial
and/or temporal resolution constraints. However, model uncer-
tainty can be quantified, which is a highly useful property for
many classification applications.

Under a Gaussian assumption, the Kalman filter provides esti-
mates of the probability distributions of the states and parameters
of the population model, which is updated as new measurements
become available. If the Gaussian assumption holds, the Kalman
filter provides the minimum variance estimate of the states and
parameters (Simon, 2006). However, the nonlinearities in the
model lead to non-Gaussian states. Nevertheless, the Gaussian
approximation leads to good estimation results, as demonstrated
by the Monte Carlo simulations. However, these results do not
guarantee that the state and parameter estimates will not eventu-
ally diverge from the actual values, given a measurement times
series of a longer duration. This is due to the approximations
of the unscented transform. Possible improvements in the esti-
mation results could come from using sequential Monte Carlo
(SMC) filtering methods, when the Gaussian assumption can be
relaxed. However, SMC methods impose a much larger com-
putation burden that may make them prohibitive for imaging
large-scale neural systems.

The derivation of the analytic a-priori (prediction through the
model) state and parameter estimates provided in this paper gives
an exact solution for the expected value for a Gaussian trans-
formed by a sigmoid, regardless of the shape of the resultant
distribution. This improves on the the unscented or extended
Kalman filters, which have previously been used in a similar con-
text (Voss et al., 2004; Schiff and Sauer, 2008; Liu and Gao, 2013).
The Gaussian approximation of the uncertainty in the state and
parameter estimates that are predicted by the model is maintained
in our framework using the unscented transform.

The implementation of the unscented transform with large
covariance matrices is a well established limitation of the filter
(Wan and Van Der Merwe, 2000; Simon, 2006; Särkkä, 2013).
While scaling up the size of the model did not significantly
increase the estimation bias in this case, it does exponentially
increase the computation time to the point where it becomes
impractical for real-time applications. For increasing numbers
of variables to be estimated, the covariance matrix eventually
becomes so large that the use of the unscented transform becomes
computationally infeasible. The extended Kalman filter is one
possible alternative for approximating the covariance, but esti-
mation accuracy is compromised (for the sigmoid nonlinearity).
A possible direction of future research is improved methods of
covariance estimation.

A probabilistic (Bayesian) approach is also used in the dynamic
causal modeling (DCM) framework, which utilizes an expecta-
tion maximization algorithm. However, in the DCM framework,
individual distributions of states and parameters are not esti-
mated, where uncertainty is placed over the full model including
the measurement function. DCM fits a range of candidate models
with various inter-region connectivity structures, and then selects
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the most appropriate candidate using an information theoretic
criterion (Daunizeau et al., 2009). DCM has been applied across
a range of data from fMRI (David et al., 2008), ECoG time series
(David, 2007) and EEG spectral response (Moran et al., 2008), as
well as different phenomena such as seizure prediction (Aarabi
and He, 2013) and auditory habituation (Wang and Knösche,
2013). A possible advantage of the Kalman (and sequential) fil-
tering approaches over the DCM framework and other similar
methods (such as genetic algorithms) is the ability to track slowly
changing parameters in real time, which is likely to be particu-
larly important when investigating transitions observed in data,
such as epileptic seizures.

The algorithm presented in this paper utilized known con-
straints of physiological variables. Enforcing constraints on states
and parameters greatly improved the convergence properties of
the filter. Without any bounds applied to the distributions of
parameter estimates, the results typically did not converge to a
steady value within the simulation time-frame. There are a num-
ber of alternative and more theoretically rigorous approaches for
constraining the parameter estimates. However, most constraint
methods add a significant computational burden to the filter
(Simon, 2006; Kandepu et al., 2008), rendering them impracti-
cal for implementation in large-scale systems. The large number
of states and parameters to be estimated restricted the constraint
method to clipping, which is computationally efficient to imple-
ment. Future work in this area should be to investigate effect of
constraints on the estimation performance (such as the estimate
variance).

The initialization of the filter, in particular the covariance
matrix, is a notoriously inexact science (Wan and Nelson, 1997;
Wan and Van Der Merwe, 2000; Simon, 2006; Schiff, 2012).
In practice, significant tuning is often required to achieve sta-
ble and accurate estimation results. For this study, the initial
covariance was based on knowledge obtained from forward sim-
ulations. A larger initial covariance was used when the number of
hidden variables was increased. The initial uncertainty for param-
eters was increased by broadening the range of the constraints.
Furthermore, when parameters to be estimated are dynamic
rather than static (as would be the case for most parameters of
interest in neural models), an additional constant error term is
added to the covariance matrix to prevent an overestimate of
confidence in the model (Voss et al., 2004). In this case it was
found that additional uncertainty should be very small relative
to the magnitude of the parameter. The amplitude of the addi-
tive uncertainty is analogous to a learning rate parameter in other
algorithms. It can be relatively easily tuned by examining the
convergence rate the parameters (i.e., see Figure 9).

