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Various methods have been proposed to characterize the functional connectivity between
nodes in a network measured with different modalities (electrophysiology, functional
magnetic resonance imaging etc.). Since different measures of functional connectivity
yield different results for the same dataset, it is important to assess when and how
they can be used. In this work, we provide a systematic framework for evaluating
the performance of a large range of functional connectivity measures—based upon a
comprehensive portfolio of models generating measurable responses. Specifically, we
benchmarked 42 methods using 10,000 simulated datasets from 5 different types of
generative models with different connectivity structures. Since all functional connectivity
methods require the setting of some parameters (window size and number, model
order etc.), we first optimized these parameters using performance criteria based upon
(threshold free) ROC analysis. We then evaluated the performance of the methods on
data simulated with different types of models. Finally, we assessed the performance of
the methods against different levels of signal-to-noise ratios and network configurations.
A MATLAB toolbox is provided to perform such analyses using other methods and
simulated datasets.
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INTRODUCTION
Information exchange occurs at multiple scales in the brain, from
protein-protein interactions in cells to communication among
cortical regions. Information can be coded in different manners
(e.g., chemical, electrical) and measured with different modal-
ities, including magneto- and electro-encephalography (MEG,
EEG), and functional Magnetic Resonance Imaging (fMRI).
These techniques allow one to characterize the architecture gen-
erating time series in terms of functional coupling. There are
two approaches to functional coupling; namely, the assessment
of functional connectivity and the estimation of effective con-
nectivity. Functional connectivity is defined as the statistical
dependence among measured time series—usually evaluated in
terms of correlations or mutual information. These measures
have recently been supplemented with methods like multivariate
Granger causality and directed transfer functions to provide mea-
sures that are less sensitive to indirect links. In contrast, effective
connectivity quantifies the directed (causal) influence of one neu-
ronal system over another and relies upon a model of neuronal
coupling (Friston, 1994; Bullmore and Sporns, 2012). Both func-
tional and effective connectivity can be represented in terms of a
graph, where the nodes of the graph represent cortical or subcor-
tical areas and the edges correspond to (directed or undirected)
connections (Bullmore and Sporns, 2012). In this technical note,
we will focus on methods for assessing functional connectivity.

Different functional connectivity methods can give different
results, as they are based on different underlying mathematical
assumptions or measures of dependency (Smith et al., 2011). It
may therefore be difficult to select the method that is best suited
for identifying the appropriate graph or quantifying functional
connection strengths. In this context, simulated data plays an
essential role in evaluating competing methods against a “ground
truth.” Analyzing data generated by a known architecture enables
one to optimize various analysis parameters and assess depen-
dencies on the generative process and robustness to analysis
assumptions.

Various methods for assessing functional connectivity have
already been reviewed (Pereda et al., 2005) and tested using
fMRI simulated signals (Smith et al., 2011), mathematical mod-
els (Ansari-Asl et al., 2006; Wendling and Ansari-Asl, 2009) and
neural mass models (David et al., 2004). These methods include
correlation (Rodgers and Nicewander, 1988), coherence (Lopes
da Silva et al., 1989), mutual information (Grassberger et al.,
1991), transfer entropy (Schreiber, 2000), directed coherence,
Granger causality (Granger, 1969), generalized synchronization
(Quiroga et al., 2002) and Bayes net methods (Ramsey et al.,
2006) etc. Methods for evaluating effective connectivity include
Dynamic causal modeling (DCM) (Friston et al., 2003) and
structural equation modeling (Mclntosh and Gonzalez_Lima,
1994). However, no evaluation framework exists to systematically
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compare the results of different methods for various types of
datasets. We introduce here such evaluation framework, and we
show its usefulness performing a systematic analysis of 42 meth-
ods using multiple datasets with different structures. Note that
our goal here is not determine why a given method succeeds or
fails in a specific condition. Our goal is to provide neuroscientists
with a useful tool to make informed choices about the method
one wishes to use according to the type of data. The evaluation
framework uses different connectivity architectures and biolog-
ically realistic models of various levels of complexity and time
scales. We included 42 methods to span the domain of application
of functional connectivity schemes. In this paper, we focus on the
taxonomy of functional connectivity schemes and the generative
models used to create simulated data, with a special focus on the
sensitivity of different schemes to analysis parameters, the archi-
tecture of the generative models and different types and levels of
noise.

As an example of the proposed systematic evaluation frame-
work, we benchmarked 42 methods against more than 104

datasets generated under five classes of simulated models. We
assessed the performance and robustness of all methods by ask-
ing; which methods can infer the right connectivity architecture
and under what conditions? What are the appropriate parameters
for the methods to recover the underlying architecture correctly?
Can functional connectivity be evaluated quantitatively for any
given architecture? What is the accuracy of these methods under
variations of the underlying architecture? And, finally, how robust
are these methods against different levels of observation noise?
We used generic and simple criteria to assess performance—so
that the relative performance over different schemes could be
compared. Our interest here was not in optimizing any partic-
ular scheme with bespoke performance measures. We wanted
to establish complementary domains of sensitivity that could be
used in subsequent work to exploit the plurality of functional
connectivity measures considered in this paper.

METHODS
Figure 1 shows how our systematic evaluation framework works.
We simulated five types of data (first column) to cover the
dynamic characteristics (time scales, complexity, and multi-scale
properties) of signals obtained from EEG and fMRI modalities,
including linear and non-linear systems with linear or non-linear
coupling. In terms of connectivity architectures, we considered
at least 154 underlying structures (all possible topologies for five
nodes and five edges), with varying connection strengths, noise
levels and time delays (third column). We applied 42 connec-
tivity analysis methods (fourth column) to the ensuing datasets
and compared the resulting connectivity with the ground-truth
structures.

Using this setup, we (1) identified the valid (optimal) param-
eter range for each method. (2) Using this parameter range,
we evaluated the relative performance of each method and, (3)
finally, we characterized the accuracy of each method in the face
of different levels of system noise (innovations or random fluc-
tuations producing simulated neuronal signals) and four types
of observation noise (random fluctuations added to signal to
simulate data).

In what follows, we consider each of these components in
detail. An open source MATLAB code is available to test other
methods and identify optimal analysis parameters. Our numerical
simulations were performed using The Virtual Brain (TVB) high
performance computing platform using 240 Intel Xeon E5–2670
based computing cores1 .

