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The role of GABA in the regulation of GnRH neurons
Miho Watanabe1*, Atsuo Fukuda1 and Junichi Nabekura2,3,4

1 Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
2 Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan
3 Core Research for Evolutionary Science and Technology, Japan Science and Technology Corporation, Saitama, Japan
4 Department of Physiological Sciences, The Graduate School for Advanced Study, Hayama, Japan

Edited by:

Ishwar Parhar, Monash University,
Malaysia

Reviewed by:

Oline K. Ronnekleiv, Oregen Health
& Science University, USA
José A. Muñoz-Cueto, University of
Cadiz, Spain

*Correspondence:

Miho Watanabe, Department of
Neurophysiology, Hamamatsu
University School of Medicine,
1-20-1 Handayama, Higashi-ku,
Hamamatsu, Shizuoka 431-3192,
Japan
e-mail: mihow@hama-med.ac.jp

Gonadotropin-releasing hormone (GnRH) neurons form the final common pathway for
the central regulation of reproduction. Gamma-amino butyric acid (GABA) has long been
implicated as one of the major players in the regulation of GnRH neurons. Although GABA
is typically an inhibitory neurotransmitter in the mature adult central nervous system, most
mature GnRH neurons show the unusual characteristic of being excited by GABA. While
many reports have provided much insight into the contribution of GABA to the activity of
GnRH neurons, the precise physiological role of the excitatory action of GABA on GnRH
neurons remains elusive. This brief review presents the current knowledge of the role
of GABA signaling in GnRH neuronal activity. We also discuss the modulation of GABA
signaling by neurotransmitters and neuromodulators and the functional consequence of
GABAergic inputs to GnRH neurons in both the physiology and pathology of reproduction.

Keywords: GnRH neuron, GABA, KCC2, NKCC1, LH surge

INTRODUCTION
Gonadotropin-releasing hormone (GnRH) neurons constitute
the final output neurons in the neuroendocrine control of repro-
duction (Freeman, 2006). Pulsatile GnRH release stimulates the
secretion of the gonadotropins, luteinizing hormone (LH) and
follicle-stimulating hormone (FSH) from the pituitary. LH and
FSH stimulate the development of mature eggs and sperm and
also the synthesis of the gonadal hormones; estrogen and pro-
gesterone from the ovaries and androgens from the testes. The
gonadal steroids feedback to the hypothalamus and pituitary
to decrease GnRH and gonadotropin secretion throughout the
estrous cycle, except during the afternoon of proestrus, when ele-
vated levels of estradiol, released by maturing ovarian follicles,
initiate the preovulatory GnRH/LH surge that causes ovulation.

The hypothalamus contains a relatively small number of
GnRH neurons and these are diffusely scattered throughout the
hypothalamus. Hence the mechanisms enabling GnRH neurons
to generate the discrete episodes of GnRH secretion remain
unknown. GnRH release is closely related to the activity of GnRH
neurons, which are regulated by neurotransmitters, steroid hor-
mones, and growth factors (Freeman, 2006). GnRH neurons
express both GABAA(Sim et al., 2000; Temple and Wray, 2005)
and GABAB receptors (Zhang et al., 2009) and receive GABAergic
inputs that express estrogen receptors (Leranth et al., 1985);
therefore, GABA has long been implicated as a major player in the
regulation of GnRH neuron activity and secretion. In this brief
review, we focus on the action of GABA on GnRH neurons.