The estimation framework presented in this paper can be nat-
urally integrated with other existing imaging technologies and
computational methods in the field of neuroscience. All methods
of neuroimaging are essentially inversion problems, that rely on a
transformation from the measurement space to the source space.
An example is the transformation of magnetic radiation to the
haemodynamic response in fMRI. Typically, measurements are
transformed using a specific inversion technique to determine the
state of the neural tissue. The framework presented in this paper
applies the same philosophy. However, the transformation from

the measurement to the source space is via a generative model.
The generative model reflects the current state-of-the-art of our
knowledge of the mesoscopic biophysics and anatomy of cortical
circuits. By the same token, limitations and uncertainties in our
current knowledge can also be quantified and incorporated into
the model, making all predictions reflect probability distributions
rather than scalar values. The mapping from neural population
models to measurements can be readily adapted to describe dif-
ferent modalities, via alternative observation equations, enabling
multiple sources of data to be combined to form a unifying
model. The difficulty of measuring brain activity in a minimally
invasive manner makes it imperative to use as much informa-
tion as possible to predict neural states and inter-connectivities.
A framework that combines patient-specific measurements with
well accepted principles of brain structure and function, and
importantly, knowledge of uncertainty, is an important step
toward the lofty goal of reverse engineering the brain.

The estimation framework presented in this model could be
used as the first stage of a seizure prediction system, providing the
necessary features that are used as inputs to a classifier. It is neces-
sary to represent neural data using representative features in order
to reduce the dimensionality of the problem prior to applying a
classification algorithm. In the past, efforts have focused on defin-
ing features that are correlated with ictal and pre-ictal periods
and, as such, can be used in a predictive capacity (Andrzejak et al.,
2001; Lehnertz et al., 2003). Recently a patient-specific seizure
classifier for ECoG was implemented using parameters identified
from a neural mass model (Aarabi and He, 2013). The advan-
tages of using neural states and parameters as features for seizure
classification is that they are naturally patient-specific (since they
are directly relatable to the neural activity) and may also provide
clues as to the underlying cause of seizures, which could inform
treatment strategies.

The capability of neural models to be tailored to an individ-
ual patient’s data is particularly relevant to the investigation and
treatment of epilepsy, since it is a highly patient-specific disorder.
The mechanisms for seizure onset and propagation vary signifi-
cantly between patients (Wendling et al., 2005; Mormann et al.,
2007; Coombes and Terry, 2012). Ideally, information about neu-
ral interconnectivity should be obtained on a case-by-case basis
using an individualized model (Blenkinsop et al., 2012; Nevado-
Holgado et al., 2012). A reliable model inversion framework
will enable more precise targeting of therapies. The information
provided by a model-based framework could also predict the
response to drug treatments or electrical stimulation in a simu-
lated environment, sparing a patient the negative side effects that
may arise from a trial-and-error approach. Models can also be
used to provide feedback for deep brain stimulators for robust
prevention of seizures (Mormann et al., 2007; Adhikari et al.,
2009).

This paper presented a framework rather than a specific
method. Within the framework, the level of realism of the model
can be increased to include more neural population subtypes and
the spatial extent can increased to model larger cortical networks.
The end goal is to provide the tools to create patient-specific
models that use all of the available patient-specific neuroimag-
ing data. Existing studies have demonstrated that this framework
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is capable of being extended to describe more complex phenom-
ena through the inclusion of, for example; more populations
and regions (Babajani-Feremi and Soltanian-Zadeh, 2010; Wang
and Knösche, 2013), self feedback connections (Ursino et al.,
2010) and firing rate modulated plasticity/habituation of synapses
(Deco et al., 2008; Moran et al., 2013) or spatially dependent
dynamics (Freestone et al., 2011; Aram et al., 2013). As the model
size and complexity increases, there will be new parameters that
need to be estimated as they are not directly measurable by other
means. There are a number of potential directions that should
be investigated to address the problem of dimensionality, such as
model reduction, improved methods of covariance approxima-
tion or linearization techniques. Finally, further validation of the
proposed estimation framework on patient data is necessary to
evaluate the true predictive capability of this method.
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5. APPENDIX
5.1. DISCRETIZATION
To begin, we start with the exact continuous time system

