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Human speech consists of a variety of articulated sounds that vary dynamically in
spectral composition. We investigated the neural activity associated with the perception
of two types of speech segments: (a) the period of rapid spectral transition occurring at
the beginning of a stop-consonant vowel (CV) syllable and (b) the subsequent spectral
steady-state period occurring during the vowel segment of the syllable. Functional
magnetic resonance imaging (fMRI) was recorded while subjects listened to series of
synthesized CV syllables and non-phonemic control sounds. Adaptation to specific sound
features was measured by varying either the transition or steady-state periods of the
synthesized sounds. Two spatially distinct brain areas in the superior temporal cortex
were found that were sensitive to either the type of adaptation or the type of stimulus.
In a relatively large section of the bilateral dorsal superior temporal gyrus (STG), activity
varied as a function of adaptation type regardless of whether the stimuli were phonemic
or non-phonemic. Immediately adjacent to this region in a more limited area of the ventral
STG, increased activity was observed for phonemic trials compared to non-phonemic
trials, however, no adaptation effects were found. In addition, a third area in the bilateral
medial superior temporal plane showed increased activity to non-phonemic compared to
phonemic sounds. The results suggest a multi-stage hierarchical stream for speech sound
processing extending ventrolaterally from the superior temporal plane to the superior
temporal sulcus. At successive stages in this hierarchy, neurons code for increasingly
more complex spectrotemporal features. At the same time, these representations
become more abstracted from the original acoustic form of the sound.

Keywords: speech perception, auditory cortex, phonological processing, fMRI, temporal lobe, spectrotemporal

cues

INTRODUCTION

During the articulation of speech, vibrations of the vocal cords
create discrete bands of high acoustic energy called formants
that correspond to the resonant frequencies of the vocal tract.
Identifying phonemic information from a speech stream depends
on both the steady-state spectral content of the sound, particu-
larly the relative frequencies of the formants, and the temporal
content, corresponding to fast changes in the formants over
time. Speech sounds can be divided into two general categories,
vowels and consonants, depending on whether the vocal tract
is open or obstructed during articulation. Because of this dif-
ference in production, vowels, and consonants have systematic
differences in acoustic features. Vowels, which are produced with
an open vocal tract, generally consist of sustained periods of
sound with relatively little variation in frequency. Consonants,
on the other hand, are voiced with an obstructed vocal tract,
which tends to create abrupt changes in the formant frequencies.
For this reason, vowel identification relies more heavily on the
steady-state spectral features of the sound and consonant identi-
fication relies more on the momentary temporal features (Kent,
2002).

Research in animals suggests that the majority of neurons in
auditory cortex encode information about both spectral and tem-
poral properties of sounds (Nelken et al., 2003; Wang et al., 2008;
Bendor et al., 2012). However, the spectrotemporal response
properties of neurons vary across cortical fields. For example, in
the core region of primate auditory cortex, neurons in anterior
area R integrate over longer time windows than neurons in area
Al (Bendor and Wang, 2008; Scott et al., 2011), and neurons in
the lateral belt have preferential tuning to sounds with wide spec-
tral bandwidths compared to the more narrowly-tuned neurons
in the core (Rauschecker et al., 1995; Rauschecker and Tian, 2004;
Recanzone, 2008). This pattern of responses has been used as evi-
dence for the existence of two orthogonal hierarchical processing
streams in auditory cortex: a stream with increasing longer tem-
poral windows extending along the posterior-anterior axis from
Al to R and a stream with increasing larger spectral bandwidth
extending along the medial-lateral axis from the core to the belt
(Rauschecker et al., 1995; Bendor and Wang, 2008). In addition to
differences in spectrotemporal response properties within audi-
tory cortex, other studies suggest there may also be differences
between the two hemispheres, with the right hemisphere more
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sensitive to fine spectral details and the left hemisphere more sen-
sitive to fast temporal changes (Zatorre et al., 2002; Poeppel, 2003;
Boemio et al., 2005).