GENERATIVE MODELS
We started with two types of generative model, simulating EEG
and fMRI signals in a biologically realistic way. We used two gen-
erative models: a convolution-based neural mass model for EEG
(Moran et al., 2013) and a non-linear haemodynamic model for
fMRI (Friston et al., 2003). Since the various functional con-
nectivity methods are known to have specific sensitivities to
nonlinearities in the data, we also analyzed three more abstract
(mathematical) categories of generative models for each node
(region or source): linear systems, non-linear systems with linear
coupling and non-linear systems with non-linear coupling. Their
specification can be found in Supplementary Section 1.

We considered synaptic convolution-based neural mass mod-
els (NMM) in order to test the methods at the millisecond
timescale, which is typical of EEG signals. These models (Moran
et al., 2013) consider cortical columns with three subpopula-
tions: spiny stellate cells in granular layer IV, pyramidal cells and
inhibitory interneurons in extra granular layers (II and III, V and
VI), as shown in Supplementary Figure 1. The neuronal states of
these generative models include currents and membrane poten-
tials. A connection between two columns i and j corresponds to
a link between the pyramidal subpopulation of column i and the
spiny stellate subpopulation of column j. We also added variable
delays between columns, system noise on spiny stellate cells and
observation noise on the signals.

We used the standard generative model used in DCM to gener-
ate simulated BOLD signals. The neuronal signals were generated
using linear differential equations with one neuronal state per
node (Friston et al., 2003; Stephan et al., 2007) as shown in
Supplementary Figure 2. This neural activity is transformed into a
BOLD response using a non-linear haemodynamic model (incor-
porating the empirically validated balloon model). The associated
haemodynamic response function effectively acts as a non-linear
convolution operator to remove high-frequency fluctuations in
neuronal signals. This means simulated BOLD time series have a
slower timescale as compared to EEG signals. We used the BOLD
signal to analyze the underlying connectivity between the neu-
ronal states of nodes i and j. We also added system noise to the
neuronal state and observation noise to the BOLD signals.

In addition to these biophysically plausible electrophysio-
logical and haemodynamic models, we considered three more
abstract (mathematical) generative models: we started with cou-
pled linear systems. We then considered non-linear systems based
on Rössler attractors (Rössler, 1979), where the nodes were cou-
pled linearly. We also simulated time series with non-linear
systems based on Hénon maps (Hénon, 1976), with non-linear
coupling among nodes. The range of time scales and complexity

1http://ins.medecine.univmed.fr/cross-cutting-research/
the-virtual-brain-project/tvbhpc/.
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FIGURE 1 | We benchmarked 42 methods against more than 104

simulated datasets from 5 types of models with different

connectivity structures. Connection strengths, noise levels and time

delays were varied to test the robustness of the methods. The same

procedure was used to identify the proper range of parameters
specifically used in the different methods. The performance of a given
method was evaluated by comparing the computed graph to the ground
truth structure.

present in time series commonly acquired with invasive (stereo-
tactic EEG) and non-invasive (EEG, MEG, fMRI) methods is
large. We chose to include neurally motivated models [NMM
from Jansen-Rit (Jansen and Rit, 1995), fMRI from Ballon-
Windkessel (Friston et al., 2003)], and well-investigated dynamic
models with no direct reference to neural systems (Rössler,
Hénon, linear stochastic system). We chose these models because
they cover different systemic properties, i.e., linear and non-linear
systems with linear and non-linear coupling. These properties are
generally not known in real datasets. Hence our goal was to cover
all possibilities. Another motivation was to facilitate compari-
son with previously published work on the assessment of analysis
methods (Quiroga et al., 2002; Ansari-Asl et al., 2006; Wendling
and Ansari-Asl, 2009).

Figure 2A illustrates five types of simulated time series with
different signal dynamics and different time resolutions for a
given connectivity structure. Because the different types of signals
have different sample frequencies, we used the number of time
points as a measure of time to define analysis parameters, such as
the size of sliding window, the length of the time series and time
delays.

FUNCTIONAL CONNECTIVITY MEASURES
We chose 42 functional connectivity measures from 7 families:
correlation, h2, mutual information, coherence, Granger, transfer
entropy and A(H) (MVAR-frequency domain based techniques,

see below for details). The mathematical form of these measures
of functional connectivity can be found in Supplementary Table
1 of Supplementary Section 2. We selected these methods because
they have low computational cost and do not require prior knowl-
edge of the underlying generative model. We now present the
different methods for each family of measures.

Correlation family
The correlation (Corr) family of measures is based on the
Pearson correlation coefficient (Rodgers and Nicewander,
1988) and considers time delays. Four methods can be dis-
tinguished: BCorrD, PCorrD, BCorrU, and PCorrU. The
prefix B indicates bivariate methods using pair-wise calcula-
tions. The prefix P indicates partial results from the bivariate
results using matrix inversion (the connectivity is evaluated
between any two nodes while considering the influence of the
other nodes). If the bivariate matrix is sparse, we estimated
a sparse inverse covariance matrix using a Lasso (L1) penalty
(http://www.cs.ubc.ca/∼schmidtm/Software/L1precision.html).
The suffixes U and D indicate undirected and directed
connectivity, respectively.

For example, BCorrD is the bivariate correlation method for
measuring directed connectivity. The direction i → j is deter-
mined if past of i has a stronger correlation with current j than
past of j has with current i. BCorrU is the bivariate correlation
method for measuring undirected connectivity by selecting the
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FIGURE 2 | (A) Examples of signals generated by the 5 types of models in
the same 5 nodes structure (right part of the middle panel). The y-axis units
represent the node number and the x-axis units are time-series in seconds
with different sampling rates and time scales. (B) Left: “ground truth”
connectivity matrix, which is another representation of the connectivity
structure shown in (A). The color code corresponds to the strength of the
connections between nodes (set to 1 for all connections in this example).
Connection matrix (CM1) was obtained with PDC method. ROC 1 is the

receiver operating characteristic (ROC) curve, which displays true positive
rate as a function of false positive rate, for the PDC method, measured for all
connection strength values (strength threshold). The AUC is the area under
the curve. If AUC is 1 (as for CM2 and ROC2), it means that the method is
able to find the “ground truth,” if given the correct threshold. (C) For the
undirected methods, such as BCorrU, the computed connection matrices are
symmetric, thus we took the symmetrized designed matrix as a ground truth
for calculating their ROC and AUC.

largest value between i → j and j → i. PCorrD (PCorrU) is the
partial result from BCorrD (BCorrU). Partial methods suppress
the functional connectivity induced by indirect effective connec-
tivity as well as dependencies between two nodes that receive
input from a common source.

h2 family
The h2 family calculates non-linear correlation coefficients based
on the fitting of a non-linear curve from the piece-wise linear
approximation between two time series (Lopes da Silva et al.,

1989; Wendling et al., 2001; Ansari-Asl et al., 2006). As for the
Corr family, Bh2D is the bivariate h2 method for directed con-
nectivity and Ph2D is its partial equivalent. Bh2U is the bivariate
h2 method for undirected connectivity and Ph2U is its partial
version.