EXCITATORY AND INHIBITORY ACTIONS OF GABA
The majority of in vivo whole animal studies have reported
inhibitory actions of GABA on GnRH/LH secretion, although
some reports have suggested excitatory effects of GABA (Donoso
et al., 1992; Bilger et al., 2001). GABA infusion into the preoptic

area or intraperitoneal injection of the GABAA receptor ago-
nist, muscimol, blocked the LH surge (Adler and Crowley, 1986;
Herbison and Dyer, 1991), while GABAA receptor antagonist,
bicuculline, advanced the timing of the LH surge (Kimura and
Jinnai, 1994). GABA release in the preoptic area was decreased
prior to and during the time of the LH surge (Jarry et al.,
1995). GABA is synthesized primarily from glutamate by the
enzyme glutamate decarboxylase, two isoforms of which exist,
GAD65 and GAD67 (Soghomonian and Martin, 1998). GAD67
mRNA levels in the preoptic area were decreased prior to the LH
surge (Herbison et al., 1992). The number of terminals contain-
ing vesicular GABA transporter (VGAT, a marker of GABAergic
neurons) was decreased in GnRH neurons at the time of the
LH surge (Ottem et al., 2004). Injection of GABA or musci-
mol inhibited pulsatile LH release (Herbison et al., 1991; Jarry
et al., 1991; Hiruma et al., 1994). The suppression of pulsatile
LH release induced by infection stress was inhibited by bicu-
culline (Lin et al., 2012). From these in vivo studies, it is thought
that GABA acts to inhibit the LH surge and pulsatile LH release
via GABAAreceptors. The origins of GABAergic inputs to GnRH
neurons are not well established, but the anteroventral periven-
tricular area (AVPV) (Ottem et al., 2004) and the suprachiasmatic
nucleus (SCN) are candidate regions (Christian and Moenter,
2007). This is because GABAergic neurons both in the AVPV and
SCN express ERα, while GABAergic neurons in the AVPV exhibit
changes in GAD67 gene expression that parallel GABA release on
the day of LH surge release (Curran-Rauhut and Petersen, 2002).
However, from these experiments, it is difficult to clarify the direct
actions of GABA on GnRH neurons. Because GnRH neurons
lack any specific identifying morphology, and owing to their dif-
fuse location (Herbison, 2006), it is difficult to directly study the
cellular and molecular mechanisms in single, functional GnRH
neurons. The direct action of GABA on GnRH neurons has been

www.frontiersin.org November 2014 | Volume 8 | Article 387 | 1

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2014.00387/abstract
http://community.frontiersin.org/people/u/118377
http://community.frontiersin.org/people/u/43287
http://community.frontiersin.org/people/u/79319
mailto:mihow@hama-med.ac.jp
http://www.frontiersin.org
http://www.frontiersin.org/Neuroendocrine_Science/archive