In the current study functional magnetic resonance imaging
(fMRI) was used to investigate the cortical organization of pho-
netic feature encoding in the human brain. A main question is
whether there are spatially distinct parts of auditory cortex that
encode information about spectrally steady-state and dynamic
sound features. Isolating feature-specific neural activity is often
a problem in fMRI because different features of a stimulus may
be encoded by highly overlapping sets of neurons, which could
potentially result in similar patterns and levels of BOLD activa-
tion during experimental manipulations. One way to improve the
sensitivity of fMRI to feature-specific encoding is to use stim-
ulus adaptation (Grill-Spector and Malach, 2001). Adaptation
paradigms rely on the fact that neural activity is reduced when a
stimulus is repeated, and this effect depends on the type of infor-
mation the neuron encodes. For example, a visual neuron that
encodes information about spatial location might show reduced
activity when multiple stimuli were presented in the same loca-
tion, but would be insensitive to repetition of other features like
color or shape. Adaptation-type paradigms have been used pre-
viously to study aspects of speech processing, such as phonemic
categorization (Wolmetz et al., 2010), consonant (Lawyer and
Corina, 2014), and vowel processing (Leff et al., 2009). In the
current study, subjects listened to stimuli that were synthetic two-
formant consonant-vowel (CV) syllables composed of an initial
period of fast temporal change, corresponding primarily to the
consonant, and a subsequent steady-state period, correspond-
ing to the vowel. These stimuli were presented in an adaptation
design, in which each trial consisted of a series of four identi-
cal syllables (e.g., /ba/, /ba/, /ba/, /ba/) followed by two stimuli
that differed either in the initial transition period (e.g,. /ga/, /ga/),
the steady-state period (e.g., /bi/, /bi/), or both (e.g., /gi/, /gi/).
A fourth condition, in which all six stimuli were identical, was
included as a baseline. The baseline condition should produce
the greatest amount of stimulus adaptation and the lowest activa-
tion levels. We expected that trials with changes in the transition
period compared to baseline trials would result in greater activity
in neurons that encode information about fast temporal transi-
tions, while trials with changes in the steady-state period would
result in greater activity in neurons that encode information
about spectral composition.

An additional question is whether any observed activation
patterns represent differences in general auditory processing or
differences specific to the processing of speech vowels and con-
sonants. Previous imaging studies comparing activation during
consonant and vowel processing have only used speech stimuli
(Rimol et al., 2005; Obleser et al., 2010) or have used non-
speech controls that were acoustically very different from speech
(Joanisse and Gati, 2003), making it difficult to determine speech
specificity. To address this question, we included two types of
acoustically matched non-phonemic control sounds. In one type,
the first formant was spectrally rotated, resulting in a sound with
the same spectral complexity of speech but including a non-native
(in English) formant transition. The second type of control stim-
uli included only one of the formants, resulting in a sound with

valid English formant transitions but without harmonic spectral
content. These three stimulus types (phonemic, non-phonemic,
single-formant) were presented in trials of six ordered according
to the four types of adaptation (steady-state change, transition
change, steady-state and transition change, baseline) resulting in
12 conditions.

MATERIALS AND METHODS

PARTICIPANTS

FMRI data were collected from 15 subjects (8 female, 7 male;
ages 21-36 years). All subjects were right-handed, native English
speakers, and had normal hearing based on self report. Subjects
gave informed consent under a protocol approved by the
Institutional Review Board of the Medical College of Wisconsin.

