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INTRODUCTION

Stroke is caused when an artery carrying blood from heart to an area in the brain
bursts or a clot obstructs the blood flow thereby preventing delivery of oxygen and
nutrients. About half of the stroke survivors are left with some degree of disability.
Innovative methodologies for restorative neurorehabilitation are urgently required to
reduce long-term disability. The ability of the nervous system to respond to intrinsic
or extrinsic stimuli by reorganizing its structure, function, and connections is called
neuroplasticity. Neuroplasticity is involved in post-stroke functional disturbances, but also
in rehabilitation. It has been shown that active cortical participation in a closed-loop brain
machine interface (BMI) can induce neuroplasticity in cortical networks where the brain
acts as a controller, e.g., during a visuomotor task. Here, the motor task can be assisted
with neuromuscular electrical stimulation (NMES) where the BMI will act as a real-time
decoder. However, the cortical control and induction of neuroplasticity in a closed-loop BMI
is also dependent on the state of brain, e.g., visuospatial attention during visuomotor task
performance. In fact, spatial neglect is a hidden disability that is a common complication of
stroke and is associated with prolonged hospital stays, accidents, falls, safety problems,
and chronic functional disability. This hypothesis and theory article presents a multi-level
electrotherapy paradigm toward motor rehabilitation in virtual reality that postulates that
while the brain acts as a controller in a closed-loop BMI to drive NMES, the state of
brain can be can be altered toward improvement of visuomotor task performance with
non-invasive brain stimulation (NIBS). This leads to a multi-level electrotherapy paradigm
where a virtual reality-based adaptive response technology is proposed for post-stroke
balance rehabilitation. In this article, we present a conceptual review of the related
experimental findings.

Keywords: virtual reality, eye tracking, neuromuscular electrical stimulation, stroke, neurorehabilitation,
non-invasive brain stimulation

phase. Here, the impact of standing balance on activities of

Stroke, defined as an episode of neurological dysfunction caused
by focal cerebral, spinal, or retinal infarction, is a global health
problem and fourth leading cause of disability worldwide (Strong
et al.,, 2007; Sacco et al.,, 2013). One of the most common
medical complications after stroke are falls, with a reported inci-
dence of up to 73% in the first year post-stroke (Verheyden
et al.,, 2013). Preliminary results from Marigold et al. (2005)
suggest that agility training programs challenging dynamic bal-
ance may be more effective than static stretching/weight-shifting
exercise programs in preventing falls in the chronic stroke pop-
ulation. Stroke-related ankle impairments, which enhance the
probability of falls, include weakness of the ankle dorsiflexor
muscles and increased spasticity of the ankle plantarflexor mus-
cles. This leads to the foot drop syndrome that is clinically
described as poor ankle dorsiflexion during the swing phase
along with a forefoot or flat-foot initial contact in the stance

daily living is critical, since balance is associated with ambula-
tory ability (Patterson et al., 2007) and recovery of gross motor
function (Tyson et al., 2007). Toward improving muscle strength
and reducing muscle spasticity, we leverage recent advances in
rehabilitation technology, particularly Neuromuscular Electrical
Stimulation (NMES), for post-stroke standing balance rehabilita-
tion. NMES involves coordinated electrical stimulation of nerves
and muscles by continuous short pulses of electrical current
and has been shown to improve gait speed in subjects post-
stroke (Robbins et al., 2006). This hypothesis and theory article
first proposes a volitionally controlled NMES system for ankle
muscles, which acts as a muscle amplifier to improve adequate
ankle movement for upright stance during postural perturba-
tions (Hwang et al., 2009). The proposed NMES approach is
based on recent state-of-the-art work in humans that postulated
that the neural control of muscles may be modular, organized
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in functional groups often referred to as muscle synergies
(Piazza et al., 2012; Chvatal and Ting, 2013).

During postural perturbations, the body acts as a single seg-
ment pendulum centered about the ankle joint where the ankle
muscles provide the torque needed to retain upright posture
(Hwang et al., 2009). Gatev et al. (1999) presented a feedforward
ankle strategy based on the fact that a moderate negative zero-
phased correlation exists between the antero-posterior motion of
CoP and ankle angular motion. The antero-posterior (A-P) dis-
placements in CoM are performed by ankle plantarflexors (such
as medial gastrocnemius and soleus muscles) and dorsiflexors
(such as the anterior tibial muscle), while medio-lateral (M-L)
displacements are performed by ankle invertors (such as the ante-
rior tibial muscle) and evertors (such as the peroneus longus and
brevis muscles) (Winter et al., 1996). Therefore, stroke-related
ankle impairments, including weakness of the ankle dorsiflexor
muscles and increased spasticity of the ankle plantarflexor mus-
cles, lead to impaired postural control. Respective changes in
reflex excitability with respect to postural sway have been shown
during standing (Tokuno et al., 2009). For post-stroke stand-
ing balance rehabilitation, we thus might be able to ameliorate
these stroke-related ankle impairments via an improved mod-
ulation of ankle stiffness by modulating muscle tone (Winter
et al.,, 2001) via NMES. We further hypothesize that a coordi-
nated increase in corticospinal excitability of the representation
of specific ankle muscles can result in an improved modulation
of ankle stiffness. In this connection, prior work has shown that
NMES elicits lasting changes in corticospinal excitability, possibly

as a result of co-activating motor and sensory fibers (Knash et al.,
2003). Moreover, Khaslavskaia and Sinkjaer (2005) showed in
humans that concurrent motor cortical drive present at the time
of NMES goes along with enhanced motor cortical excitability.
Furthermore, at the spinal level, volitionally-driven NMES under
visual feedback may induce short-term neuroplasticity in spinal
reflexes (e.g., reciprocal Ia inhibition; Perez et al., 2003). Also, cor-
ticospinal neurons that project via descending pathways to a given
motoneuron pool can inhibit the antagonistic motoneuron pool
via la-inhibitory interneurons in humans (Pierrot-Deseilligny
and Burke, 2005). Consequently, post-stroke impaired recipro-
cal inhibition between antagonistic muscles may be strengthened
via increased presynaptic inhibition of group Ia-afferents under
operant conditioning with visual feedback. In this operant condi-
tioning paradigm with visual feedback (Dutta et al., 2013a), the
brain acts as the controller during the visuomotor task, where the
center of pressure (CoP) is volitionally moved across a display
monitor and this movement is assisted with volitionally-driven
NMES, as illustrated in Figure 1.

However, prior work suggests that active supraspinal con-
trol mechanisms are relevant for balance and their adaptation
is important in balance training (Taube et al., 2008). Indeed,
supraspinal control mechanisms help to counteract internal per-
turbations caused by self-initiated movements during activities of
daily living to maintain standing balance (Geurts et al., 2005).
Balance measures reveal underlying limb-specific control such
as between-limb CoP synchronization for standing balance that
appears to be a unique index of balance control, independent
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FIGURE 1 | Computational neuroanatomy for motor control. Grayed boxes represent the brain regions proposed in this article to be targeted with

non-invasive brain stimulation. NMES, neuromuscular electrical stimulation.

Frontiers in Neuroscience | Neuroprosthetics

December 2014 | Volume 8 | Article 403 | 2


http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive

Dutta et al.