ξ̇ = [
ẋ θ̇

]�
(A1)

= [
f e (x, θ , u) 0

]�
(A2)

= F (ξ , u) . (A3)

Discretization is performed using the Euler method, where the
integration time step is denoted by δ by

Fa
δ (ξ , u) � ξ + δF (ξ , u) . (A4)

The approximate discrete time system can be written in the
compact form

ξ a
t + 1 = Fa

δ

(
ξ t, ut

)
, (A5)

where a denotes approximate and the subscript δ indicates that
the model is parametrized by integration step size. Now, if we let
the discrete time system that corresponds to an exact solution to
the continuous system at the integration steps be f e

δ (xt, ut), then
under reasonable conditions it can be proven that the solution to
the approximate discrete time system is consistent, such that∣∣Fe

δ

(
ξ t, ut

)− Fa
δ

(
ξ t, ut

)∣∣ ≤ δρ(δ), (A6)

where ρ( · ) is a class-K function that has a dependance on size
of the set of ξ and u (see Arcak and Nešić, 2004 for details). In
the body of this paper, we will drop the subscript δ for notational
convenience. However, we stress that the discrete time model is an
approximation of the continuous system and is parameterized by
the integration time step.

5.2. DEFINITION OF MATRICES A, B, C, AND D
The continuous time system can be written as

ξ̇ = Aξ + Bξ ◦ g(Cξ) + D(u)ξ (A7)

where the matrices A, B, C, and D(u) ∈ R
nξ ×nξ and nξ = 3(N +

K). For a fixed integration time step, δ, the discrete time model
can be written in the form

ξ t + 1 = Aδξ t + Bδξ t ◦ g(Cξ t) + Dδ(u)ξ t (A8)

where Aδ , Bδ , and Dδ(u) have the same dimension as their con-
tinuous time counterparts. (Note ◦ is the element-wise vector
product)

In this appendix, we define all the matrices in Equations A7
and A8 and show the relationship between the models. The
model contains (N + K) synaptic connections (N local connec-
tions and K inter-regional connections). Therefore, the number
of parameters (connectivity coefficients) is defined as nθ = (N +
K) and the number of states (PSPs and their derivatives) is defined
as nx = 2(N + K).

The matrix A has a block diagonal structure that is comprised
of two sub-matrices,

A =
⎡
⎣� 0

0 Inθ ,nθ

⎤
⎦ , (A9)

where Inθ ,nθ ∈ R
nθ×nθ is the identity matrix and � ∈ R

nx×nx is
also composed of the sub-matrices;

� = diag(� j) (A10)

� j =
[

0 1
− 1

τ 2
j

− 2
τj

]
, (A11)

where j = 1, . . . , N + K indexes connections.
The discrete time version Aδ is related to A by

Aδ =
⎡
⎣I + δ� 0

0 I

⎤
⎦ . (A12)

The matrix B has the form

B =
[

0nx,nx �

0nθ ,nx 0nθ ,nθ

]
, (A13)

where 0nθ ,n ∈ R
nθ×n are zero matrices (for n = nx, nθ ). � ∈

R
nx×nθ maps the connectivity gains to the relevant sigmoidal

activation function and is of the form

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 . . . 0
b1
τ1

0
...

. . .
...

0 0

0 . . .
bN + K
τN + K

⎤
⎥⎥⎥⎥⎥⎥⎦ , (A14)

where bj = 1 if the relevant connectivity gain is associated with
an internal connection, otherwise bj = 0 (where uj �= 0) and the
input is from an external population and is captured in the matrix
Dδ(u), which is described below. The discrete time version is
simply

Bδ = δB. (A15)

The adjacency matrix C is the same for both the continuous
and discrete version of the model. It has a block diagonal structure
where

C = diag(�, 0nθ ,nθ ) (A16)

and � ∈ R
nx×nx sums the relevant post-synaptic potentials to

form the mean membrane potentials then maps them to the

www.frontiersin.org November 2014 | Volume 8 | Article 383 | 17

http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Freestone et al. Effective connectivity via data-driven modeling

activation function and is of the form

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0
γ2,1 0 γ1,nx−1 0
...

. . .
...

0 0 0 0
γnx,1 0 . . . γnx,nx−1 0

⎤
⎥⎥⎥⎥⎥⎥⎦ . (A17)

The rows of �, which we will denote by γj, index the PSPs that
contribute to the mean membrane potential of the presynaptic
populations.