STIMULI

The stimuli were synthesized speech sounds created using
the KlattGrid synthesizer in Praat (http://www.fon.hum.uva.nl/
praat). The acoustic parameters for the synthesizer were derived
from a library of spoken CV syllables based on a male voice
(Stephens and Holt, 2011). For each syllable, we first estimated the
center frequencies of the first and second formants using linear
predictive coding (LPC). Outliers in the formant estimates were
removed. The timing of the formant estimates were adjusted so
that the duration of the initial transition period of each syllable
was 40 ms and the duration of the following steady-state period
was 140 ms. The resulting formant time series were used as input
parameters to the speech synthesizer. Three types of stimuli were
generated (see Figure 1A). Phonemic stimuli were composed of
both the F1 and F2 formant time courses derived from the natu-
ral syllables. Non-Phonemic stimuli were composed of the same
F2 formants as the Phonemic stimuli and a spectrally rotated ver-
sion of the F1 formant (inverted around the mean frequency of
the steady-state period). Single-Formant stimuli contained only
the F1 or F2 formant from the Phonemic and Non-Phonemic
stimuli. Qualitatively, the Phonemic stimuli were perceived as
English speech syllables, the Non-Phonemic stimuli were per-
ceived as unrecognizable (non-English) speech-like sounds, and
the Single-Formant stimuli were perceived as non-speech chirps
(Liebenthal et al., 2005). Versions of these three types of synthe-
sized stimuli were generated using all possible combinations of
the consonants /b/, /g/, /d/, and the vowels /a/, /ae/, /i/, and /u/.
Perception of the resulting stimuli was then tested in a pilot study,
in which subjects (n = 6) were asked to identify each stimulus
as one of the 12 possible CV syllables, as a different CV sylla-
ble, or as a non-speech sound. Based on the pilot study results,
several of the Non-Phonemic and Single-Formant stimuli were
removed from the stimulus set because they sounded too speech-
like, and several of the Phonemic stimuli were removed because
they were too often misidentified for another syllable or non-
speech sound. A final stimulus set was chosen that consisted
of Phonemic, Non-Phonemic, and Single-Formant versions of
the syllables: /ba/, /bi/, /bae/, /gal, /gi/, /gae/. In the final set,
the Phonemic, Non-Phonemic, and Single-Formant stimuli were
identified by participants of the pilot study as the original sylla-
ble (from which the syllable was derived and re-synthesized) at an
average accuracy of 90, 46, and 13%, respectively.
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FIGURE 1 | (A) Stimulus design. Graphs illustrate the shape of the formants composed of a standard F2 formant and a spectrally rotated F1 formant.
used to synthesize the three types of stimuli based on the syllable /ba/. Single-Formant stimuli only included one of the two formants (F1 or F2) from
Phonemic stimuli were synthesized using the first (F1) and second (F2) the Phonemic or Non-Phonemic stimuli. (B) Trial design. Examples of the four

formants in their canonical orientation. Non-Phonemic stimuli were (Continued)
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FIGURE 1 | Continued

adaptation conditions are shown. Each trial consisted of six stimuli
presented every 380ms. The first four stimuli were identical. The last
two stimuli varied in one of four ways. In Baseline trials the final two
stimuli were identical to the first four. In Steady-State (SS) trials, the
final two stimuli differed in the steady-state period (i.e., vowel). In
Transient (T) trials, the final two stimuli different in the initial transition

period (i.e., consonant). In the Transient and Steady-State (TSS) trials
both transient and steady-state periods differed in the final two stimuli.
(C) Diagram of superior and middle temporal cortex in the left
hemisphere with labeled anatomical structures. Abbreviations: PP
Planum Polare; PT, Planum Temporale; HG, Heschl's Gyrus; STG,
Superior Temporal Gyrus; STS, Superior Temporal Sulcus; MTG, Middle
Temporal Gyrus.

The stimuli were presented using an adaptation paradigm
(see Figure 1B). Each trial contained six stimuli presented every
380 ms. The first four stimuli were identical, and the final two
stimuli differed from the first four in one of four ways. In the
Baseline condition, the final two stimuli were identical to the first
four. In the Steady-State (SS) condition, the final two stimuli dif-
fered from the first four in the steady-state vowel (e.g., /ba/, /ba/,
/ba/, /ba/, /bi/, /bi/). In the Transition (T) condition, the final
stimuli differed in their transition period (e.g., /ba/, /ba/, /ba/,
/bal, /gal, /gal). In the Transition Steady-State (TSS) condition,
both the steady-state and transition periods differed in the final
stimuli (e.g., /ba/, /ba/, /ba/, /bal, Igil, /gi/).