Watanabe et al. Role of GABA in GnRH neurons

studied using an immortalized GnRH neuronal cell line (GT1).
GT1 cells were generated by genetically targeted tumorigenesis
in transgenic mice (Mellon et al., 1990). GT1 cells are thought
to preserve many characteristics of native GnRH neurons. They
generate spontaneous action potentials, exhibit transient oscil-
lations of the intracellular Ca2+ concentration ([Ca2+]i) (Hales
et al., 1994; Charles and Hales, 1995), and secrete GnRH in a
pulsatile manner (Wetsel et al., 1992; Martínez de la Escalera
et al., 1994). GT1 cells synthesize GABA (Ahnert-Hilger et al.,
1998) and express functional GABAA receptors (Favit et al., 1993).
The activation of GABAA receptors in GT1 cells depolarizes the
membrane potential, which activates voltage-gated Ca2+ chan-
nels, thereby facilitating Ca2+ influx and increasing [Ca2+]i and
GnRH release (Favit et al., 1993; Hales et al., 1994; Martínez
de la Escalera et al., 1994; Spergel et al., 1995). Although GT1
cells are still useful, especially in biochemical and molecular biol-
ogy experiments, which often require many cells with uniform
characteristics, the immortalized nature of these cells may inter-
fere with normal differentiated functions and the study of the
neural circuitry that regulates GnRH neurons, such as afferent
inputs, cannot be accomplished in GT1 cells. To overcome these
barriers, transgenic mice and rats expressing enhanced green fluo-
rescent protein (EGFP) under the control of the GnRH promoter
were generated (Spergel et al., 1999; Suter et al., 2000; Watanabe
et al., 2009a). Using these mice and rats, the direct action of
GABA on EGFP-tagged living GnRH neurons has been studied
(Herbison and Moenter, 2011). Activation of GABAA receptors
excited mouse GnRH neurons in acutely prepared slices through
the hypothalamus (DeFazio et al., 2002) and evoked increases
in [Ca2+]i in GnRH-Pericam transgenic mice (Constantin et al.,
2010). The reversal potential of GABAA receptor current (EGABA)
was more positive than the resting potential in mouse GnRH
neurons (EGABA = −36.5 ± 1.2 mV, Vrest = −50.7 ± 1.7 mV)
(DeFazio et al., 2002). Therefore, GABA caused depolarization
in GnRH neurons. The GABAA receptor antagonist, bicuculline,
or picrotoxin decreased the firing rate of GnRH neurons in
the presence of ionotropic glutamate receptor antagonists, AP5
and CNQX, which excluded glutamatergic transmission (Moenter
and DeFazio, 2005). Activation of somatic/proximal dendritic
GABAA receptors in GnRH neurons caused robust action poten-
tial discharges by the activation of L-type calcium channels
(Hemond et al., 2012). Furthermore, activation of GABAA recep-
tors increased [Ca2+]i in isolated GnRH neurons from prepuber-
tal and adult rats (Watanabe et al., 2009a) (Figure 1). Bicuculline
inhibited the [Ca2+]i increase induced by GABA. GABA-induced
[Ca2+]i increase was inhibited in Ca2+-free solution. EGABA of
rat adult GnRH neurons was more positive than resting poten-
tial (EGABA = −26 ± 1.4 mV, Vrest = −60 to −50 mV) (Yin
et al., 2008). Therefore, GABA also depolarized rat GnRH neu-
rons. However, contradictory results on the actions of GABA
have been demonstrated using transgenic mice in which GnRH
neurons express beta-galactosidase (GnRH-lacZ mice). The beta-
galactosidase can convert substrates to a fluorescent state enabling
the visualization of GnRH neurons. The effect of GABA on GnRH
neurons switched from depolarization to hyperpolarization at
puberty in females (Han et al., 2002). A GABAA receptor antago-
nist increased the firing rate of GnRH neurons (Han et al., 2004);

however, the recording was performed in the absence of CNQX
and AP5. The GABAA receptor antagonist acts on all cells in the
brain slice; therefore, it removes GABAergic inhibitory signaling
and causes disinhibition in most neurons. Therefore, to remove
the effect of disinhibition of glutamatergic neurons in the net-
work that regulates GnRH neurons, glutamatergic signaling needs
to be blocked. The presence of a tonic GABAA receptor current
in GnRH neurons was also reported as inhibitory. GABA and
THIP, a GABAAδ receptor agonist, hyperpolarized the membrane
potential in adult GnRH neurons (Bhattarai et al., 2011). GABA
has also been reported to act to GnRH neurons at the level of
GnRH nerve terminals in the median eminence. The conditional
activation of GABA release near GnRH nerve terminals disrupted
the estrous cycle and reduced fertility in rats (Bilger et al., 2001).
Recent reports show that GnRH neurons have unique morphol-
ogy; long-distance projections to the median eminence function
simultaneously as axons and dendrites (Herde et al., 2013). These
GnRH projections have functional GABAA receptors and the acti-
vation of GABAA receptors depolarized the membrane potential
and initiated action potentials at the median eminence. GABA is
also excitatory to GnRH neurons in a variety of species, such as
goldfish and sea lamprey (Trudeau et al., 2000; Reed et al., 2002;
Root et al., 2004; Popesku et al., 2008). In an adult teleost fish, the
dwarf gourami, GABAA receptor activation induced excitation
in the terminal nerve-GnRH neurons (Nakane and Oka, 2010).
From these results, GABA might regulate the excitability of GnRH
neurons at GnRH cell bodies as well as at the median eminence.