Multi-level electrotherapy for balance rehabilitation

from postural sway, and load symmetry during stance (Mansfield
et al., 2012). A review of standing balance recovery from stroke
by Geurts et al. (2005) shows that brain lesions involving par-
ticularly the parieto-temporal junction are associated with poor
postural control, and suggests that normal multisensory inte-
gration in addition to muscle strength is critical for balance
recovery. Tokuno et al. (2009) concluded that the sensory feed-
back mechanisms do relevantly contribute, as the excitability of
the respective cortical area was modulated as a function of postu-
ral sway, where stroke-related sensorimotor impairment poten-
tially contributes to impaired balance (Mansfield et al., 2012).
Indeed, active cortical control based on sensory feedback is rel-
evant for maintaining balance during activities of daily living
(Qu and Nussbaum, 2009). In this connection, unilateral spa-
tial neglect, i.e., failure or slowness to respond, orient, or initiate
action toward contralesional stimuli, is a common neurologi-
cal syndrome following predominantly right hemisphere injuries
to ventral fronto-parietal cortex (Corbetta and Shulman, 2011).
Spatial neglect is associated with prolonged hospital stays, acci-
dents, falls, safety problems, and chronic functional disability
(Goedert et al., 2012), probably caused to a relevant degree by
compromised cortical control of balance. Here, amelioration of
spatial neglect may be possible with non-invasive brain stimu-
lation (NIBS) (Hesse et al., 2011). NIBS—namely transcranial
direct current stimulation (tDCS)—over the posterior parietal
cortex (PPC) has been shown to modulate visuospatial local-
ization (Wright and Krekelberg, 2014) and to alter perceived
position (Wright and Krekelberg, 2013). Moreover, modulation
of sensorimotor cortical excitability by tDCS is feasible (Nitsche
and Paulus, 2000), and may facilitate post-stroke rehabilitation
(Hallett, 2005; Floel, 2014) by enhancing sensory feedback mech-
anisms for brain machine interface (BMI) control (Dutta et al.,
2014b). Matsunaga et al. (2004) have shown that anodal tDCS
over the sensorimotor cortex induces a long-lasting increase
of the size of ipsilateral cortical components of somatosensory
evoked potentials. Moreover, anodal tDCS enhances corticospinal
excitability (Nitsche and Paulus, 2000), including long-term
changes of synaptic strength (Nitsche et al., 2008), and anodal
tDCS over the primary motor cortex has an impact on spinal
network excitability in humans (Roche et al., 2009). Roche and
colleagues describe an increase of disynaptic inhibition at the
spinal level reflex pathways during anodal tDCS that was caused
by an increase in disynaptic interneuron excitability (Roche et al.,
2009).

The computational neuroanatomy for motor control
(Shadmehr and Krakauer, 2008) is shown in Figure 1. Shadmehr
and Krakauer (2008) suggested specific functions of different
parts of the brain in motor control. The main function of the

e cerebellum is system identification, i.e., to build internal mod-
els that predict sensory outcome of motor commands and
correct motor commands through internal feedback.

e parietal cortex is state estimation, i.e., to integrate the predicted
proprioceptive and visual outcomes with sensory feedback to
form a belief about how the commands affect the states of the
body and the environment.

e basal ganglia is related to optimal control, i.e., learning costs
and rewards associated with sensory states and estimating the
“cost-to-go” during execution of a motor task.

e primary and the premotor cortices are related to imple-
menting the optimal control policy by transforming beliefs
about proprioceptive and visual states, respectively, into motor
commands.

Here, during operant conditioning with visual feedback (Dutta
et al., 2013a), the brain acts as the controller for trial-by-trial
error correction during the visuomotor task which is assisted
with volitionally-driven NMES (Figure 1). The real-time decoder
for NMES (see Figure 2) acts as a intent detector to assist resid-
ual muscle function with electrical stimulation-evoked muscle
action. However, stroke survivors often suffer from heterogeneous
deficits in cortical control, e.g., delay in initiation and termina-
tion of muscle contraction (Chae et al., 2002) as well as deficits
in the visuomotor attention networks (Corbetta and Shulman,
2011) conducive for motor learning. Therefore, our hypothesis
is that the cortical control of NMES during visuomotor task and
motor learning during balance rehabilitation may be facilitated
with NIBS. The underlying concept of NIBS approaches is that
NIBS can modulate excitability of a targeted cortical region. The
sensor fusion for NIBS (see Figure 2) includes a NIBS controller
that tries to maintain a more balanced brain state (Schlaug and
Renga, 2008). The sensor fusion also includes gaze-interaction
with CoP visual feedback (Sailer et al., 2005) to objectively quan-
tify the engagement and stage of motor learning for the affected
and unaffected sides, such that the quality of error feedback
can be titrated to balance bilateral performance during operant
conditioning. The human-machine interface (HMI) integrating
biosignal sensors and motion capture with a NMES system for
post-stroke balance rehabilitation is based on a point-of-care test-
ing system (Dutta et al., 2013b) that has been shown feasible for
EMG-triggered NMES therapy (Banerjee et al., 2014).

HYPOTHESIS 1: BRAIN ACTS AS A CONTROLLER FOR
TRIAL-BY-TRIAL ERROR CORRECTION DURING
VISUOMOTOR BALANCE THERAPY

As shown in Figure 1, coordinated movement depends on inter-
actions between multiple brain areas leading to transient func-
tional connectivity networks (Shafi et al., 2012) where the brain
acts as a controller viz. state estimation, optimization, predic-
tion, cost, and reward. Active participation of motor-cortex (and
other cortical areas) may be facilitated by modulating NMES
with volitional effort where state-of-the-art prior works show
that stimulation envelopes may be controlled (Yeom and Chang,
2010) or triggered (Banerjee et al., 2014) with volitional elec-
tromyogram (EMG). During operant conditioning, post-stroke
subject volitionally drives NMES during visuomotor task per-
formance for balance rehabilitation where the goal is to reduce
error while steering a computer cursor to a peripheral target using
volitionally generated CoP excursions, as illustrated in Figure 3.
The human machine interface (HMI) integrating biosignal sen-
sors and motion capture for volitionally driven NMES toward
operant conditioning with visual feedback was evaluated in a
community setting (Banerjee et al., 2014). We present a real-time
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decoder in Subsection Proposed Method: Volitionally-Driven
NMES-Assisted Visuomotor Balance Therapy for volitionally
driven NMES that combines physical sensor signals with biopo-
tentials from the HMI to facilitate erect posture recovery fol-
lowing internal postural perturbations caused by self-initiated
movements.

A proof-of-concept study (without NMES) on HMI was suc-
cessfully conducted on 10 able-bodied subjects (5 right-leg dom-
inant males and 5 right-leg dominant females aged between 22
and 46 years) (unpublished material). All subjects gave their writ-
ten informed consent for the experiments in compliance with
the Declaration of Helsinki. They had no known neurological
disorder at the time of the study. Here, stroke presents with
heterogeneous deficits in motor control where the recovery of
erect posture in stroke survivors following CoP excursions is pro-
posed (Subsection Proposed Method: Volitionally-Driven NMES-
Assisted Visuomotor Balance Therapy) to be assisted with NMES.
Geurts et al. (2005) reviewed cross-sectional studies of volun-
tary weight-shifting capacity in patients after stroke compared
to age-matched healthy control subjects and provided evidence
of the following deficits: (1) multi-directionally impaired maxi-
mal weight shifting during bipedal standing, in particular toward
the paretic leg; (2) slow speed, directional imprecision and small
amplitudes of single and cyclic sub-maximal frontal plane weight
shifts, most prominently toward the paretic side. An increased
magnitude of postural sway has been described for individuals

after stroke (Mansfield et al., 2012). Post-stroke sensory deficits
may be responsible for these symptoms, because upright stand-
ing requires to be stabilized by active control strategies against
instability induced by a large neural feedback transmission delay.
Mansfield and colleagues proposed that measures of between-
limb synchronization, overall postural sway, and weight-bearing
symmetry are each independently important measures of post-
stroke standing balance control and can reveal discernable control
problems (Mansfield et al., 2012).