PROCEDURE

Each participant was scanned in two sessions occurring on dif-
ferent days. Each scanning session consisted of a high resolution
anatomical scan (SPGR sequence, axial orientation, 180 slices,
256 x 240 matrix, FOV = 240 mm, 0.9375 x 1.0 mm? resolution,
1.0 mm slice thickness) and five functional scans (EPI sequence,
96 x 96 matrix, FOV = 240 mm, 2.5 x 2.5 mm? resolution, 3 mm
slice thickness, TA = 1.8s, TR = 7.0s). Functional scans were
collected using a sparse-sampling procedure in which stimuli
were presented during a silent period between MR image collec-
tion (Hall et al., 1999).

The experiment was organized in a 3 x 4 factorial design with
the three stimulus types (Phonemic, Non-Phonemic, and Single-
Formant) presented in four different adaptation configurations
(TSS, T, SS, and Control) resulting in a total of 12 conditions.
The conditions were presented in trials consisting of six stimuli
presented every 380 ms followed by a single MR volume acqui-
sition lasting 1.8s. A small percentage (p = 0.1) of trials were
missing either one or two of the six stimuli. To ensure that sub-
jects were attending to the stimuli during the experiment, subjects
were required to hit a button when they detected a missing stim-
ulus. Compliance with the task was assessed, but image data from
the trials with missing stimuli were excluded from the analysis.
Within each run 8 trials were presented per condition producing
a total of 80 trials per condition across both sessions. An addi-
tional 8 trials of rest (i.e., no stimulus) were included in each run.
Trials were presented in blocks containing 4 trials of the same con-
dition. The order of the blocks was randomized across runs and
across participants.

Sounds were presented binaurally with in-ear electrostatic
headphones (Stax SR-003; Stax Ltd, Saitama, Japan). Additional
protective ear muffs were placed over the headphones to attenuate
scanner noise.

The fMRI data were analyzed using AFNI (Saad et al., 2009).
Initial preprocessing steps included motion correction and co-
registration between the functional and anatomical scans. The

anatomical volumes from each subject were aligned using non-
linear deformation to create a study-specific atlas using the pro-
gram ANTS (Avants and Gee, 2004). The functional data were
resampled (voxel size = 2.5 x 2.5 x 2.5 mm?) into the atlas space
and spatially filtered using a Gaussian window (FWHM = 5 mm).
Our primary research questions were focused on differences in
activation in auditory areas, therefore, we confined our analysis
to a set of voxels that included the entire superior, middle, and
inferior temporal lobe and extending into the inferior parietal and
lateral occipital lobes.

Estimates of the activation levels for the 12 conditions were
calculated using the AFNI command 3dREMLfit, which mod-
els the data using a generalized least squares analysis with a
restricted maximum likelihood (REML) estimate of temporal
auto-correlation. Contrasts between conditions were evaluated
at the group level using a mixed-effects model. To correct for
increased type 1 error due to multiple comparisons, the vox-
els in the resulting statistical maps were initially thresholded at
p < 0.01, grouped into contiguous clusters, and then thresholded
at p < 0.05 using a cluster-size threshold of 29 determined using
the AFNI command 3dClustStim. An additional analysis using
an initial threshold of p < 0.05 and a cluster-size threshold of
108 voxels (p < 0.05, corrected) was performed on one of the
contrasts. Mean effect sizes for each cluster were calculated by
dividing the amplitude of the contrast values by the mean signal
level and then taking a mean across all the voxels in the clus-
ter. The maps are displayed on an inflated surface brain of the
ANTS-derived atlas created using Freesurfer (Dale et al., 1999). A
diagram of the location of the anatomical labels used to describe
the results is displayed in Figure 1C.