Recently, the first electrical recording of GnRH neurons in vivo
in the anesthetized mouse was reported. Whereas muscimol
evoked excitatory, inhibitory, or mixed effects on GnRH neuron
firing, picrotoxin resulted in a consistent suppression of firing
(Constantin et al., 2013). This study also reported that the effects
of GABA on GnRH neurons were critically dependent upon the
orientation within the slice (Constantin et al., 2012b). GABA
was excitatory to GnRH neurons in coronal slices but inhibitory
in the anterior hypothalamic area in horizontal slices. This is
because of the direct activation of GABAA or GABAB receptors.
GABAB receptors also modulate the excitability of GnRH neu-
rons. GABAB R1 and R2 subunits are expressed in GnRH neurons
(Zhang et al., 2009), and the GABAB receptor agonist baclofen
hyperpolarized GnRH neurons through activation of an inwardly
rectifying K+ current (Lagrange et al., 1995; Zhang et al., 2009).
Therefore, the net GABA effects are likely to be determined by the
balance of GABAA vs. GABAB receptor-mediated effects along the
GnRH neuron soma and dendrite (Constantin et al., 2013).

Few studies have investigated the effect of GABA on gene
expression in GnRH neurons. Intracerebroventricular injection of
muscimol induced a pronounced decrease of GnRH mRNA lev-
els in the preoptic area. Injection of baclofen had no effect on
GnRH mRNA levels (Bergen et al., 1991; Leonhardt et al., 1999).
But opposite results have also been reported (Kang et al., 1995;
Cho and Kim, 1997). Further work is needed to clarify this point.

From these results, although the action of GABA on GnRH
neurons is still controversial, most GnRH neurons appear to be
excited by GABA. However, GnRH neurons may exhibit hetero-
geneity in their GABA response depending on their location in the
hypothalamus. Clarification of this point requires further study.
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FIGURE 1 | Excitatory action of GABA on rat GnRH neurons. (A)

Representative [Ca2+]i response to 100 μM GABA. Most GnRH neurons
showed [Ca2+]i increase in response to GABA. Some GnRH neurons did not
respond to GABA. Some GnRH neurons showed [Ca2+]i decrease in
response to GABA. (B) Muscimol (100 μM), a GABAA receptor agonist,
increased [Ca2+]i in GnRH neurons. (C) Bicuculline (100 μM), a GABAA

receptor antagonist, inhibited the [Ca2+]i increase induced by GABA. (D)

GABA-induced [Ca2+]i increase was inhibited in Ca2+-free solution. (E)

Bumetanide (100 μM), a blocker of NKCC1, reduced the GABA-induced
[Ca2+]i increase. Muscimol and GABA were applied as indicated with
horizontal bars. Bicuculline, Ca2+-free solution, and bumetanide were applied
as indicated with open bars (Originally published in Watanabe et al., 2009a).

[Cl−]i DETERMINES THE POLARITY OF THE GABA
RESPONSE
Because Cl− is the most permeant ion through the GABAA recep-
tor ion channel, the intracellular Cl− concentration ([Cl−]i)
determines the polarity of the GABA response (Ben-Ari, 2002). A
hyperpolarizing and generally inhibitory action of GABA occurs
when [Cl−]i is low, whereas a depolarizing and generally excita-
tory action of GABA is seen when [Cl−]i is high. In most neurons,
the GABA response switches from a depolarization to a hyper-
polarization during early postnatal development. Among the
many molecules involved in [Cl−]i homeostasis, the exclusively

neuronal subtype of the K+-Cl− cotransporter (KCC2), which
couples the K+ electrochemical gradient to Cl− extrusion, is the
principal molecule which maintains low [Cl−]i in mature neu-
rons (Blaesse et al., 2009). In contrast, the neuronal subtype of the
Na+-K+-2Cl− cotransporter (NKCC1), which mediates inward
transport of Cl−, maintains high [Cl−]i (Figure 2). Because
GABA excites in most GnRH neurons, one would predict the
expression of KCC2 to be low and that of NKCC1 to be high
in GnRH neurons. Actually, bumetanide, a blocker of NKCC1,
reduced the GABA-induced [Ca2+]i increase in rat GnRH neu-
rons (Figure 1). GT1 cells do not express detectable levels of
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FIGURE 2 | The intracellular Cl− concentration determines the