Prior work suggests that visual CoP feedback during a weight-
shifting task may improve performance (Ustinova et al., 2001).
Moreover, patients in the post-acute phase of stroke tend to rely
more on visual information for postural control in both antero-
posterior (A-P) and medio-lateral (M-L) planes than healthy
age-matched controls (Geurts et al., 2005). Indeed, excessive
reliance on vision for erect standing may decrease during rehabil-
itation, but can still be found in the chronic phase under more
challenging conditions. Such abnormal reliance on vision may
be related to a higher-level inability to select the pertinent sen-
sory input. There is evidence that even in the chronic phase of
stroke, visual deprivation training can reduce the degree of visual
dependence for postural control (Geurts et al., 2005). In accor-
dance, we present an operant conditioning paradigm where CoP
excursions steers the cursor on a screen and the visual feedback
of the cursor is corrupted by noise thereby effecting visual depri-
vation. We propose to vary the quality of visual feedback using
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reach task (mFRT). The subject is required to steer a computer cursor to a peripheral target using volitionally generated Center of Pressure (CoP) excursions.

Move (as fast
as possible)

Peripheral hold
(1 sec)
TR P

Reset (back
to centre)

different noise levels for different locations on the screen accord-
ing to the visuospatial attention during the visuomotor task for
uniform learning of the affected and unaffected sides, and there-
fore present the subject with a virtual reality toward constrained
induced movement therapy (Morris et al., 1997), as discussed in
Section Proposed Method: Operant Conditioning Based on Gaze-
Interaction in Virtual Reality. In Section Preliminary Evidence:
Trial-by-Trial Error Correction during Operant Conditioning, we
present evidence from our proof-of-concept study on healthy for
trial-by-trial error correction during visuomotor balance therapy
under an operant conditioning paradigm.

PROPOSED METHOD: VOLITIONALLY-DRIVEN NMES-ASSISTED
VISUOMOTOR BALANCE THERAPY

The capacity to voluntarily transfer body weight while maintain-
ing standing balance over a fixed base of support is a prerequisite
for safe mobility (Geurts et al., 2005). During balance training,
the stroke survivors will voluntary shift their CoP location to steer
the cursor as fast as possible under visual feedback. The state-
of-the-art prior works show that NMES stimulation envelopes
may be controlled (Yeom and Chang, 2010; Zhang et al., 2013) or
triggered (Dutta, 2009) with volitional electromyogram (EMG)
or electroencephalogram (EEG) (Niazi et al., 2012; Takahashi
etal., 2012). However, post-stroke biopotentials often suffer from
deficits, e.g., EMG suffers from delays in initiation/termination
(Chae et al., 2002) as well as fatigue, and therefore solely biopo-
tentials based control of a NMES-assisted dynamic balance task
is challenging where such activation delays may result in falls.
Such faults may be alleviated through sensor fusion with physical
sensor signals (Dutta et al., 2011). Here, able-bodied muscle acti-
vation profiles from EMG can be used to define the NMES tem-
plates (Kobetic and Marsolais, 1994) for erect posture recovery

where (optimal) muscle synergies (Chvatal and Ting, 2013) can
be extracted from the EMG recorded bilaterally from healthy
ankle muscles approximately coincident with those targeted for
NMES (Piazza et al., 2012; Li et al., 2014) in post-stroke sub-
jects right after presentation of the visual cue. The muscle synergy
specifies the coordinated activation of several muscles, and each
muscle synergy is expected to get activated during specific pertur-
bation directions (A-P or M-L) and time bins following the visual
cue (Torres-Oviedo and Ting, 2007). Recent work in humans
demonstrates that the neural control of muscles may be modu-
lar, organized in functional groups often referred to as muscle
synergies (Chvatal and Ting, 2013). Moreover, Torres-Oviedo
and Ting (2007) showed that muscle synergies, i.e., a pattern of
task-specific co-activation of muscles, represent a general neural
strategy underlying muscle coordination in postural tasks. In fact,
the composition and temporal activation of several muscle syn-
ergies identified across subjects are consistent with “ankle” and
“hip” strategies in human postural responses (Torres-Oviedo and
Ting, 2007). Although several studies show how the motor sys-
tem elegantly circumvents the need to control its large number
of degrees of freedom through a flexible combination of motor
synergies (Chvatal and Ting, 2013), such a framework has not yet
been leveraged for the generation of NMES stimulation patterns.
Here, Alessandro et al. (2012) discussed the synthesis and adap-
tation of effective motor synergies for the solution of reaching
tasks which can be leveraged with a reduced-order biped model
for NMES template generation (Piazza et al., 2012; Li et al., 2014).
To model the performance of a dynamic balance task such as voli-
tional CoP excursions while maintaining standing balance over
a fixed Base of Support (BoS), we will apply the “extrapolated
center of mass” (xCoM) concept to define the Margin of Stability
(MoS) (Hof, 2008). Here, bipedal standing is approximated as an
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inverted pendulum centered about the ankle joint. Its eigenfre-
quency (%0) can be computed from the leg length (1), i.e., the
height of the upper margin of the greater trochanter above the

floor,
@ :\/% (1)

where ¢ is the acceleration due to gravity. Therefore, the xCoM

location, |:x:| , can be defined from the CoM projection on
xCoM

the ground, |:x] ,
Y lcom

[ Blelil, o
Yeor  Wdcn [0 CoM

During performance of the bipedal reaching task, the maximum
excursion of the xCoM location which does not result in a step-
ping response can be monitored. This will provide an estimate
of the MoS within the BoS for standing balance control. Animal
studies have shown that perturbations evoke coordinated long-
latency responses that help to return the body to its postural

equilibrium (Macpherson and Fung, 1999; Deliagina et al., 2008).
A real-time decoder can detect this long-latency responses to
control and/or trigger NMES to assist the post-stroke subjects
to recover to the erect posture following internal perturbations.
NMES is based on the observation of intermittent, ballistic-type
corrective movements in healthy humans (Loram et al., 2005)
where NMES of the ankle muscles will provide the assistive torque
not only to generate basic support (i.e., adequate ankle stiffness)
(Hwang et al., 2009) for upright standing but also to provide fre-
quent, ballistic bias impulses for regaining balance from micro
falls (Loram et al., 2005).

In our proof-of-concept study on healthy (no NMES), the aug-
mented HMI system (Figure4) was used to record CoP-CoM
trajectories while the subjects were asked to keep their body rigid,
and to maintain full feet contact with the Wii BB. The subjects
were asked to lean as far as possible toward forward, toward back-
ward, toward the right side, and toward the left side using visual
feedback of the CoP location to provide calibration values for «
and B (in Equation 3) such that the cursor does not go off the
screen during performance of the visuomotor task when the sub-
ject uses full functional reach to steer the computer cursor. During
the Central Hold task (CHT), the subjects were asked to keep the

. . . . . X .
cursor close to its origin with CoP excursions, |: i| , which
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FIGURE 4 | The human-machine-interface integrating biosignal
sensors, eye tracker, and motion capture with a neuromuscular
electrical stimulation system for post-stroke balance rehabilitation.