Mutual Information in Time domain
Mutual information estimates the shared information between
two time series based on Shannon entropy. For computational
expediency, we only considered the mutual information in the
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time domain (MIT) (Grassberger et al., 1991; Paluš et al., 2001;
Quiroga et al., 2002). BMITD1 measures functional connectiv-
ity by comparing the individual histograms of two signals to
the joint histograms—taking into account time delays. BMITD2
reduces the (discretization) bias of the estimated entropy of
two series. BMITU infers the undirected connectivity, and
PMITD1, PMITD2, and PMITU are the partial versions. In the-
ory, mutual information can measure both linear and non-linear
dependencies.

Granger causality family
The Granger causality (GC) family calculates the directed connec-
tivity (j→i) based on the notion that information in the past of j
helps to predict the future of i with greater accuracy than by only
considering the past of i itself (Granger, 1969). We used two meth-
ods from “Granger causal connectivity analysis (GCCA)” Matlab
toolbox (Seth, 2010), GC and CondGC. These methods are based
on multivariate autoregressive models (MVAR):

X (t) =
p∑

r = 1

ArX (t − r) + �(t) (1)

With state vector X (t) = [x1 (t) , · · · , xn (t)]′n×1 and prediction
errors �(t) = [ξ1 (t) , · · · , ξn (t)]′n×1 for n nodes. p is the model
order (maximum number of lagged observations included in the
model) for the MVAR and r is the time delay. Omitting xj from
X, we obtain a second group of MVAR with another prediction
errors. GC measures the connection strength j → i by compar-
ing residuals (based on the above MVAR model) without and
with xj. CondGC, for conditional Granger causality [also called
Partial G-Causality in (Seth, 2010)], considers the influence from
exogenous and/or latent variables on measured responses. This
information may be reflected in the correlations among the resid-
uals of an MVAR model of observed responses. As with the other
families, we also used PGC as the partial method.

Transfer entropy (TE)
Transfer entropy (Schreiber, 2000) measures the directed con-
nectivity (j→i) if the joint information of the past j, i can
reduce the degree of uncertainty in the future values of xi com-
pared with the degree of uncertainty of xi only from the past
of xi. Granger causality and transfer entropy are equivalent
for Gaussian variables (Barnett et al., 2009). However, transfer
entropy requires much less computational time than Granger
causality for high model orders and larger numbers of nodes.
We thus used BTED to compute the directed connectivity for
Gaussian variables (Chicharro, 2011) taking into account time
delays. We also considered PTED for partial BTED, BTEU for
the undirected connectivity and PTEU for the partial undirected
connectivity methods.

Coherence
Coherence (Coh) calculates the undirected connectivity based on
the cross-correlation in the frequency domain (Hinich and Clay,
1968; Grinsted et al., 2004). We tested bivariate coherence with
two different types of transforms: BCohF for Fourier transforms

and BCohW for Wavelet transforms. We also tested the partial
versions PCohF and PCohW.

AH family
The AH family calculates the connectivity based on the coeffi-
cients of the MVAR in the frequency domain. From MVAR (1),
we can get �(t) = X(t)−∑p

r=1 ArX (t − r) = ∑p
r=0 ArX (t − r),

with Ar= I−Ar. Seventeen methods have been introduced based

on the transforms of Ar (A(f )) and its inversion H = A−1
, Thus

we give this family the name AH.
Af presents the results from A(f ), and PDC (partial directed

coherence) is the normalized Af method for ranking the relative
interaction strengths with respect to a given signal source, i.e., the
influence of the past xj over current xi compared to the past xj over
other signals (Baccalá and Sameshima, 2001). Partial directed
coherence factor (PDCF) in (Baccalá and Sameshima, 2001) con-
siders instantaneous effects. Generalized partial directed coher-
ence (GPDC) uses a weighting function to remedy the unbalanced
residuals from PDC (Baccalá et al., 2006; Baccalá, 2007). These
methods compose the A group.

Hmvar presents the results from H(f ) and directed trans-
fer function (DTF) is the normalized Hmvar (Kaminski and
Blinowska, 1991; Kaminski et al., 2001). DTF calculates the
directed connectivity by ranking the relative interaction strengths
with respect to a given input; i.e., the influence of past xj over
current xi compared to the influence of past other signals over
current xi. Full frequency directed transfer function ffDTF nor-
malizes the connectivity over the considered frequency band
(Kaminski and Liang, 2005) Directed coherence DC considers the
information from the residuals (Baccalá et al., 1998) DC/DTF can
be regarded as the partial equivalents of PDCF/PDC. Geweke’s
Granger Causality (GGC) can be seen as Granger causality in
the frequency domain (Geweke, 1982, 1984). These methods
compose the H group.

The cross-spectral power density matrix (Smvar) can also
be obtained from H(f ) and a covariance matrix of residuals.
Ordinary coherences (COH1 and COH2) are the normalized
methods of Smvar with/without considering prediction errors.
PCOH1 and PCOH2 are their partial ordinary coherences. Direct
directed transfer function (dDTF) combines the information
from ffDTF and PCOH2 (Korzeniewska et al., 2003). This con-
cludes our summary of the functional connectivity measures we
considered.

The functional connectivity analysis methods
We first divided these 42 connectivity analysis methods into two
major classes: model-free (MF) and model-based (MB) according
to their dependency upon autoregressive models for estimat-
ing statistical dependencies, as shown in Figure 3. For example,
correlation, h2, mutual information and coherence are model-
free, and the Granger family, its equivalent transfer entropy and
AH are model-based. Coherence and the AH family work in
the frequency domain, and the other 5 families work in the
time domain. Mutual information, h2 and transfer entropy are
non-linear methods, while the remaining are linear methods.