The input matrix D(u) has the structure

D(u) =
[

0nx,nx U
0nθ ,nx 0nθ ,nθ

]
, (A18)

where the matrix U ∈ R
nx,nθ is given by

U =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 . . . 0
u1
τ1

0
...

. . .
...

0 0
0 . . .

uN + K
τN + K

⎤
⎥⎥⎥⎥⎥⎥⎦ . (A19)

The inputs um are zero for the majority of the elements, where
there is only one external input per region in the current for-
mulation. Each active input is a constant value. The discrete time
version is

Dδ(u) = δD(u). (A20)

5.3. EXPECTATION OF A GAUSSIAN MEMBRANE POTENTIAL
TRANSFORMED BY A SIGMOID

The prediction step in Kalman filter for the neural population
model can be solved analytically given the solution of the expected
value of the Gaussian membrane potential that is transformed
by the nonlinear sigmoidal activation function. The solution for
this problem is provided in this appendix. In order to provide
the most concise derivation as possible, we will let mean firing
threshold parameter v0 = 0 and firing threshold variance ς = 1.
The solution is provided for an arbitrary v0 and ς , which can be
found via the same sequence of steps in the derivation.

Let our Gaussian random variable, v, be described by the
probability density function

p(v) = 1

σ
√

2π
exp

(
− (v − μ)2

2σ 2

)
. (A21)

The expected value of the Gaussian random variable transformed
by the sigmoid is defined by

E
[
g(v)

] = ∫∞
−∞ g(v)p(v) dv (A22)

= 1√
2π

∫∞
−∞

∫ v
−∞ exp

(
− z2

2

)
p(v) dz dv. (A23)

To proceed, we can make the substitution z = w − v to get v out
of the integral terminal giving

E
[
g(v)

] = 1√
2π

∫∞
−∞

∫ 0
−∞ exp

(
− (w − v)2

2

)
p(v) dw dv.(A24)

Next we substitute in the equation for the probability density
function of the membrane potential and switch the order of inte-
gration, which can be changed without altering the limits of
integration giving

E
[
g(v)

] = 1

2πσ

∫ 0

−∞

∫ ∞

−∞
(A25)

exp

(
− (w − v)2

2
− (v − μ)2

2σ 2

)
dv dw (A26)

Now we need to integrate out v, so we collect all the v-related
terms

E
[
g(v)

] = 1

2πσ

∫ 0

−∞
exp

(
− 1

2σ 2

(
σ 2w2 + μ2))

×
∫ ∞

−∞
exp

(
−σ 2 + 1

2σ 2
v2 + σ 2w + μ

σ 2
v

)
dv dw.

(A27)

Integrating out v in the second term we get

∫ ∞

−∞
exp

(
−σ 2 + 1

2σ 2
v2 + σ 2w + μ

σ 2
v

)
dv

=
√

2πσ√
σ 2 + 1

exp

( (
σ 2w + μ

)2

2σ 2(σ 2 + 1)

)
. (A28)

The solution in Equation A28 is then recombined with
Equation A27. After rearranging and simplifying, the expected
value becomes

E
[
g(v)

] = 1

2π

√
2π√

σ 2 + 1

∫ 0

−∞
exp

(
− (w − μ)2

2
(
σ 2 + 1

)
)

dw.

(A29)

To solve this last integral, we perform a change of variables

z = w − μ√
σ 2 + 1

,
dz

dw
= 1√

σ 2 + 1
(A30)

dw =
√

σ 2 + 1dz, (A31)

giving the final result,

E
[
g(v)

] = 1√
2π

∫ μ√
σ2 + 1

−∞
exp

(
− z2

2

)
dz

= 1

2

(
erf

(
μ√

2(σ 2 + 1)

)
+ 1

)
. (A32)

Frontiers in Neuroscience | Brain Imaging Methods November 2014 | Volume 8 | Article 383 | 18

http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Freestone et al. Effective connectivity via data-driven modeling

The more general solution for an arbitrary mean firing thresh-
old, v0, and firing threshold variance, ς , is

E
[
g(v)

] = 1

2

⎛
⎝erf

⎛
⎝ μ − v0√

2
(
ς2 + σ 2

)
⎞
⎠ + 1

⎞
⎠ . (A33)

5.4. UNSCENTED TRANSFORM
The sigma vectors are defined as

X 0
t − 1 = ξ̂

+
t − 1 (A34)

X i
t − 1 = ξ̂

+
t − 1 +

(√
(nx + κ) P̂+

t − 1

)
i

(A35)

X nx + i
t − 1 = ξ̂

+
t − 1 −

(√
(nx + κ) P̂+

t − 1

)
i
, (A36)

where κ is a constant that can be tuned which determines the
spread of the sigma vectors around the mean and β is a parameter
that can be used to incorporate information about the distri-
bution of the states (2 is optimal for Gaussians) (Wan and Van

Der Merwe, 2001). The vector

(√
(nx + κ) P̂+

t − 1

)
i

is the ith col-

umn of the matrix square root (e.g., the lower triangular matrix
that can be computed using the Cholesky decomposition), where
i = 1, . . . , nx.