NMES, Neuromuscular Electrical Stimulation; EMG, Electromyogram;
EEG, Electroencephalogram; CoR Center of Pressure; PC, Personal
Computer.
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, according to Equation

Cur
(3) (discretized time, ¢, with time-step, df)

p
accelerated the computer cursor, |:]

—— t - t—1 . ot—1

X X X X
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:y:tCur yt_Cl‘oP _—)_/ICIAT’ Y dcur
=] ] ©
g Lo oy
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where ¢ = 0.01s%/cm, o =0.2572, B =0.1s"1, n = N(0,0 =
0.1572). The visuomotor task was divided into 100 trials lasting
for a random duration evenly distributed between 11.5 and 15
based on prior work of Stevenson et al. (2009). Every 20ms a
new dot was shown on the screen with a position drawn from
a radially isotropic Gaussian distribution [N(0, 3.5cm)] cen-
tered on the true position of the cursor. The subjects learned to
modulate CoP excursion to keep the cursor close to the origin
where the mean squared errors (MSEs) were monitored. It was
hypothesized that MSE will stay steady during the exploratory
stage, show a quick improvement during the skill acquisition
stage, followed by a slow improvement during the skill refine-
ment stage. Then, under amodified functional reach task (mFRT)
paradigm (Dutta et al.,, 2014c) in upright standing, called the
“Central hold” phase, the subject needs to steer the cursor as
fast as possible toward a randomly presented peripheral target
as cued by visual feedback (see Figure 3). Following this “Move”
phase, the subject will have to hold the cursor at the target
location for 1s during the “Peripheral hold” phase. Following
the “Peripheral hold” phase, the cursor will “Reset” back to the
center. Following CoP excursion to steer the cursor during the
“Move” phase, the recovery of erect posture will be assisted with
NMES.

In our proof-of-concept study on healthy (no NMES), EEG
and electrooculogram (EOG) recordings were investigated to
detect motor intent during CoP excursions. EEG recordings were
conducted using the Emotiv neuroheadset (Emotiv, Australia)
which wirelessly relayed EEG data to the PC from 14 chan-
nels (saline soaked sponges of the Emotiv Neuroheadset were
replaced with Ag/AgCl electrodes) of the EEG cap (International
10-20 system)—Fpl, Fp2, F3, Fz, F4, C3, Cz, C4, P3, Pz, P4,
01, 02 (plus Common Mode Sense/Driven Right Leg references).
EEG electrode impedance was kept below 5 kOhm by scratch-
ing the scalp and using conductive gel (Ten20, Weaver, USA).
The EEG data were analyzed using EEGlab Matlab (Mathworks,
USA) software (Delorme and Makeig, 2004). Additionally, a four-
electrode EEG, with one electrode positioned at the outer edge
of each eye to monitor the horizontal motions and one elec-
trode positioned above and one below the right eye for obtaining
vertical movements, was acquired. The eye-blinks along with sac-
cades were identified using EOGUI Matlab (Mathworks, USA)
software [“Eogui—a Software to Analyze Electro-Oculogram

(EOG) Recordings - File Exchange - MATLAB Central” 2014!],
which provides the Duration (milliseconds), Amplitude (angu-
lar degree), and Viewing Direction (for the saccades in nautic
degree; 0 for upwards gazes, 90 for gaze to the right, 180 for
downwards gazes, 270 for gazes to the left). Then, eye-blink arti-
facts identified from EOG were rejected using EEGlab functions
and the artifact-free EEG was analyzed for each trial in 4.096s
epochs using a Hanning time window (epochs were overlapped by
50%), and an estimation of the power spectra was calculated for
the absolute alpha (7.5-14 Hz) band via fast Fourier transforma-
tion using the Welch technique (“pwelch” in Matlab, MathWorks,
USA) to detect alpha event-related desynchronization (aERD)
(Pfurtscheller and Lopes da Silva, 1999). aERD appearance was
defined when the power was below the resting state value, thereby
reflecting cognitive attention during CoP visuomotor task, i.e.,

Prask — Presting—
aERD% — ( task resting state) % 100 (4)

p resting—state

where Py, is the power spectral density estimate during the
visuomotor task and Presting—stare is the power spectral density
estimate during resting state. The mFRT is proposed to quan-
tify the subjects’ ability to volitionally shift their CoP position as
quickly as possible without losing balance while cued with CoP
visual biofeedback. During CHT and mFRT, alpha event-related
desynchronization (aERD%) was found primarily in the parietal
and occipital EEG electrodes (unpublished material), shown by
an illustrative plot in Figure 5.

PROPOSED METHOD: OPERANT CONDITIONING BASED ON
GAZE-INTERACTION IN VIRTUAL REALITY

The capacity to voluntarily transfer body weight while maintain-
ing standing balance over a fixed base of support is a prerequisite
for activities of daily living. Stroke survivors use only a small
part of their base of support for voluntary weight displacements.
Also, during standing and antero-posterior (A-P) weight-shifting,
stroke patients deviate from the mid-line of the base of sup-
port more than healthy control subjects (Goldie et al., 1996).
Moreover, compared to control subjects, stroke patients have sig-
nificant deficits in the ability to weight-shift in the medio-lateral
(M-L) direction (Goldie et al., 1996). Furthermore, there is strong
evidence that physiological markers such as blink rate can be
used as effective indicator of one’s mental workload (Marshall,
2007). In our augmented HMI, two Wii Balance Board™ (Wii
BB) (Nintendo, USA) (Clark et al., 2010) were positioned side by
side without touching (i.e., <1 mm apart). Following the exper-
imental protocol of Mansfield and colleagues (Mansfield et al.,
2012), the subjects could stand with one foot on each Wii BB in
a standard position (feet oriented at 14° with 7° rotation of each
foot with an inter-malleoli distance equal to 8% of the height),
with each foot equidistant from the midline between both Wii
BBs. In our integrated system, we augment the operant condition-
ing paradigm with a gaze-sensitive virtual reality-based adaptive

Thttp://www.mathworks.com/matlabcentral/fileexchange/file_infos/32493-eo
gui-a-software-to-analyze-electro-oculogram-eog-recordings. Accessed
April 2.
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FIGURE 5 | (A) During functional reach test, the Center of Pressure was
volitionally moved away from the resting state (origin is static
equilibrium). (B) Feasibility results for event-related desynchronization in
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functional reach test (black color) when compared to the resting state
(red color).

response technology (Lahiri et al., 2013) that evaluates motor
learning during the performance of the visuomotor task with
regard to visuomotor coordination via applying the principles of
engagement. Specifically, making the visuomotor task easier for
the affected side in virtual reality may yield greater neuroplastic
changes and functional outcomes in neurorehabilitation (Danzl
etal., 2012).

The post-stroke subject will stand with a minimum base-
line stimulation level necessary to generate basic support for
upright standing according to clinical observation. From this
upright standing, the patient needs to steer the cursor as fast as
possible toward a randomly presented peripheral target as cued
by visual feedback (see Figure 3) under a modified functional
reach task (mFRT) paradigm, as discussed in Section Proposed
Method: Operant Conditioning Based on Gaze-Interaction in
Virtual Reality. During the bipedal reaching task using visual
feedback, the acceleration of the cursor can be controlled with
CoP excursions measured by two (one for each limb) Wii BB
according to the following dynamics (Stevenson et al., 2009),

HIREIH IS
.. =& + &
y Cur Y CoPy Y CoP,

—a |:x] —ﬂ[%] +7 (5)
Y Cur Y Cur

where ¢1, &, parameterizes the effect of recorded CoP;, CoP,

. X X .
excursions and on the cursor acceleration,
COP1 y COPZ

y
off-screen, and n ~ N(0, 0,) represents the process noise with

variance op. The increase in gain &1, &, makes the task require
lesser CoP excursion range while a decrease in the variance,
0p, reduces the uncertainty. Task difficulty can be increased by
decreasing the gain €1, &3 and increasing the variance, o), where
we present the subject with a virtual reality toward constrained