Most of 42 connectivity measures have been previously pub-
lished, but some are introduced in this paper as extensions of
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FIGURE 3 | Categorization of the 42 connectivity analysis methods used here. The methods yielding undirected structures are highlighted in pink and the
methods yielding directed structures are highlighted in green.

established measures. We have thus added the BCorrD, PCorrD,
Bh2D, Ph2D, BTEU, PTEU, PTED, PMITD1, and PMITD2, PGC
methods in order to account for bivariate, partial, directed and
undirected versions of the existing measures. The mathematical
details are available for interested readers in the Supplementary
Table 1 of Supplementary Section 2.

EVALUATION OF THE METHODS
For each simulated dataset, each method computes a functional
connectivity matrix, which assigns a connection value between 0
and 1 between any two nodes (Figure 2B). When analyzing real
datasets of unknown structure, the connection strength can be
thresholded to produce a network graph. For example, in the
connection matrix 2 in Figure 2B, choosing a connection thresh-
old of 0.4 will produce a graph with many more links (those in
orange color) than the ground truth structure. However, with the
threshold of 0.5, the method identifies the ground truth structure.
Choosing the most appropriate threshold value is an unresolved
problem. However, simulated data is generated with a designed
structure or graph, which we refer to as a ground truth struc-
ture. Based on these ground truth structures, we can calculate
the number of false positive and false negative edges as a func-
tion of threshold. This enables us to compute receiver operating
characteristic (ROC) curves (Zweig and Campbell, 1993) and
evaluate the area under the curve (AUC) (Figure 2B). Note that,
for the undirected methods, the computed connection matrices
are symmetric, thus we took the symmetrized designed matrix as
a ground truth for calculating their ROC and AUC (Figure 2C).

The closer the AUC is to 1, the closer the measured graph is to
the true underlying graph. In the following, if AUC= 1, we con-
sider that the method is able to identify the underlying structure;
i.e., there exists a threshold for which the method can identify
the correct structure. This represents a simple universal perfor-
mance criterion that can be applied to any functional connectivity
measure (based upon simulated data).

For each of the 5 generative models, and for each parameter
value (noise etc.), we simulated data from 154 structures (all com-
binations of 5 edges in a 5 node graph). We then averaged the
corresponding 154 AUC results to quantify the performance of
each method. If this average AUC value was close to 1, we consid-
ered that the method could recover most, if not all, 154 possible
structures. We now report the results of our assessment.

RESULTS
ANALYSIS PARAMETERS
To analyze a given dataset, we used a sliding window (with a given
overlap) to analyze each timeseries. In other words, the time-
series was analyzed in N windows and a connection matrix was
calculated for each window. These N matrices were then aver-
aged into a mean connection matrix. We then compared this
mean connection matrix with the designed one to obtain an
AUC value. Each method requires setting some parameters, which
affect their performance. These parameters include the size of
any sliding window, the number of windows, the length of time
series analyzed, the frequency bands for methods using the fre-
quency domain, the maximum lag for the model-free methods,

Frontiers in Neuroscience | Brain Imaging Methods December 2014 | Volume 8 | Article 405 | 6

http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Wang et al. Systematic framework for functional connectivity measures

and the model order for the model-based methods. We therefore
first performed a parametric study to determine the valid range
of values for a given method using NMM and fMRI signals from
the biophysical generative models.

Furthermore, since the ability of methods to detect the pres-
ence of an edge between two nodes depends upon the strength
of this link, we varied the effective connection strengths (CS) in
the generative models. In order to evaluate the performance of
methods for different CS values, all effective connections (edge
weights) were assigned the same CS (between 0 and 1).

Size of sliding windows
Experimental datasets can be obtained with different sampling
frequencies. In order to take this into consideration, the analysis
platform uses time points rather than specific time units (these
can be obtained by a simple conversion). We varied the size of
sliding windows from 50 (0.4 s) to 800 (6.4 s) time points for
NMM and from 50 (100 s) to 600 (1200 s) time points for fMRI
datasets, testing different CS values. The sliding windows over-
lapped by half their length and the timeseries length was 8000
(64 s) time points for NMM and 5120 (10240 s) time points for
fMRI. Figure 4A shows that for NMM signals with a strong con-
nection strength, (CS= 1), 25 methods had an AUC= 1, when
the size of widow was 600 (4.8 s) time points, while 7 methods
were successful with a 150 (1.2 s) time point window. All methods
failed with 50 (0.4 s) time points. Figure 4B shows that for fMRI
signals with a strong connection strength (CS= 0.9), 28 methods
had an AUC= 1 when the size of widows was set to 600 (1200 s)
time points, while 6 methods were successful with a 50 (100 s)
time point window.

Figure 4 also demonstrates that the size of the window needs
to be increased to maintain performance as the CS decreased.
For example, for fMRI signals, GC had an AUC= 1 for win-
dows over 200 (400 s) time points when CS= 0.9. However, the
window needed to contain at least 250 (500 s) time points when
CS= 0.8 and 600 time points when CS= 0.6. In contrast, some
methods were robust to variation of connection strength, such as,
GC for NMM signals and BCohF for fMRI signals. It is interest-
ing to note that BCohF performed best for small windows as CS
decreases.

Number of windows
We evaluated the effect of changing the number of windows using
two window sizes: 150 (1.2 s for NMM and 300 s for fMRI) and
350 (2.8 s for NMM and 700 s for fMRI) time points. Figure 5
shows that the effect of window number on performance depends
upon window size. As expected, the use of small size windows
requires a larger number of windows to maintain performance.
For example, GC needed a minimum of 50 windows for NMM
and 38 windows for fMRI for a 150 time points windows, but
7 windows for NMM and 6 windows for fMRI when using 350
time point windows. We computed the minimum number of win-
dows sufficient to identify the underlying structure as a function
of the window size. The bottom panel of Figures 5A,B shows that
the minimum number of windows (the corresponding AUC>

0.999) decreased as the size of the windows increased. For win-
dows above 450 (3.6 s for NMM and 900 s for fMRI) time points,

the minimum number of windows remained constant (between
10 and 20) for most methods.

Length of time series
The length of the time series is also a crucial factor. It needs to
be as short as possible since, in real datasets, functional connec-
tivity may change dynamically over time. The minimum length
of signal can be directly derived from the previous analysis, and
is shown in Figures 5C,D. For NMM signals, 2000 (16 s) time
points were sufficient for GC, BTED, BCohF, PDCF, and dDTF
methods when using a 350 (2.8 s) time point window. For fMRI
signals, 1750 (3500 s) time points were sufficient for 5 chosen
methods (BCohF, BCurrU, Bh2U, GC, and PDCF) for windows
larger than 350 (700 s) time points.