polarity of GABA response. The GABA action is excitatory in immature
neurons because [Cl−]i is high, owing to high levels of the Na+-K+-2Cl−
cotransporter (NKCC1), which mediates inward transport of Cl−, and to
low levels of the K+-Cl− cotransporter (KCC2), which excludes Cl− from
the cell. In most neurons, the GABA response switches from excitation to
inhibition during early postnatal development, due to the developmental
decrease of the NKCC1 and increase of the KCC2. However, even in the
mature neurons, neuronal damage down regulates the KCC2 and
elevated Cl− concentration shifts GABA response from hyperpolarization
to depolarization, occasionally excitation. Most GnRH neurons show the
unusual characteristic of being excited by GABA in the adult brain.

KCC2 mRNA or protein but do express NKCC1 mRNA and
protein (DeFazio et al., 2002). Adult rat GnRH neurons do not
express KCC2 protein and express low levels of NKCC1 pro-
tein. KCC2 mRNA was expressed in 4.9% of GnRH neurons,
whereas NKCC1 mRNA was expressed in 13.5% of GnRH neu-
rons (DeFazio et al., 2002). A similar expression of KCC2 and
NKCC1 mRNAs was shown in adult mouse GnRH neurons. The
vast majority of KCC2 and NKCC1 expressing GnRH neurons are
located in the anterior region of the preoptic area where the great-
est concentration of neuroendocrine GnRH neurons is normally
observed. Heterogeneous expression of KCC2 in mouse GnRH
neurons has also been reported with 34% of GnRH neurons
expressing KCC2 mRNA (Leupen et al., 2003). This proportion
was similar in females and males. However, females exhibited a
marked rostrocaudal gradient of colocalization that was not seen
in males. Protein levels and the function of KCC2 and NKCC1
are rapidly modulated by intracellular and extracellular substrates
(Blaesse et al., 2009). The activity, cell surface stability, and mem-
brane trafficking of KCC2 are modulated by the phosphorylation
of serine, threonine, and tyrosine residues in the C terminal
region (Watanabe et al., 2009b; Kahle et al., 2013). KCC2 expres-
sion levels are reduced in response to various pathophysiological
conditions (Kahle et al., 2008), including axotomy (Nabekura
et al., 2002; Toyoda et al., 2003), global ischemia (Reid et al.,
2000) chronic pain (Eto et al., 2012), interictal activity (Rivera
et al., 2004), and neuronal stress (Wake et al., 2007) with result-
ing increases in [Cl−]i and a shift of GABA-mediated responses
from hyperpolarizing to depolarizing. Therefore, it is reasonable
to speculate that the functional expression of NKCC1 and/or
KCC2 is changed according to estrous cycle stage and is differ-
ent between males and females. These changes may modulate
the response to GABA in GnRH neurons. Further studies are
needed to clarify this point. In immature or injured neurons when
GABA is also excitatory, this excitation can result in action poten-
tials, [Ca2+]i oscillations, and synchronized patterns of activity

(Ben-Ari, 2002; Toyoda et al., 2003). GnRH neurons also show
spontaneous activity and [Ca2+]i oscillations (Constantin et al.,
2012a) and the frequency of calcium oscillation in GnRH neu-
rons was reduced by a GABAA receptor antagonist. Therefore, the
excitatory action of GABA in GnRH neurons may contribute to
the synchronous activity that generates discrete episodes of GnRH
secretion.