X .
|:] , and « and B parameters prevent the cursor from going
Cur

induced movement therapy (Morris et al., 1997). Furthermore,
toward constrained induced movement therapy (Morris et al.,
1997), visual deprivation will be effected by introducing observer
noise in the visual feedback by flashing a low contrast dot on the
screen with a position drawn from a radially isotropic Gaussian
distribution centered on the true position of the cursor. The vari-
ance representing this Gaussian cloud of points N(0, g,), will
introduce observer noise as shown by prior work (Stevenson et al.,
2009). Therefore, task difficulty can be modulated with parame-
ters 1, £2, 0p, and o, for the affected and unaffected limbs during
operant conditioning. For example, the gain, &;, &;, can be set
individually for the affected and unaffected limbs for each periph-
eral target such that they present similar reaching errors during
the exploratory stage of motor learning for the unipedal reach-
ing task, which may lead to comparable reward expectations.
During performance of the bipedal reaching task, the subject can
learn to volitionally modulate CoP excursions using coordinated
bipedal muscle activity to generate cued cursor movement under
visual feedback. Here, identification of visuospatial attention and
motor learning is critical for constrained induced movement ther-
apy (Morris et al., 1997) where a Bayesian framework addresses
the problem of updating beliefs and making inferences based on
observed data. We present a standard Kalman filter to compute
the estimated state of the cursor from observations while cap-
turing user behavior during the reaching task, i.e., the “Central
hold,” “Move,” and then “Peripheral hold” phases of the task. The
peripheral targets are at the subject-specific limits (position and
velocity) of CoP excursion, which are mapped using the o and
B parameters of the Equation (5) for each target. An important
feature of the Kalman filter is how estimation changes as a func-
tion of feedback uncertainty (Stevenson et al., 2009). For example,
increasing the observation noise by increasing the variance, o,,
for a certain peripheral target while keeping the process dynam-
ics and process noise identical (e1, &2, 0p) may have different
effects on its state updates (i.e., Kalman update) based on post-
stroke residual function. Hence, the Kalman filter model allows
to interrogate the post-stroke control mechanisms by capturing
the effects of observation noise (or, visual feedback uncertainty)
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on the control of cursor state (and reaching errors) toward multi-
directional peripheral targets. The Kalman filter assumes that the
cursor state, X = [x, y, x, y], at time t evolves from the state at
time, t — 1, according to linear dynamics and control:

Xy =AXy 1+ Bur1 + Wy (6)

where u; is the control signal and W; is the process noise derived
from a Gaussian distribution. Here, A and B follow from the
Equation (6) for an ideal observer and W; reflects the effects
of process noise n ~ N(0, o). For example, Stevenson et al.
(2009) found bang-bang controller more similar to human con-
trol mechanisms than a linear-quadratic regulator (LQR) during
bipedal reaching tasks.

Uy = Aisign ([cos@ sinG]X) + Ao (7)

Here, 6 parameterizes the decision rule for a given state of the
cursor, X, and Ag, A; parameterizes the magnitude of the two
states for bang-bang control for each peripheral target, to capture
the “Move” phase toward that target. Moreover, Stevenson et al.
(2009) have found that healthy humans readily dampen the cur-
sor oscillations induced by the process noise, n ~ N(0, 0,) which
may be deficient post-stroke based on residual function. Here,
the cross-correlation between the fluctuations of cursor dynamics
(process noise, 7 ~ N(0, 0p) and CoP during the “Central hold”
and “Peripheral hold” phases of the task should be consistent with
ideal observer models in normal cases of residual function, i.e.,
subjects should respond more slowly and with lower amplitudes
when the feedback is more uncertain (increased variance, o,).
Also the gains, €1, €, i.e., the range of CoP excursion required
for the reaching task, should not affect subject’s control policy
in normal cases of residual function (Stevenson et al., 2009).
Therefore, the post-stroke subject’s postural control policies can
be evaluated for each peripheral target by changing the gain to
investigate if hemiparesis affects control strategies for reaching
certain targets, e.g., at the paretic side. Especially at low gains,
the visuomotor task becomes challenging when the subject may
use compensatory mechanisms to map between CoP actions and
their visual sensory consequences. Motor learning will start from
exploratory and skill acquisition to skill refinement stages. The
reach errors will stay steady during the exploratory stage and will
show a quick improvement during the skill acquisition stage fol-
lowed by slow improvement during the skill refinement stage. In
fact, this can be detected with gaze behavior where active sensing
with eye movements during exploratory actions may contribute
to coupling of perception and action (Vickers, 2009). For exam-
ple, the quiet eye (QE) period can be defined as the elapsed time
between the last visual fixation to the target and the initiation
of the motor response, which has emerged as a characteristic of
higher levels of performance (Vickers, 2009). In fact, Mann et al.
(2007) presented a meta-analysis that supported the critical role
of visual attention in the expert advantage, revealing that experts
consistently exhibit fewer fixations of longer duration than non-
expert comparison groups. Moreover, during visuomotor tasks,
Mann et al. (2011) found that experts exhibit a prolonged QE

period and greater cortical activation in the right-central region
compared with non-experts.

Prior work on gaze behavior during eye-hand coordination
(Sailer et al., 2005) suggests that gaze interaction can provide
an evaluative feedback of motor learning. It starts with pur-
suing the cursor during the exploratory stage, continues with
predicatively marking the desired cursor positions during skill
acquisition stage, and ends up with direct shifts toward the tar-
get during the skill refinement stage. Therefore, the time delay,
Tdelay> Detween the two signals, as determined by the argument of
the maximal cross-correlation, should indicate the stage of motor
learning. Moreover, during skill acquisition the desired cursor tra-
jectory can be decoded from gaze activity to see if the desired
cursor positions are successfully reached under visuomotor con-
trol during the “Move” phase. Here, Bayesian learning involves
computing the posterior probability distribution of the stage of
motor learning during the “Move” phase from the observed gaze-
interaction (i.e., Tgeay) Where a coarse estimate of the stage of
motor learning is based on the reach error at the end of the
“Move” phase. In this center-out bipedal visuomotor reaching
task with zero process and observer noise (0, = 0 and o, = 0),
two modes of performance—skilled, unskilled—are possible dur-
ing the “Move” phase. These two modes of performance (or
hypotheses) are considered to be mutually exclusive and exhaus-
tive hypotheses, H = {hkifled, Bunskiled}> and can be formulated
for each cued peripheral target, T}, during the visuomotor reach-
ing task. In the Bayesian framework, we denote the degree of belief
in a hypothesis by probabilities and determine this belief, called
posterior probabilities, using the product of data likelihood and
prior probabilities (Bayes’s rule):

P(d|h;, T;)P(h;)

P(hild, T;) =
(il ) SN P(d|hi, T;)P(hy)

where prior probabilities, P(h;), represent the belief before
observing the data, d (e.g., Tgelay, etc.), and likelihoods,
P(d|h;, T;), for each peripheral target, T;, denote the probability
with which we would expect to observe the data if the hypothesis
is true. To estimate the best peripheral targets for motor learn-
ing (i.e., distinguishing hskinted, Punskinea) with subject-specific gaze
interaction data, d, the confusion probability matrix for each
possible peripheral target, T;, can be found

Cr; Z/\/p(dlhskiued, T)p(d\hunskitiea, Ti)dd. 9)

Here, we present a modular neural network implementing
Bayesian learning and inference for each possible peripheral tar-
get, T;, as described in a prior work by Kharratzadeh and Shultz
(2013).

The first module, Module 1, implements the Bayes’s rule
assuming that the values of prior and likelihood probabilities are
given as input. Its output is the posterior probability. This needs
to be run for each hypothesis.

Module 2 computes the likelihood probabilities based on
observed data. The role of Module 2 is to learn these distri-
butions as the underlying mechanisms generating the data. For
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example, positive Tjelqy (i.., gaze pursuing the cursor positions)
represents unskilled performance, i.e., at the exploratory stage
and negative Tgeay (i.e., gaze predicatively marking the desired
cursor positions) indicates skilled performance, i.e., at the end
of skill acquisition stage. Here, the generative process can be
described as a Gaussian with mean h; and standard deviation 1;
with positive mean for i = unskilled, negative mean for i = skilled
(Kharratzadeh and Shultz, 2013),

(d—hy)?