Frequency bands
One important parameter in coherence and AH family methods
is the frequency range. The time-frequency analysis of NMM sig-
nals revealed the presence of oscillations in the 2–20 Hz frequency
band (Figure 6A). To test the sensitivity of the 21 coherence and
AH family methods to frequency bands, we defined 15 frequency
bands (Figure 6B). Based on the previous analysis, we chose 4000
time points (32 s for NMM and 8000 s for fMRI) for the length
of the time series, 350 (2.8 s for NMM and 700 s for fMRI) for the
size of the window, and 21 windows. The corresponding AUC val-
ues are shown on (Figure 6C) for different values of CS. When the
CS was very strong, the AH family was insensitive to frequency
bands, in particular theA group. For example, although the sig-
nal was relatively poor in band XV, the true structure could be
recovered. However, when CS decreased, performance decreased
if bands in which the signal was expressed were missing. Figure 7
shows a similar analysis for fMRI signals, in which the main
frequency was below 1 Hz (Figure 7A).

Maximum lags and model order
The signaling between neurons and brain regions involves time
delays, which must be taken into consideration in some analy-
sis methods. Figure 8 shows the results when three different time
delays were added to NMM signals. Other parameter values were
4000 time points (32 s) for the length of the time series, 350 (2.8 s)
for the size of each of the 21 windows and frequency band VIII.
The maximum lag is a key parameter for model-free methods in
the time domain and the transfer entropy family (the coherence
family does not have this parameter). Furthermore, the simulated
time delay and lag parameter can interact in terms of determin-
ing performance. To illustrate this, methods with a maximum
lag were used to evaluate the maximal connectivity by compar-
ing connectivity values using lag values from 0 to the maximum
lag. Figure 8 shows that transfer entropy was quite robust against
the variation of both signal delays and maximum lag (provided
that maximum lag ≥ signal delay).

Model order is a key parameter for Granger and AH families
in the presence of time delays. For the 3 different signal delays
in Figure 8, the model orders used by Granger and AH fami-
lies need to be larger than or at least close to the signal delays.
Note that, high model orders can cause these methods to fail. For
example, for a signal delay of 8 (64 ms), the Granger and AH
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FIGURE 4 | Effect of the size of the analysis windows on the

performance of the methods. (A) AUC arrays of 42 methods for
NMM signals as a function of window size [from 50 (0.4 s) to 800
(6 s)] for different connection strengths (CSs from 0.7 to 1). (B) AUC

arrays of 42 methods for fMRI signals as a function of window size
[from 50 (100 s) to 600 (1200 s)] for different connection strengths
(CSs from 0.6 to 0.9). The color scale shows the corresponding
AUC values.

Frontiers in Neuroscience | Brain Imaging Methods December 2014 | Volume 8 | Article 405 | 8

http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Wang et al. Systematic framework for functional connectivity measures

FIGURE 5 | Effect of the number of windows: (A) for NMM signals

and (B) for fMRI signals. The upper panels show the AUC arrays of
42 methods as a function of the number of windows for 150 (1.2 s for
NMM and 300 s for fMRI) and 350 time point windows (2.8 s for NMM
and 700 s for fMRI). The bottom panels show the minimum numbers

of windows as a function of window size for 7 methods out of the
42. Panels (C,D) show the minimum length of analyzed signal (in time
points) to find the correct structure as the function of window size for
NMM and fMRI signals, respectively. The methods (color code) are the
same as in the panel above.

families were unable to infer the underlying structures for model
orders >30 (240 ms). In addition, when the model order was very
small (at 3 (24 ms) for three tested signal delays), some meth-
ods, such as GC, PGC, MVAR, were able to infer the underlying
structures.

In summary, these evaluations—performed using the NMM
and fMRI simulations—suggest that analysis parameters can have
a profound effect on the ability of functional connectivity mea-
sures to recover the underlying effective connectivity. Most of

the effects we described above can be understood intuitively.
However, the main contribution of these analyses is to note that,
using simulated data, the parameters can be optimized for any
empirical data set at hand. MATLAB code is available to repro-
duce the analyses reported above—to find the valid parameter
range for any functional connectivity measure or configuration
of the generative models. Using appropriate parameters, we now
turn to the relative performance of the various measures on
different simulated models.
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FIGURE 6 | Effect of frequency bands for NMM signals. (A) Time
frequency analysis of NMM signals using a wavelet transform.
(B) Repartition of the 15 frequency bands. (C) Average AUC arrays

of 21 methods (frequency domain) over 154 structures as the
function of the frequency bands defined in (B) for different
connection strengths.

RELATIVE PERFORMANCE
Using the parameter values discussed in the previous section
(Supplementary Table 2), we systematically investigated the per-
formance of each of the 42 methods on the 154 possible
structures, for different CS values. Intuitively, weak connection
strengths may be difficult to detect. In reality, CS may take any
value over different connections. Here, we used the same CS val-
ues for all links so that we could investigate the sensitivity of
methods on the different CS levels.

For the NMM simulations, when CS was strong, (above
0.9) most methods had an AUC= 1 (Figure 9A). But as CS
decreased, the number of failures rose. Ranking the different
methods as a function of their sensitivity to CS (from least to
most) gives: Granger family, transfer entropy, AH, correlation,
coherence, h2. Figure 9B uses boxes to show AUC values distri-
bution over 154 structures for the 42 methods for a CS of 0.6.
Granger and transfer entropy were able to recover the under-
lying structures. When comparing the other methods with an
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FIGURE 7 | Effect of frequency bands for fMRI signals. (A) Time
frequency analysis of fMRI signals using a wavelet transform.
(B) Repartition of the 15 frequency bands. (C) Average AUC

arrays of 21 frequency methods over 154 structures as a
function of the frequency bands defined in (B) for different
connection strengths.

AUC> 0.8, the correlation and coherence families were more sen-
sitive to variation of the structures than the A group from AH
family.

For fMRI simulations, when the CS was strong, more meth-
ods had an AUC= 1 relative to the NMM simulations, as shown
in Figure 10A. The wavelet coherence and the mutual informa-
tion family performed well on fMRI, while they failed on NMM
signals. In Supplementary Figure 3A, using a CS of 0.8, we could
find methods in each family, which were able to recover connec-
tivity structures. For all other methods with median AUC< 1, the

methods were robust against the variation of structures because
the range of AUC metrics was small.