The weights, Wi, for the unscented transform are calculated as

W0 = κ

nx + κ
+ β (A37)

Wi = 1

2 (nx + κ)
i = 1, . . . , 2nx. (A38)

For the initialization of the Kalman filter in this paper, algo-
rithm values were

β = 2 (A39)

κ = 3 − 2nx, (A40)

where N is the number of synapses.

5.4. ALGORITHM INITIALIZATION
To initialize the filter, ξ̂

+
0 and off-diagonal elements of P̂+

0 were set

to zero. The diagonal elements of P̂+
0 corresponding to fast states

(PSPs and their derivatives) were set to the variances of the states
obtained from forward simulations. The initial variance estimate
for the slow states (connectivity parameters) were set by recogniz-
ing that the variance of each PSP in the state vector is proportional
to the amplitude of the connectivity parameter that is associated
with that particular connection. Therefore, the initial estimation
variance for each connectivity parameter was set to be propor-
tional (by a scaling parameter) to the variance of the associated
PSP obtained from forward simulation. Scaling parameters were
chosen for each connection subtype to reflect the different orders
of magnitude of the connectivity strengths (shown in Table A1).
The weighting for the slow state P̂+

0 values was determined by

Table A1 | Initial values for the elements of P̂+
0

that correspond to

connectivity gain estimates.

Parameter Initial variance

αup 0.1 Mj,1

αep 10 Mj,2

αpi 1 Mj,3

αip 60 Mj,4

αpe 10 Mj,5

αjk 5 Mj,6

αkj 5 Mj,7

The matrix M is derived from the PSP variances from a forward simulation and

j = 1, · · · , J indexes the cortical region.

normalizing across all the regions for connection specific PSPs;
i.e., let

β �

⎡
⎢⎢⎣

var(v1
up) var(v1

ep) var(v1
pi) var(v1

ip) var(v1
pe) var(v1

jk) var(v1
kj)

.

.

.
.
.
.

var(vJ
up) · · · var(vJ

kj)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

	1
v
.
.
.

	J
v

⎤
⎥⎥⎦ (A41)

for J cortical regions. The normalized matrix is given by

M = diag
(‖ 	1

v ‖−1∞ , . . . , ‖ 	J
v ‖−1∞

)
β, (A42)

where we are normalizing using the L∞ norm of each of the rows

of β, which are denoted by 	
j
v. The resultant matrix M is scaled

to form the initial values of the variances for the connectivity esti-
mates. The scaling values to set the values of P̂+

0 are shown in
Table A1.

To initialize the filter values for the model and measure-
ment variance in the Kalman filter equations (denoted 	 and R,
respectively) knowledge of the forward simulation was used. The
measurement variance was set to

R = σ 2
y Iny,ny , (A43)

where σy is the standard deviation of the additive measurement
noise used in the forward simulation for the ECoG signal, which
was 1 mV. Iny,ny is the identity matrix and ny is the number of
measurements (i.e., the number of regions in this case).

The model uncertainty was set to

	 =
{

10−16 Inξ ,nξ + Q for static parameters
10−16 Inξ ,nξ + Q + Qθ for parameter tracking

,(A44)

where the first term on the left hand side is for numerical stability,
Q is the known covariance matrix of process noise, wt , that was
used in the forward simulations, and the Qθ term represents a
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constant additive covariance for parameter tracking purposes,

Qθ = diag(0nx,nx , 	
θ ). (A45)

When the filter is used to track parameter dynamics, 	θ is used to
capture the unexpected changes (this is not necessary for the state
as their dynamics are modeled, whereas parameters are assumed
to be static by the filter). 	θ was a diagonal matrix, where for
j = 1 · · · nθ ,

	θ
j,j =

{
10−7O(αj) if j indexes αup

10−5O(αj) if j indexes all other αmn

. (A46)

The O notation shows that the uncertainty is proportional to
the order of the connectivity gain (αj). The coefficients can be
tuned to adjust the rate of estimation convergence. The smaller
value for αup was the result of tuning based on the estimation
results.
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