MODULATION OF GABA TRANSMISSION
Several neurotransmitters have been reported to regulate the
activity of GABA neurons. Kisspeptin is a potent stimulator
of GnRH release via G protein-coupled receptor 54 (GPR54)
(Gottsch et al., 2004; Dungan et al., 2007; Mayer and Boehm,
2011). GnRH neurons express GPR54 (Messager et al., 2005)
and kisspeptin acts directly on GnRH neurons (Han et al., 2005;
Pielecka-Fortuna and Moenter, 2010). Kisspeptin also acts indi-
rectly to modulate GnRH neurons via a change in GABAergic
transmission. Kisspeptin increased the frequency and amplitude
of GABAergic postsynaptic currents in GnRH neurons in an
estradiol-dependent manner at the time of estradiol negative
feedback (Pielecka-Fortuna and Moenter, 2010). Metabotropic
glutamate receptors (mGluRs) also regulate GABA transmission
to GnRH neurons. The endogenous activation of presynaptic
mGluRs decreased the frequency of GABAA-mediated sponta-
neous postsynaptic currents in GnRH neurons and decreased
GnRH neuron firing rate (Chu and Moenter, 2005). These
effects occur through group II/III mGluRs and are mimicked
by GnRH neural activity, suggesting a role for mGluRs in feed-
back regulation. The adipose-derived hormone, leptin, regulates
GABAergic signaling. Acute fasting decreased the frequency of
spontaneous GABAergic postsynaptic currents in GnRH neurons
and GnRH neuronal activity (Sullivan et al., 2003; Sullivan and
Moenter, 2004a). Because GnRH neurons do not express leptin
receptors, the leptin effect was indirect (Quennell et al., 2009).
GABAergic signaling seems to communicate information about
metabolic status to the GnRH neurons indirectly. Retrograde
endocannabinoid signaling reduces GABAergic synaptic trans-
mission to GnRH neurons via the activation of presynaptic
CB1 receptors, resulting in inhibition of GnRH neuron firing
activity (Farkas et al., 2010). The depolarization of GnRH neu-
rons induced short-term inhibition of GABAergic afferents via
endocannabinoids and glia derived prostaglandins, and this inter-
action was steroid and likely sex dependent (Glanowska and
Moenter, 2011). GnRH itself also regulated the activity of GABA
neurons. GABAergic neurons express the type-1 GnRH recep-
tor. Low levels of GnRH reduced the frequency of GABAergic
postsynaptic currents in GnRH neurons, suggesting that low-dose
GnRH suppressed GnRH firing in part by decreasing GABAergic
transmission to GnRH neurons (Chen and Moenter, 2009). The
pineal hormone, melatonin, is involved in the regulation of repro-
ductive function, including the timing of the LH surge. Melatonin
modulates GABAA receptor currents in GnRH neurons isolated
from GnRH-EGFP transgenic rats, positively in males and nega-
tively in females (Sato et al., 2008).

GABAergic transmission is also regulated by a nonclassi-
cal action of the ovarian steroid, estradiol. Estrogen receptor α

(ERα) agonists reduced the frequency of GABA transmission to
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GnRH neurons (Chu et al., 2009). A nonclassical action of estra-
diol via ERα on GnRH neurons that caused phosphorylation
of ERK1/2 and consequently CREB was blocked by a GABAA

receptor antagonist (Kwakowsky et al., 2014). In contrast,
ERβ agonists increased GABA transmission and postsynaptic
response. Estrogen interacted with the classical ERα at the level
of the GABAergic nerve terminal to regulate action potential-
independent GABA release (Romanò et al., 2008). Steroid
metabolites known as neurosteroids also modulate the function
of the GABAA receptor. Specifically, the progesterone derivative
allopregnanolone is an allosteric agonist, whereas the androgen,
dehydroepiandrosterone sulfate (DHEAS), is an allosteric antag-
onist. Allopregnanolone increased GABAergic miniature post-
synaptic current frequency, amplitude and decay time. DHEAS
reduced mPSC frequency and amplitude but did not alter decay
time (Sullivan and Moenter, 2003). Also, in rat GnRH neu-
rons, GABAA currents were augmented by allopregnanolone and
3α,21-dihydroxy-5α-pregnan-20-one (Yin et al., 2008).