The NMM and fMRI simulations are biologically plausible.
In order to get a broader overview of the performance of the
methods, we used abstract (mathematical) generative models to
determine their sensitivity to the nature of the underlying dynam-
ics and connectivity (linear vs. non-linear). The analysis of linear
systems revealed that nearly all methods were robust for different
CS values (Figure 10B). The Granger and AH families were able
to recover ground-truth connectivity structures in most cases. In
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FIGURE 8 | Effect of the maximum lags and model orders. From left to
right, we considered datasets with different signal delays [from 8 (64 ms) to
12 (96 ms)]. Then, we calculated the average AUC arrays of 38 methods over

50 structures as a function of different computed delays (maximum lags for
model-free and transfer entropy families and model orders for Granger and
AH families).

contrast, Correlation, h2 and mutual information families mostly
failed. Supplementary Figure 3B shows that coherence, Granger
and AH families were robust against the variation of connectiv-
ity structures, while all other methods were quite sensitive to the
variation of structures at a CS of 0.4.

When considering Rössler systems, which are strongly non-
linear systems with linear coupling, we found that all families
performed poorly (Figure 10C). The performance of the meth-
ods was not linearly dependent on the CS. For example, the
Granger family performs better for a CS of 0.3 than for a CS of
0.9. The coherence family performed better for CS between 0.5
and 0.7. The box-plot in Supplementary Figure 3C shows that the
AUC values were very sensitive to the variation of the connectiv-
ity structure for the Rössler dynamics, because the distribution
of AUC values was widespread. Some model-free methods, such
as PCohW, BCorrU, Bh2U, and BMITU, were able to infer the
underlying undirected structures for some structures, but failed
on others. Transfer entropy and most methods from AH family
failed for the Rössler simulations.

Finally, in the case of Hénon systems, which are non-linear
systems with non-linear coupling, we found that most methods
failed for CS values larger than 0.5 (Figure 10D). The best perfor-
mance was obtained for CSs around 0.2. For example, coherence,
transfer entropy, Granger and AH family were able to recover all
underlying connectivity structures. Mutual information and h2

families performed better than correlation family. Supplementary
Figure 3D shows that all methods were more robust against
variation of structures relative to Rössler systems.

EFFECT OF NOISE
Recorded signals include both system noise and observation
noise. System or state noise refers to endogenous or random

fluctuations of unobserved (hidden) states. Observation noise
refers to the noise caused by the equipment, the environment etc.
In other words, system noise generates the signal through the gen-
erative model, while observation noise is generally added to the
signal to produce observed data.

In the NMM, spiny stellate cells are driven by exogenous inputs
containing both white (with a flat frequency spectrum) and pink
noise (frequency density proportional to f−1). To mimic sys-
tem noise, we added white and pink noise to the hidden states
of the NMM, which we called NMM system-like noise (green
curves in Supplementary Figure 4). For fMRI, system noise con-
tained both white and brown spectral components (red curves
in Supplementary Figure 4), brown noise has a density propor-
tional to f−2. The level of system noise was quantified as the ratio
between the amplitude of system noise over the amplitude of
deterministic input. Figure 11 shows that most methods were sta-
ble up to a ratio of 2900 for NMM and 16 for fMRI. Out of these
ranges, the simulation models became unstable. This reflects the
fact that system noise contributes to the signal and discloses func-
tional dependencies or connectivity among neuronal sources. In
fact, such system-like noise can be regarded as exogenous inputs.
In another word, the strength of exogenous input determined
the amplitude of the signals but did not change the coupling of
signals.

In real datasets, experimental procedures may cause obser-
vation noise and also the environment can constitute a major
difficulty for data analysis. After generating NMM or fMRI sig-
nals, we added four types of observation noise to each recording
site (node). We considered white and pink noise—and the specific
case where the noise has the same spectrum as the model input,
i.e., mixtures of white and pink noise and mixtures of white and
brown noise. Finally, we considered two cases: when observation
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FIGURE 9 | Performance of the 42 methods for NMM signals for different

connection strengths. (A) Average AUC arrays of 42 methods over different
structures as a function of connection strength. (B) Distribution of AUC
values for all 154 structures given by the 42 methods when the connection

strength is set to 0.6. The central marks are the median, the edges of the box
are the 25 and 75th percentiles, the whiskers extend to the most extreme
data points not considered outliers, and outliers are plotted individually (plus
signs).

noise was the same for all nodes (e.g., 50–60 Hz for EEG), or
when it varied over nodes (e.g., each sensor at each node had
specific signal-to-noise properties). We used the signal-to-noise
ratio (SNR= 20log(Amplitude-of-single/Amplitude-of noise)) to
quantify the level of noise. When each channel had a different
noise level, we added the noise to each channel with the same SNR
in order to investigate the robustness of methods against differ-
ent noise levels. For completeness, we also considered the case in
which each channel receives a different noise level with different
SNRs (Supplementary Figure 5). The mathematical details are in
Supplementary Section 1 and Supplementary Figures 1, 2, 4.

For NMM, Figure 12A shows that the methods were more
robust to white and brown mixtures than white and pink mix-
tures, when each channel had a different noise. The possible

reason is that the spectrum of pink mixtures was more similar
to the spectrum of the input. When all channels shared the same
noise Figure 12B, the methods were more robust against pink and
brown noise than to white and pink noise. Interestingly, in gen-
eral, the methods were more accurate when each channel had a
different noise.

For fMRI, Figure 13A shows that several methods (from
coherence, correlation and AH families) could find the under-
lying structures even for SNR= −3 (i.e., the amplitude of noise
is 1.4 times of the amplitude of signals), when each channel had
a different noise. The robustness of the methods can be ordered
from high to low: white, pink, pink mixtures and brown mixtures.
Figure 13B shows similar results when all channels shared the
same noise. However, all direct methods failed when SNR< 15.
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FIGURE 10 | Average AUC arrays of the 42 methods over different structures as a function of connection strength for (A) fMRI, (B) linear (C) Rössler

and (D) Hénon.
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FIGURE 11 | Robustness of the methods against system noise. (A) AUC
array of the 42 methods as a function of the ratio between the amplitude of
system noise and the amplitude of inputs for both NMM (left) and fMRI

signals (right). (B) Examples of signals generated with different amplitudes of
system noises (100, 900, and 2100 times more than the amplitude of the
input signals).
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FIGURE 12 | Robustness of the 42 methods against the observation noise for NMM signals. The figure shows average AUC arrays of the 42 methods as a
function of the SNR (signal-to-noise ratio). (A) Each channel receives a different noise (B) All channels receive the same noise.