RESULTS

Differences in BOLD activation between the three stimulus types
are shown in Figure 2. Each contrast represents the difference
in activation between two of the three stimulus types collapsed
across the four adaptation conditions. Greater levels of activity
were observed during Phonemic trials compared to either the
Non-Phonemic or Single-Formant trials in the superior tem-
poral gyrus (STG), bilaterally. More specifically, the voxels in
this activation cluster were located on the more inferior side of
the curve of the STG (see Figure 4), which we refer to as ven-
tral STG, and distinguish this area from the more superior side
of the STG, which we refer to as dorsal STG. There was less
activity during Phonemic trials compared to Single-Formant tri-
als in both hemispheres in the superior temporal plane (STP),
specifically the medial portion, and in the posterior part of the
middle temporal sulcus. Less activity during Phonemic compared
to Non-Phonemic trials was found in a smaller cluster in the
planum polare in the right hemisphere. Single-Formant trials
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FIGURE 2 | Differences in activation between the three stimulus
types collapsed across the four adaptation conditions. (A)
Comparison of the activation levels in the Phonemic and

A Phonemic > Single-Formant

Single-Formant trials. (B) Comparison between the Phonemic and
Non-Phonemic trials. (C) Comparison between the Single-Formant and
Non-Phonemic trials.

had greater activity than Non-Phonemic trials in the left planum
temporale.

To test for adaptation effects, each of the three adaptation
conditions (T, SS, and TSS) were compared to the Baseline adap-
tation condition, in which all six stimuli in the trial were identical.
Each of the adaptation contrasts included all three stimulus types.
The resulting maps are shown in Figure 3. All three adaptation
conditions demonstrated greater activity than the Baseline condi-
tion in the dorsal STG, bilaterally. The comparison of SS against
Baseline produced a cluster of activation extending along the dor-
sal STG both anterior and posterior to Heschl’s gyrus (HG). The

TSS condition activated a similar set of areas. The T condition
appeared to have the smallest extent of activation confined to a
section of cortex along the middle of the STG. Additional adapta-
tion effects were observed outside of auditory cortex. Significant
clusters of activation for the T condition were observed in the left
middle temporal gyrus (MTG) and bilateral middle temporal sul-
cus. In addition, activation for the SS was found in the right lateral
occipital sulcus.

A direct contrast between the T and SS conditions is shown in
Figure 4A. Greater activity in the SS condition was observed in
a cluster in the left anterior STG and another cluster in the right
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FIGURE 3 | Differences in activation between each adaptation condition
and Baseline collapsed across stimulus type. (A) Contrast between
activation levels in the Transient and Steady-State (TSS) condition against the

A Steady-State+Transient (TSS) > Baseline

Transient (T) > Baseline

Y

Baseline condition. (B) Contrast between the Steady-State (SS) condition and
the Baseline condition. (C) Contrast between the Transient (T) condition and
the Baseline condition.

posterior STG. Greater activity in the T condition was observed
in the left superior marginal gyrus and the right temporal pole.
Given that differences in activation levels between the two types of
adaptation could be small resulting in a lower statistical effect, we
ran an additional contrast using a lower initial threshold of p <
0.05 with the same corrected alpha level of 0.05 (see Figure 4B).
In this contrast, there was greater activity in the SS condition in
bilateral anterior STG and bilateral posterior STG. There was no
difference between T and SS in the middle section of the STG just
lateral to HG. Greater activation for the T condition was observed
in bilateral lateral occipital complex and the left temporal pole.

In order to compare the location of the activation clusters
identified in the dorsal and ventral STG, we overlaid the acti-
vation maps for the combination of the two stimulus contrasts
(Phonemic > Non-Phonemic and Phonemic > Single-Formant)
and the three adaptation contrasts (SS > Baseline, T > Baseline,
and TSS > Baseline) (Figure 5). Voxels that were significant for
either of the two stimulus contrasts are displayed in red, vox-
els significant for any of the three adaptation contrasts are in
yellow, and overlapping voxels are in orange. Activation clusters
showing preferential response to phonemic stimuli were ven-
tral and adjacent to clusters showing adaptation effects related
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A Steady-State (SS) > Transient (T)

FIGURE 4 | Differences in activation between the Transient (T) and Steady-State (SS) adaptation conditions. (A) Contrast between T and SS using an
initial threshold of p < 0.01 (a = 0.05, corrected). (B) Contrast between T and SS using an initial threshold of p < 0.05 (a = 0.05, corrected).

to changes in acoustic form with little overlap between the
clusters.