Therefore, several neurotransmitters and hormones modulate
GABAergic transmission to GnRH neurons, and this modulation
may mediate various physiological stimuli that regulate GnRH
neuronal activity.

FUNCTIONAL ROLE OF GABA ACTION ON GnRH NEURONS
The precise physiological role of direct GABAA receptor acti-
vation in GnRH neurons in vivo remains to be investigated.
Although the near complete abolition of GABAA receptor sig-
naling by knockout of the GABAA receptor γ2 subunit in GnRH
neurons was found to have no major effect on fertility in vivo (Lee
et al., 2010), there are many reports that propose a role for GABA
in multiple aspects of GnRH neuronal physiology. These range
from embryonic migration to a role in puberty and both estrogen
negative and positive feedback.

GABA plays a key developmental role in the regulation of
GnRH neuron migration from the olfactory placodes into the
forebrain during fetal development. Like GT1 cells, a subset of
embryonic GnRH neurons can produce GABA during migra-
tion (Tobet et al., 1996; Ahnert-Hilger et al., 1998). GABA is
also present in cells and fibers along the GnRH migratory route
throughout the nasal compartment (Tobet et al., 1996; Wray
et al., 1996). GAD65 is expressed exclusively in undifferentiated
neuronal progenitors confined to the proliferative zones of the
sensory vomeronasal and olfactory epithelia (Vastagh et al., 2014).
In contrast, GAD67 is expressed in a subregion of the nonsen-
sory epithelium/vomeronasal organ epithelium containing the
putative GnRH progenitors and GnRH neurons migrating from
this region. Muscimol inhibited GnRH neuron migration and
decreased extension of GnRH fibers. Bicuculline led to a disorga-
nized distribution of GnRH neurons in the forebrain (Bless et al.,
2000). Transgenic mice that selectively over-express GAD67 in
GnRH neurons had more GnRH neurons in aberrant locations
in the cerebral cortex and fewer neurons reaching the forebrain
(Heger et al., 2003). Consequently, hypothalamic GnRH con-
tent was low during the second postnatal week, while in adult
mice disrupted the estrous cycle and litter sizes were reduced.
In contrast, in GABA deficient mice (GAD 67 knockout mice),
GnRH neurons reached the nasal/forebrain junction earlier and

entered the forebrain earlier (Lee et al., 2008). From these results,
GABA production within GnRH neurons alters the migratory fate
of these neurons and the timely termination of GABA produc-
tion within the GnRH neuronal network is required for normal
reproductive function. The role of GABAergic inputs on GnRH
neuronal migration was also evaluated using olfactory explants.
Mouse embryonic GnRH neurons in olfactory pit explant cultures
express GABAA receptors and activation of GABAA receptors
resulted in membrane depolarization (Kusano et al., 1995) and
increased [Ca2+]i (Moore and Wray, 2000). Muscimol inhibited
GnRH migration and bicuculline or picrotoxin increased GnRH
migration (Fueshko et al., 1998). Stromal derived growth fac-
tor (SDF-1) and GABA synergistically regulate the rate of GnRH
migration (Casoni et al., 2012). SDF-1 accelerated migration by
hyperpolarization via changes in potassium, while GABA slowed
migration by depolarization via changes in chloride. These stud-
ies demonstrate that GABAergic activity in nasal regions has
effects on migration of GnRH neurons and that GABA partici-
pates in appropriate timing of GnRH neuronal migration into the
developing brain.