Figure 13B shows that transfer entropy, Granger and AH fami-
lies were more accurate when each channel had a different noise,
whereas the coherence, correlation, h2 and mutual information
families were more accurate when channels shared the same noise.

When each channel had a different noise level with differ-
ent SNR, we found that performance was a function of maximal
SNR (Supplementary Figure 5). Because the noise levels of most
channels is less than the maximal SNR, most methods (from
coherence, correlation, h2, transfer entropy, Granger families)
shows better performance for a given SNR when channels had a
different SNR noise (except brown mixtures) relative to a different
noise with same SNR. The directed methods from AH families

were more sensitive when each channel has different noise and
different SNR.

Figure 14 summarizes the appropriate parameter ranges for 6
specific methods, relative to signal connection strengths and the
minimal SNR, which can successfully retrieve the ground truth
graphs. Figure 14B also clearly demonstrates that model-based
methods are more robust when each channel has a different level
of noise vs. the case where the noise is shared by all channels.

COMPUTATIONAL COST
Computational complexity can be a limiting factor when per-
forming network analysis, especially when the size of the network
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FIGURE 13 | Robustness of the 42 methods against the observation noise for fMRI signals. The figure shows average AUC arrays of the 42 methods as a
function of SNR. (A) Each channel receives a different noise (B) All channels receive the same noise.

increases. We measured the computational time of each method
family for an analysis performed in a 350 time points window
on an Intel Xeon E5–2690 when the number of nodes increases
from 5 to 80. Figure 15A shows the computational time in sec-
onds for correlation and Granger families. Other families are
available in Supplementary Figure 6A. The complexity cost for
Granger is O(n7), where n is the number of nodes, whilst the com-
putational cost for all other method families is O(n2) but with
different parameters. Figure 15B provides the estimation equa-
tions of computational time for a given number of nodes. The
computational time cost of the discussed methods families can

be ordered from low to high: AH, correlation, mutual informa-
tion, transfer entropy, coherence, h2 and Granger (Figure 15C
and Supplementary Figure 6B).

DISCUSSION
We studied these 42 methods because they cover a wide range of
approaches for characterizing functional connectivity. Of the 42
methods, 28 assume underlying linear models of statistical depen-
dencies; 4 (h2 family) use piece-wise linearization and the last 10
methods (mutual information and transfer entropy) use entropy
measures to account for nonlinearities. Within the Granger and
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FIGURE 14 | (A) The optimized parameters and relative performance are
summarized for 6 chosen methods, each from 6 different families. Note that
1: Numbers of windows are obtained by taking a 2.8 s window for NMM and
700 s for fMRI. 2. The first line is the length of time series while the second

line shows the window size. Both numbers of windows and length of time
series are based on the AUC> 0.999. 3. Results are obtained for a signal
delay of 8 (64 ms). (B) The minimal SNR for 8 types of noise by 6 chosen
methods on both NMM and fMRI according to AUC> 0.95.

AH families, various methods use different statistical estima-
tion methods, although they are all based on linear multivariate
autoregressive models.

Since functional connectivity analysis is routinely performed
on electrophysiological, encephalographic and fMRI signals, we
selected neural mass models and associated fMRI models to
generate datasets. However, when they were first introduced,
most functional connectivity methods were tested on (biological)

mathematical models. For example, the Granger family (Seth,
2010) and AH (Baccalá and Sameshima, 2001) families were
tested on linear models, while non-linear methods were tested on
non-linear models (Lopes da Silva et al., 1989). In light of this,
we considered both biologically plausible generative models and
more abstract mathematical models with linear and non-linear
dynamics. Any other method and/or other generative model can
easily be introduced in the evaluation framework.
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FIGURE 15 | Computational time for the different method families.

(A) The computational time (in seconds) is a function of the number
of nodes for correlation and Granger families. Green points are the
tested values and red bars show the distributions from the different

trials. The fitted curves are shown in blue and the mathematical
equations for all method families are shown in (B). (C) Computation
time in second as a function of numbers of nodes and method
families.
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PARAMETRIC OPTIMIZATION
Both evaluation and application of a functional connectiv-
ity method require valid parameters. The proposed framework
attempts to provide a systematic way to find the valid parame-
ters. After choosing candidate methods, it is necessary to select a
model, which is related to the simulated data. Using the provided
code and referring to parameter ranges presented here, it is then
possible to choose the possible parameter ranges for the candi-
date methods on the simulated data. One can thus find the valid
parameters. Note that we assumed that the performance of con-
nectivity analysis methods has the same characteristics on both
empirical data and the simulated data.

Recovering the underlying (effective) connectivity graph
requires sufficiently long time series. Our results suggested using
a window size larger than 350 time points and at least 15 windows
(with a half-window overlap) are necessary for most methods.
Thus, for most methods, 4000 (32 s) time points should be suf-
ficient for NMM and 3000 (6000 s) time points for fMRI time
series. Such long acquisition times are difficult to implement
for fMRI; e.g., when analyzing resting state networks. However,
some methods, like bivariate coherence Fourier (BCohF) perform
well with short duration acquisitions (Figure 5D). Furthermore,
it should be noted that connectivity averages—based on multi-
ple short runs or subjects—often converge to meaningful values
(as we demonstrate in the sliding window approach in the cur-
rent paper and using simulations in Friston et al., 2014). It is
important to note that using a single long time window can be
unreliable. Both the number of windows and their length are
critical parameters. These considerations are valid if the con-
nectivity strength does not change during this period. However,
brain activity is highly dynamical, with functional links between
regions/neurons being permanently turned on and off in a brain
state-dependent manner. Indeed, in the dynamic causal model-
ing of effective connectivity, it is this context-sensitive (bilinear)
change in connectivity that is usually of primary interest (Friston
et al., 2003; Fox et al., 2005). When the changes in effective con-
nectivity are not under experimental control, this can represent a
challenging problem, which we hope to consider in future work.
In the present context, the current analyses suggest that, if changes
in functional connectivity have time constants greater than about
4000 time points, it should be possible to identify the connectivity
graph and its fluctuations over slower time scales.