In the sections of cortex in the dorsal and ventral STG that
showed activation in the stimulus and adaptation contrasts, we
did not find significant interactions between adaptation and stim-
ulus type. However, significant interaction effects were seen in
several clusters outside of this region (see Table 1). The inter-
action between SS and Single-Formant over Phonemic showed
a cluster in the right inferior parietal lobe and between SS and
Single-Formant over Non-Phonemic in the left middle tem-
poral sulcus. The interaction between T and Phonemic over
Single-Formant was seen in the left anterior STS. The interaction
between TSS and Phonemic over Non-Phonemic showed acti-
vation in the right posterior STS/STG and between TSS and
Single-Formant over Non-Phonemic in the bilateral posterior
STG and bilateral MTG.

DISCUSSION

We investigated the patterns of neural activity associated with
perception of the transition and steady-state portions of CV syl-
lables and non-speech controls using fMRI. Two adjacent but
distinct regions in the superior temporal lobe were identified
that were affected by manipulations of either feature-specific
adaptation or stimulus type (Figure5). On the dorsal side of
the STG extending into the STP, voxels had reduced activity

during the repetition of both the transition and steady-state
portions of the sound regardless of whether the stimulus was
Phonemic, Non-Phonemic, or Single-Formant. On the ventral
side of the STG extending into the STS, voxels displayed higher
levels of activity during Phonemic compared to Non-Phonemic
and Single-Formant trials but were not sensitive to adaptation
of acoustic features. Brain areas showing selectivity to acoustic
form (i.e., to the adaptation condition) and brain areas show-
ing selectivity to phonemes were located adjacent to each other
in the dorsal and ventral STG, with little overlap between them.
Finally in bilateral STP, increased activity was observed for the
Non-Phonemic and Single-Formant sounds over the Phonemic
sounds.

Adaptation effects due to stimulus repetition were observed
in the bilateral dorsal STG extending into the STP. This region
has been identified in a wide range of studies looking at audi-
tory and speech processing (Alho et al., 2014), and it appears to
play a role in processing stimuli with “complex” spectrotempo-
ral structure. For example, higher levels of activity in the bilateral
dorsal STG are observed for sounds with multiple spectral com-
ponents (Schonwiesner et al., 2005; Lewis et al., 2012; Moerel
et al., 2013; Norman-Haignere et al., 2013) or sounds contain-
ing temporal modulations (Schonwiesner et al., 2005; Herdener
et al., 2013; Santoro et al., 2014) compared to simple auditory
controls like tones or noise. Greater activity is also observed in this
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Table 1 | FMRI Activation Clusters.

Hemi Center Peak t-value Cluster size Mean effect Region
(voxels) size (%)