Fd ) = e
T

3 (10)

Module 3 computes the hypothesis’s prior probabilities by learn-
ing their generative discrete distribution function. For example,
the generative function can be of the form (Kharratzadeh and
Shultz, 2013),

K?
g(h) = ve? (11)
where v is chosen such that the sum of the prior probabilities
equal 1.

For our hypotheses presented for each peripheral reach target,
we need to first learn Modules 1 and 3 one-time based on the gaze
behavior with respect to the cursor position during the “Move”
phase toward a peripheral reach target. During exploratory and
skill acquisition stages of operant conditioning, multiple “Move”
phases will be performed for each peripheral reach target where
the stage of motor learning can be estimated from the reach
error following each “Move” phase (Stevenson et al., 2009). A
variant of the cascade correlation method, called the sibling
descendent cascade correlation (SDCC), can be used to train the
Modules using input(s)-output training pairs as shown earlier
(Kharratzadeh and Shultz, 2013). After learning Modules 1 and
3, we will use them twice for computing the posterior and prior
of each hypothesis, which needs to be learned for each hypothe-
sis, using Module 2. After sufficient training on gaze-interaction,
the modular neural network will provide online feedback of the
subject’s stage of motor learning during the “Move” phase toward
the cued peripheral reach target, P(h;|d, T;), that is based on the
observed saccades and gaze fixations with respect to the cursor
position (Equation 8). Here, the confusion matrix, Cr;, will pro-
vide an estimate of the subject-specific performance of such a
classifier (Equation 9). Therefore, a comparable reach error can
be maintained across peripheral reach targets by online adapta-
tion of o}, for operant conditioning of volitional multi-directional
CoP excursions. For example, increasing the variances, o, will
increase the difficulty of the visuomotor task during the “Move”
phase, leading to an increase in the reach error at the end of
the “Move” phase. Such performance-based adaptive schedules
have been shown to enhance motor learning when compared to
random scheduling (Choi et al., 2008).

Based on these prior investigations and specifically on a prior
work on gaze behavior during eye-hand coordination (Sailer
et al.,, 2005), we postulate that gaze interaction may provide eval-
uative feedback of motor learning during the “Move” phase that
can be used to adapt cursor dynamics such that compensatory
mechanisms of the unaffected side can be constrained (Taub and

Morris, 2001) toward constrained induced movement therapy
(Morris et al., 1997). Such performance-based adaptive schedules
have been shown to enhance motor learning when compared to
random scheduling (Choi et al., 2008).

PRELIMINARY EVIDENCE: TRIAL-BY-TRIAL ERROR CORRECTION
DURING OPERANT CONDITIONING
The mean square error (MSE) and gaze-interaction (Sailer et al.,
2005) with the visual feedback can be continuously monitored
during the visuomotor task and post-stroke subjective learning in
the affected and unaffected sides may be modulated by changing
the respective error feedback in an operant conditioning frame-
work (Dutta et al., 2013a), i.e., in principle constrained induced
movement therapy (Morris et al., 1997) in a virtual reality. A
conceptual review of this operant conditioning framework for
balance training is presented in the last Subsection Proposed
Method: Operant Conditioning Based on Gaze-Interaction in
Virtual Reality. Additionally, modulation of event-related desyn-
chronization (ERD) with motor cortex tDCS in healthy vol-
unteers (Matsumoto et al,, 2010) and patients with chronic
severe hemiparetic stroke has been shown feasible (Kasashima
et al., 2012). Based on our proof-of-concept study on healthy
(no NMES), the MSE normalized by the baseline value [(with-
out process noise, i.e., n = N(0,0 = 0s=2)] trended toward a
decrease (see Figure 6), the blink rate trended toward an increase
(see Figure 6), and the saccadic direction relative to the cursor
acceleration trended toward zero (see Figure 6) during the visuo-
motor task under an operant conditioning paradigm. Moreover,
Figure 7 shows that the aERD% at the position Pz correlated with
the normalized mean square error (MSEnorm) during the visuo-
motor task performance in CHT. The 95% prediction bounds
are also shown for a linear-fit which indicates a 95% chance that
a new observation is placed within the lower and upper pre-
diction bounds. The coefficients (with 95% confidence bounds)
of the linear fit, aERD% = a X MSE,o;malized + b, are a = 10.97
(10.19, 11.76) and b = —18.16( —18.8, —17.52). The R2-value
was 0.4316 indicating the goodness of fit. Moreover, during
mFRT, we could correctly classify roughly 76% of the movement
directions as left or right based on pair-wise aERD% asymmetry
in P3, P4, and O1, O2 electrodes from epochs lasting 0 to 700 ms
following peripheral cue presentation (unpublished material).
Therefore, MSE and gaze-interaction (Sailer et al., 2005) can
be continuously monitored during the visuomotor task and post-
stroke subjective learning in the affected and unaffected sides
may be modulated by changing the respective error feedback in
an operant conditioning framework (Dutta et al., 2013a), i.e., in
principle constrained induced movement therapy (Morris et al.,
1997) in a virtual reality. Additionally, modulation of event-
related desynchronization (ERD) with motor cortex tDCS—a
NIBS modality—in healthy volunteers (Matsumoto et al., 2010)
and patients with chronic severe hemiparetic stroke has been
shown feasible (Kasashima et al., 2012). Also, tDCS over PPC
has been shown to modulate visuospatial localization (Wright
and Krekelberg, 2014) where lesions in human PPC can lead
to complex syndromes consisting of an inability to attend, per-
ceive and react to stimuli in the visual field contralaterally to the
lesion, an inability to voluntarily control the gaze, and an inability
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80
HYPOTHESIS 2: NIBS CAN FACILITATE TRIAL-BY-TRIAL

ERROR CORRECTION AND ITS RETENTION DURING

OPERANT CONDITIONING
In Subsection Preliminary Evidence:

Correction during Operant

10

FIGURE 6 | (A) Box-plot of normalized mean squared error (MSE) across 10 subjects, (B) box-plot of the blink rate (blinks per minute) during the visuomotor

task, (C) box-plot of saccadic direction relative to the cursor acceleration during the visuomotor task.

prior works, we postulate that NIBS can facilitate trial-by-trial
error correction process during visuomotor balance therapy

2010; Lindner et al., 2010; Hwang et al., 2012). Based on these
under operant conditioning.

to coordinate visually elicited hand movements (Caminiti et al.,
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FIGURE 7 | Alpha event-related desynchronization (aERD%) at Pz EEG
electrode vs. baseline normalized mean squared error (MSEnorm)
during the visuomotor task performance. A linear fit with 95% prediction
bounds is additionally depicted.

trial-by-trial error correction during operant conditioning
was presented where the brain acting as a controller need to
not only perform trial-by-trial error correction but also need to
adapt in response to prior error information via retention which
is called motor adaptation. Here, active participation of cortical
areas may be facilitated with NIBS of motor and premotor
cortex, cerebellum, and/or PPC (see Figurel). A hierarchical
error processing was proposed (Krigolson and Holroyd, 2007)
in the brain acting as a controller where error processing during
visuomotor control involves the evaluation of “high-level” errors
(i.e., failures to meet a system goal) by a frontal system involving
the anterior cingulate cortex and the basal ganglia (Krigolson and
Holroyd, 2006; Holroyd and Coles, 2008), and the evaluation of
“low-level” errors (i.e., discrepancies between actual and desired
motor commands) by a posterior system involving the PPC
and/or the cerebellum (Desmurget and Grafton, 2000; Pisella
et al., 2000; Miall et al., 2001; Gréa et al., 2002). Here, the PPC
is an important interface between sensory and motor cortices,
integrating multimodal sensory and motor signals to process
spatial information for a variety of functions including guiding
attention and planning movements (Andersen and Gnadt, 1989;
Snyder et al., 1997).