GABA has been reported to have a role in mediating puberty.
In most neurons of the central nervous system, the GABA
response switches from a depolarization to a hyperpolarization
during early postnatal development (Ben-Ari, 2002). One group
reported that the switch of GABAA receptor signaling in GnRH
neurons was delayed until the time of puberty (Han et al., 2002).
The expression patterns of GABAA receptor subunit mRNAs in
GnRH neurons change during the developmental period. In juve-
nile and prepubertal female mice, α1-5, β1-3, and γ2,3 subunits
are broadly expressed in a heterogeneous manner. Adult female
mouse GnRH neurons of the rostral preoptic area express pre-
dominantly α1, α5, β 1, and γ2 subunits and those of the medial
septum express α1, α3, α5, β 1, β 3, and γ2 subunits (Sim et al.,
2000). These changes appear to involve the activation of the
GnRH neurons at puberty. In female rhesus monkeys, a reduction
of GABA inhibition is thought to be critical for the mechanism
initiating puberty onset, because chronic infusion of bicuculline
into the stalk-median eminence significantly increased GnRH
release and accelerated the timing of the menarche and first
ovulation (Terasawa et al., 2011). Bicuculline dramatically stim-
ulated kisspeptin release in the medial basal hypothalamus of
prepubertal monkeys but had little effect on kisspeptin release in
midpubertal monkeys (Kurian et al., 2012). This implies that a
reduction in tonic GABA inhibition of GnRH release is, at least in
part, mediated through kisspeptin neurons.

GABA plays a critical role in mediating both estradiol nega-
tive and positive feedback and appears to control the timing of
the switch in estradiol feedback action. The frequency of GABA
transmission to GnRH neurons is directly correlated with estra-
diol negative and positive feedback. Frequency of GABAergic
postsynaptic currents was low during negative feedback but fre-
quency and amplitude of GABAergic postsynaptic currents was
increased at surge onset (Christian and Moenter, 2007). This
indicates that estradiol induces diurnal shifts in GABA transmis-
sion at appropriate times to generate changes in GnRH neuronal
firing activity and hormone release characteristic of both nega-
tive and positive feedback. Adult mice lacking functional GABAB
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receptors (GABAB1KO) displayed disruption of cyclicity and fer-
tility (Catalano et al., 2005). GABAB1KO mice showed increased
Gnrh1 and Gad1 expression but decreased Kiss1 expression in
the medial basal hypothalamus of neonatal mice (Di Giorgio
et al., 2013). Thus, GABA signaling via GABAB receptors is also
important for regulating the estrous cycle.

Metabolic signals have influences on fertility. GABA neuron-
specific leptin receptor knock-out female and male mice show
significantly delayed puberty onset (Zuure et al., 2013). Female
mice lacking functional leptin receptors in GABAergic neurons
have hypogonadotropic hypogonadism (Martin et al., 2014).
Adult leptin receptor knockout mice showed decreased fecundity.
There results suggest that leptin signaling in GABAergic neurons
plays a critical role in the timing of puberty onset and is involved
in fertility regulation. Therefore, GABAergic afferents integrate
metabolic signals for delivery to GnRH neurons.

In human, GABAergic axons exhibiting VGAT immunore-
activity innervate the soma and dendrites of GnRH neurons
(Hrabovszky et al., 2012). A change in GABAergic transmis-
sion is associated with the hypothalamic abnormalities of fer-
tility disorders. In polycystic ovary syndrome model mice,
which were exposed to androgen in utero, the size and fre-
quency of GABAergic postsynaptic currents were increased
(Sullivan and Moenter, 2004b). From these data, increased GnRH
pulse frequency observed in polycystic ovary syndrome may be
attributable to androgen-induced increases in GABAergic drive
to GnRH neurons.

Although the importance of GABAergic inputs has been
demonstrated in in vitro studies, further work is needed to deter-
mine the precise functional roles of direct GABAergic inputs to
GnRH neurons in vivo. Because most GnRH neurons show the
unusual characteristic of being excited by GABA, the excitatory
action of GABA might make a major contribution to the regula-
tion of GnRH neuron activity and secretion. As aberrant central
GABAergic signaling is seen in polycystic ovary syndrome model
mice, change in neuronal GABA activity appears to alter repro-
ductive status both physiologically and pathologically. Therefore,
determination of the precise role of GABAergic transmission in
the regulation of GnRH neurons is important for understanding
the regulation of normal reproduction as well as the hypothalamic
abnormalities of fertility disorders.
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