The appropriate maximum lag and model orders for autore-
gressive and embedding methods must be at least in the range of
signal delays. However, large maximum lags or model orders do
not necessarily provide more accurate results. Estimating signal
delays in real datasets is a difficult task—although it is done rou-
tinely in dynamic causal modeling of EEG data. In the analysis of
functional connectivity, one possibility would be to try all max-
imum lags and model orders and determine whether different
methods give consistent results.

PERFORMANCE OF THE METHODS
Although our goal was not to understand why methods suc-
ceed or fail to recover graphs, our systematic analysis of 42
methods provide some clues regarding their performance. In
the case of model-based methods, the Granger family recovered
most underlying structures. Barnett et al. (2009) show that, in

theory, Granger causality and transfer entropy are equivalent for
Gaussian variables. In the present study, we demonstrated that
transfer entropy was as good as Granger family in most cases,
except for linear and Rössler systems. The AH family also per-
formed quite well on most datasets (except Rössler systems), but
was not robust to variations in connection strength.

In the case of model-free methods, Fourier coherence per-
formed quite well for recovering undirected graphs. Wavelet
coherence only performed well on fMRI datasets. The corre-
lation family performed slightly better than h2 on NMM and
fMRI, but worse on non-linear mathematical models (Rössler
and Hénon). Mutual information methods only worked on fMRI
datasets when the connection strength was strong (and on Hénon
systems).

The relative performance of the methods we considered also
depends upon the structure and complexity of the signal. It is gen-
erally assumed that biological systems are inherently non-linear.
All methods performed better on the neuronal models (NMM
and fMRI) than on the purely mathematical non-linear models
(Rössler and Hénon). Most methods also performed better on
fMRI than on NMM. One possible reason is that the number of
hidden states within each node of a NMM (13 states) is larger
than for fMRI (1 state). Another possible reason is that NMM has
a higher degree of nonlinearity than fMRI. The degree of non-
linearity can be defined as the degree to which a linear surrogate
can approximate a non-linear system, at least for a finite time.
Two reasons may explain why the methods performed better on
Hénon than on Rössler: The Hénon system has 1 hidden state
while the Rössler has 3 states; furthermore, the Rössler system has
a larger degree of nonlinearity than the Hénon system.

A recent study investigated different methods using simulated
fMRI data (Smith et al., 2011). We used the most stringent
criterion: AUC= 1, which would correspond to c-sensitivity= 1
in Smith et al. (2011). In the latter study, even the best perform-
ing methods did not reach this level, whilst in our case, many
methods succeeded with an appropriate choice of parameters.
In order to assess the possible origin of these differences, we
analyzed the datasets used in Smith et al. (2011) (Supplementary
Figure 7 and parameters in Supplementary Table 2). Differences
with the present study can be noted: for example, undirected
methods from both correlation and coherence families can
identify the exact truth structures, while these methods failed
in Smith et al. (2011). This discrepancy may stem from the fact
that we performed a systematic parametric search to identify
the optimal parameter range for each method. This protects
against false negative conclusions (i.e., when a method fails due
to an inappropriate parameter choice). Second we averaged the
results across the sliding windows rather than using a single
window. Directed methods such as Granger and PDC methods
performed poorly for the datasets in Smith et al. (2011) perhaps
because the connectivity strengths maybe too low to be detected
by GC in Smith et al. (2011). This is consistent with our analysis
(Figure 10A): GC failed when the connectivity strength was
too low.

INFLUENCE OF FLUCTUATIONS AND NOISE
System noise, which has a role that is similar to that of exoge-
nous input, did not affect the performance of the methods. In
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contrast, all methods were sensitive to observation noise, in par-
ticular when its spectrum was similar to the exogenous input.
Model-based methods were more robust when each channel had
different noise, while model-free methods are more robust when
all channels shared the same noise. We note that many signal-
processing techniques have been designed to eliminate a stable
source of noise common to all channels and may be usefully
applied in this context.

INFLUENCE OF CONNECTION STRENGTH
Intuitively, if two nodes are strongly connected, finding an edge
between these two nodes is a relatively easy task. However,
when the connection strength became very weak, all methods
failed. For intermediate values, the ability to identify the link
was method-dependent. For example, the Granger and transfer
entropy families were better at detecting weak links for NMM, but
the correlations, coherence, and h2 families performed slightly
better for fMRI.

VARYING NUMBER OF EDGES, HIDDEN NODES, AND
NON-STATIONARITY
Our analysis is based on networks comprising 5 nodes and 5 links.
However, our (open source) MATLAB code allows one to vary the
number of nodes and links, as well as the architecture of the net-
work. The appropriate range of parameters (in particular the size
of the sliding window) can then be optimized for any particular
architecture defined in terms of graph size.

When analyzing an experimental dataset, part of the real
network could be hidden from observation. The framework pre-
sented in this paper allows one to characterize the influence
of hidden nodes on connectivity estimates. For example, in
fMRI, it is possible to simulate data with and without the influ-
ence of (hidden) nodes and compare the associated connectivity
estimates.

Non-stationarity is common in experimental datasets. The
good performance of some methods presented in the present
study may stem from the stationary nature of the simulated data
we have used. Some of these methods may perform poorly in non-
stationary situations, which would require explicit modeling. In
principle, the present framework allows one to test the robust-
ness of methods to violations of stationarity assumptions—by
comparing the estimates based on stationary and non-stationary
simulations. We hope to address this particular issue in a future
paper.

CONCLUSION
The pragmatic contributions of this work are to illustrate how one
can optimize analysis parameters and to explore the dependency
of various functional connectivity measures on the underly-
ing generative process and architecture. The particular analyses
presented in this paper illustrate the optimization under some
particular generative models. We hope that people will use the
MATLAB code that we have made available to reproduce this sort
of analysis with a focus on specific issues of interest; for exam-
ple, the impact of variable haemodynamic delays over regions or
nodes. This can be implemented simply by supplying node spe-
cific haemodynamic parameters to the fMRI simulations. Clearly,

there are many other variations of the generative models and
functional connectivity measures one might consider, using the
procedures described above.

Our results demonstrate that no single method is optimal for
all types of data. We propose that combining methods, knowing
when they fail and when they succeed, is the obvious strategy.
In our next communication using the framework established in
this paper, we will present a MULtiple connectivity ANalysis
(MULAN) algorithm. This scheme enables one to identify the
most probable connectivity structures by integrating the results of
the current methods. Subsequently, we will describe an extension
that allows connectivity graphs to evolve dynamically.

The schemes described in this paper are implemented in
Matlab code and are available freely from in github: https://
github.com/HuifangWang/MULAN.
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