In our single-blind, sham-controlled study (Dutta et al.,
2014c), five healthy right-leg dominant subjects (age: 26.4 +
5.3 yrs) were evaluated using the HMI system under two
conditions—with anodal tDCS of primary motor representations
of right tibialis anterior muscle and with sham tDCS. Paired ¢-test
(Matlab “ttest” function, The Mathworks, Inc., USA) was per-
formed for the differences in % change of stabilogram metrics
from baseline values after administrating tDCS/sham session, for
all the subjects pooled together. The results showed that anodal
tDCS of primary motor representations of the right tibialis ante-
rior muscle strongly (p < 0.0001) affected maximum CoP excur-
sions but not return reaction time in healthy volunteers. Also,
anodal tDCS had a strong (P < 0.0001) effect on the % change
(decrease) in sway area from baseline values when compared to
sham at 45 and 60 min post-tDCS. Anodal tDCS had only a mod-
erate effect (P = 0.0113) on the change (decrease) in the path
length of the CoP trajectory from the respective baseline value
when compared with sham 60 min post-tDCS. Moreover, the

results showed that anodal tDCS strongly (P < 0.0001) affected
the change in centroid of CoP data-points from baseline value
during quiet standing in the medio-lateral direction when com-
pared to sham tDCS. The reason for this change in the centroid of
CoP data-points during quiet standing (Dutta et al., 2014c) fol-
lowing motor cortex tDCS is postulated to be inadvertent parietal
tDCS due to the active electrode position roughly 1 cm left lateral
and 2 cm posterior to Cz (International 10-20 EEG system), i.e.,
close to P3, and relatively high current density (0.06 mA/cm?).
Indeed, the PPC is an important interface between sensory and
motor cortices, integrating multimodal sensory and motor signals
to process spatial information for a variety of functions includ-
ing guiding attention and planning movements (Andersen, 1997).
Therefore, a tDCS protocol targeting the PPC is presented in the
Subsection Proposed Method: NIBS Protocol to Facilitate Trial-
by-Trial Cortical Control and Adaptation During Visuomotor
Task. Here, in order to test successful trial-by-trial error cor-
rection and its retention during visuomotor balance therapy
under operant conditioning, we propose in Subsection Proposed
Method: Using Aftereffects to Evaluate Successful Trial-by-Trial
Adaptation During Operant Conditioningthe use of aftereffects
that occur in motor control when the visual or mechanical vari-
ables of the targets are perturbed in a systematic manner. This
is based on our prior work on using aftereffects to evaluate suc-
cessful adaptation during EMG-driven NMES-assisted locomotor
exploration activity for post-stroke gait training (Dutta et al,,
2014a) where we found that only stroke subjects who showed
aftereffects during systematic perturbation of the “EMG to NMES
mapping” parameters at random catch-trials during the locomo-
tor exploration activity, showed post-intervention changes in the
EMG pattern during volitional (no NMES) treadmill walking.

PROPOSED METHOD: NIBS PROTOCOL TO FACILITATE TRIAL-BY-TRIAL
CORTICAL CONTROL AND ADAPTATION DURING VISUOMOTOR TASK
Analysis of simultaneously acquired EEG/EMG and gaze-
interaction data can be used to assess potential mechanisms
underlying skill acquisition during visuomotor task (Mann et al.,
2011). During volitionally generated CoP excursions based on
visual feedback (Figure 3), the visual system must orient to and
process the relevant visual (target) cues to ascertain both distance
and direction of the required CoP excursion, while the working
memory is called upon for the required joint torques to match
the cursor with the visual (target) cues. Recent investigations
lend support to the motor programming/preparation function
of the QE period based on simultaneous EEG recordings (Mann
et al., 2011) where slow cortical potential (SCP) negative shifts
in EEG preceding voluntary movement, called bereitschaftspo-
tential (BP) (Shibasaki and Hallett, 2006), lends itself well to the
study of the preparatory period preceding task execution. Indeed,
Mann et al. (2011) found: (1) greater BP negativity (particu-
larly in central recording locations) for the expert compared with
non-experts, and (2) QE duration was associated with BP neg-
ativity in central cortical regions. Therefore, it was postulated
that the QE is a temporal period when task-relevant environ-
mental cues are processed and motor plans are coordinated for
the successful completion of an upcoming task. In our prelim-
inary study (Dutta, 2014), we found that motor cortex anodal
tDCS: (1) increased the frequency of negative epochs of the early
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(2.5 s—300ms) phase of SCP before movement initiation, and
(2) the slope of negative epoch for the late (300 ms—0s) phase
of SCP before movement initiation. Our NIBS protocol to facil-
itate cortical control and adaptation is based on the hypothesis
that throughout the preparation and movement phases of skill
execution, the visual attention centers (i.e., occipital and parietal
cortex) disseminate requisite commands to motor regions of the
cortex (i.e., motor cortex, premotor cortex, supplementary motor
area, basal ganglia, and cerebellum), each of which are reflected
in BP components (Mann et al., 2011). Here, our preliminary
results from healthy subjects on facilitating myoelectric-control
with tDCS (Dutta et al., 2014b) showed specific, and at least par-
tially antagonistic effects, of motor cortex and cerebellar anodal
tDCS on motor performance during myoelectric control where
cerebellum may play a critical role in both formation of motor
memory and its retention (Herzfeld et al., 2014). Moreover, dur-
ing visuomotor task performance, visual search to orient to and
process the relevant visual (target) cues require contributions of
human frontal eye fields (FEF) and PPC where PPC seems to

be involved only when a manual motor response to a stimulus
is required (Muggleton et al., 2011). Therefore, PPC may play a
critical role in the preparatory activity in the general context of
sensorimotor transformations linking perception to action where
the SCP (e.g., BP) reflects activation of subcortical and cortical
generators (cortico-basal ganglia-thalamo-cortical circuitry) nec-
essary not only in motor execution but also in its preparation
(Jahanshahi and Hallett, 2003).

Wright and Krekelberg (2014) hypothesized that each hemi-
sphere biases processing to the contralateral hemifield and that
the balance of activation between the hemispheres contributes to
position perception. They presented a bihemispheric tDCS proto-
col for PPC and hypothesized that excitability is reduced beneath
the cathode and increased beneath the anode where closed-
loop feedback control of bihemispheric tDCS for PPC using
the MatNIC and StarStim (Neuroelectrics, Spain) NIBS interface
is presented in Figure 8. Indeed, when Wright and Krekelberg
(2013) applied tDCS bilaterally, e.g., cathodal stimulation over
right PPC concurrent with anodal stimulation over left PPC
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(right-cathodal) or vice versa (left-cathodal), they found that
both tDCS conditions altered perceived position to the left rel-
ative to a sham stimulation baseline condition. This effect was
stronger for right-anodal than for right cathodal tDCS, and lasted
for about 15 min after stimulation. Based on these prior works,
we postulate that bihemispheric application of tDCS (Wright
and Krekelberg, 2013) at P3 and P4 (International 10-20 sys-
tem) will facilitate cortical control during visuomotor task while
cerebellar tDCS (Herzfeld et al., 2014) will facilitate up- or down-
regulation of error-dependent motor learning and retention in a
polarity-dependent manner. Bihemispheric application of tDCS
(Wright and Krekelberg, 2013) at P3 and P4 (International 10-
20 system) in conjunction with cerebellar tDCS (Herzfeld et al.,
2014) is postulated to facilitate cortical control and adaptation
during visuomotor task performance especially on the affected
side since the evaluation of “low-level” errors (i.e., discrepancies
between actual and desired motor commands) is hypothesized
to be performed by a posterior system involving the PPC and/or
the cerebellum (Desmurget and Grafton, 2000; Pisella et al., 2000;
Miall et al., 2001; Gréa et al., 2002).

PROPOSED METHOD: USING AFTEREFFECTS TO EVALUATE
SUCCESSFUL TRIAL-BY-TRIAL ADAPTATION DURING OPERANT
CONDITIONING

Trial-by-trial error correction during the visuomotor task may
be facilitated with bihemispheric application of tDCS for PPC
(Wright and Krekelberg, 2013). However, it is important to also
evaluate trial-by-trial motor adaptation during the visuomotor
task under operant conditioning paradigm that may be facilitated
with cerebellar tDCS (Herzfeld et al., 2014). Here, Held and col-
leagues (Held and Gottlieb, 1958; Held and Freedman, 1963) have
found aftereffects only with sensorimotor integration, which may
then lead to motor adaptation. In principal accordance, afteref-
fects that occur in motor control when the visual or mechanical
variables of the targets are perturbed in a systematic manner
can be used to test successful motor adaptation (Dutta et al,
2014a). Therefore, controlled variability can be introduced in the
form of pseudorandomly interspersed catch trials in the other-
wise predictable visuomotor task where the parameter &ufecred
that maps the effect of recorded CoP,feq excursions of the
affected side on the cursor acceleration (Equation 5) can be per-
turbed. Thus, catch trials are proposed to be a reasonable method
of exaggerating performance errors during the visuomotor task
without disrupting the predictive process. Therefore, the subjects
should correct both their own prediction errors and the artificially
induced errors resulting from the catch trials in the same manner.
It is postulated that in case of successful trial-by-trial adaptation
during operant conditioning, the subject should greatly change

their CoP excursion |:x] (Equation 5) on the next trials

CoP, affected
to catch trial in response to the unusually large error in the catch

trial.

PRELIMINARY EVIDENCE: EFFECTS OF BIHEMISPHERIC tDCS FOR THE
POSTERIOR PARIETAL CORTEX

The PPC may play a critical role in sensorimotor transformations
linking perception to action during quiet standing in terms of

CoP trajectory (and stabilogram) (Dutta et al., 2014c). The proof-
of-concept pilot study was based on our prior work (Dutta et al.,
2014c) where five healthy right-leg dominant male subjects aged
between 24 and 46 years were evaluated under two conditions—
right-cathodal vs. left-cathodal—tDCS with a pair of 6.7 x 6.7 cm
saline-soaked sponge-rubber electrodes (see Figure 9). The cur-
rent was 1 mA applied for 15 min such that the current density
(0.02mA/cm?) was in agreement with Wright and Krekelberg
(2013) but lower than our prior work (0.06 mA/cm?) (Dutta et al.,
2014c). The CoP measurements were made during rest periods of
quiet standing for 3 min, just before and immediately after the
completion of the tDCS sessions. The study design was repeated-
measure, randomized-order with sufficient (1 week) “wash-out”
time in between the sessions. Paired t-tests (Matlab “ttest” func-
tion, The Mathworks, Inc., USA) were performed to compare
the impact of right-cathodal vs. left-cathodal for the % post-
tDCS change in the centroid of the CoP from baseline (pre-tDCS)
values. Indeed, right-cathodal (P4 cathodal, P3 anodal) shifted
the CoP centroid toward left by 14 + 8% and left-cathodal (P4
anodal, P3 cathodal) shifted the CoP centroid toward right by
11 £ 9%. Consequently, a statistically significant (p < 0.1) dif-
ference was found between right-cathodal vs. left-cathodal tDCS.
Since weight bearing on the paretic lower extremity and transfer
of weight from one lower extremity to the other are important
goals of stroke rehabilitation (De Nunzio et al., 2014), tDCS-
facilitated amelioration of post-stroke limb loading asymmetry
during biofeedback rehabilitation may improve performance of
many functional activities.

DISCUSSION

The degree to which voluntary guided reaching movements are
planned in advance or adapted online is still under investiga-
tion. Most well-known models such as the “feedforward models”
assume that when motor commands are planned, the outcome
of the movement is predicted by the current position of the
limbs (Desmurget and Grafton, 2000). According to the “feed-
forward models” for the visuomotor task, the predicted position
of the cursor is compared with the actual position of the cur-
sor with respect to the reaching goal and then online-corrected
if the parameters deviate due to noise (e.g., process and observa-
tion noise). Thus, a subjects’ internal model of the visuomotor
task has to be able to adapt to the new dynamics of the envi-
ronment (Shadmehr and Mussa-Ivaldi, 1994). In fact, it has been
proposed that the P300, an ERP component with a parietal scalp
distribution, reflects the updating of an internal model of the
movement environment that is used to help to plan and execute
future motor output (Krigolson et al., 2008). Correspondingly,
lesions in the human PPC can lead to complex syndromes con-
sisting of an inability to attend, perceive and react to stimuli in
the visual field contralateral to the lesion, an inability to vol-
untarily control the eye gaze, and an inability to coordinate
visually elicited movements (Hyvirinen, 1982; Caminiti et al,,
2010; Hwang et al., 2012; Wilke et al., 2012). A recent work
demonstrated that in the resting brain, monocephalic anodal
tDCS over PPC areas altered ongoing brain activity, specifically
in the alpha band rhythm (Spitoni et al., 2013), which may facil-
itate updating of a deficient internal model during post-stroke
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rehabilitation. Here, timing of tDCS with respect to the rehabilita-
tion task is critical (Stagg et al., 2011) since regulatory metaplastic
mechanisms exist to modulate the effects of a stimulation inter-
vention in a manner dependent on prior cortical excitability,
thereby preventing destabilization of existing cortical networks.
In our study, the strongest change occurred in the first 2 min
after the stimulation ended. Spitoni et al. (2013) found that the
tDCS aftereffects diminished systematically and suggested that
tDCS affects EEGs immediately after stimulation. Our prelimi-
nary study (Dutta and Nitsche, 2013) supported this notion that
tDCS affects EEGs immediately after stimulation where Stagg
et al. (2011) showed that the application of tDCS during an
explicit sequence-learning task led to modulation of behavior in
a polarity specific manner: relative to sham stimulation, anodal
tDCS was associated with faster learning and cathodal tDCS
with slower learning. However, application of tDCS prior to per-
formance of the sequence-learning task led to slower learning
after both anodal and cathodal tDCS (Stagg et al., 2011). Based

on these prior works that showed that anodal tDCS interacts
with subsequent motor learning in a metaplastic manner and
suggested that anodal stimulation modulates cortical excitabil-
ity in a manner similar to motor learning (Stagg et al., 2011), a
closed-loop feedback control of bihemispheric tDCS for PPC is
proposed during visuomotor task performance, as illustrated in
Figure 8.

The goal of this hypothesis and theory paper was to exam-
ine prior works for a conceptual review to make a case for
multi-level electrotherapy toward post-stroke balance rehabil-
itation. Under this multi-level electrotherapy concept, both
the cortical control of NMES assisted visuomotor task and
the motor adaptation toward balance rehabilitation are facil-
itated with an adjuvant treatment with NIBS. Such a re-
conceptualization of electrotherapy approaches, where one
(NIBS) is facilitating the other (NMES) toward a common goal
(motor learning), could help to push forward electrotherapy for
neurorehabilitation.
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