X Y z X Y z
PHONEMIC > NON-PHONEMIC
L —60.5 -11.0 —-3.6 —-62.9 —-12.9 —-4.3 5.19 57 0.23 superior temporal gyrus
R 48.3 —-29.9 -0.4 454  -37.7 5.4 4.02 33 0.15 superior temporal gyrus
R 59.5 —4.2 —6.8 58.3 —-95 -9.2 4.81 34 0.18 superior temporal gyrus
NON-PHONEMIC > PHONEMIC
R 48.4 -8.3 0.3 53.0 -1.9 4.7 4.88 69 0.16 planum polare (medial)
PHONEMIC > SINGLE-FORMANT
L —-61.4 -17.9 1.1 —62.9 -12.9 —-4.3 7.27 190 0.27 ventral superior temporal gyrus
R 60.1 -0.9 —5.6 61.0 —-2.7 1.4 4.86 32 0.20 ventral superior temporal gyrus
SINGLE-FORMANT > PHONEMIC
L —42.6 —60.6 —6.4 —43.1 —66.7 2.5 4.85 42 0.08 inferior temporal sulcus
L -39.7 —23.6 5.3 -409 286 16.8 7.94 185 0.16 planum polare/temporale (medial)
R 434 -603 —-1.1 45.7 —57.8 -0.0 4.45 47 0.10 inferior temporal sulcus
R 44.6 —-19.4 7.6 56.0 —23.7 5.7 7.03 285 0.17 planum polare/temporale (medial)
SINGLE-FORMANT > NON-PHONEMIC
L -38.7 -32.9 13.8 —-38.2 —-32.2 1.3 6.49 59 0.1 planum temporale (medial)
STEADY-STATE ADAPTATION > BASELINE
L —-62.3 —27.1 7.5 —65.1 —-36.2 121 8.71 220 0.15 superior temporal gyrus (posterior)
L —46.1 —-2.6 —13.1 —41.4 -8.3 -11.5 5.54 60 0.15 superior temporal gyrus (anteior)
R 36.7 —82.1 1.1 38.0 -—84.2 8.1 4.82 33 0.08 lateral occipital gyrus
R 55.5 —15.2 -3.1 52.8 2.1 -5.2 10.03 564 0.17 superior temporal gyrus
TRANSIENT ADAPTATION > BASELINE
L —-59.6 —-293 6.6 -59.9 222 6.6 5.28 64 0.10 superior temporal gyrus
L —-585 —39.6 -9.2 —59.7 —43.7 -7.8 6.81 125 0.1 middle temporal gyrus
L —-41.8 —60.2 —-10.5 —35.2 —65.3 -7.0 6.49 158 0.12 lateral occipital gyrus
L -37.7 —72.4 13.0 -376 —-70.6 12.4 5.49 43 0.09 inferior temporal sulcus
R 41.6 —66.7 4.4 38.0 —78.8 7.1 5.06 154 0.10 inferior temporal sulcus
R 54.9 2.1 —4.2 60.8 7.5 —-6.3 5.47 37 0.14 superior temporal gyrus
STEADY-STATE AND TRANSIENT ADAPTATION > BASELINE
L —-57.2 =242 6.7 —49.1 —-27.9 45 7.71 286 0.14 superior temporal gyrus
R 58.8 —-17.8 0.5 50.2 -2.8 -1.2 5.57 296 0.15 superior temporal gyrus
(STEADY-STATE ADAPTATION > BASELINE) X (SINGLE-FORMANT > PHONEMIC)
R 41.2 —-51.7 58.7 51.5 -52.0 53.9 28.79 36 0.56 inferior parietal sulcus
(STEADY-STATE ADAPTATION > BASELINE) X (SINGLE-FORMANT > NON-PHONEMIC)
L -57.0 -576 -21.8 -57.0 —56.7 —-20.6 5.24 45 0.27 inferior temporal sulcus
(TRANSIENT ADAPTATION > BASELINE) X (PHONEMIC > SINGLE-FORMANT)
L —-52.7 -2.6 —15.0 —-49.6 —-6.6 —-17.9 6.18 47 0.09 superior temporal sulcus (anterior)
(STEADY-STATE AND TRANSIENT ADAPTATION > BASELINE) X (PHONEMIC > NON-PHONEMIC)
R 56.7 —44.3 20.3 51.0 —-44.3 15.7 5.68 56 0.08 superior temporal gyrus (posterior)
R 63.8 —495 5.4 64.3 —43.3 3.2 4.24 40 0.13 superior temporal sulcus (posterior)
(STEADY-STATE AND TRANSIENT ADAPTATION > BASELINE) X (SINGLE-FORMANT > NON-PHONEMIC)
L —59.1 —b5.1 —-2.3 —56.7 —62.0 -1.3 5.19 189 0.12 inferior temporal sulcus
L -57.7 —29.1 13.5 —54.2 —34.1 17.9 5.75 41 0.08 superior temporal gyrus (posterior)
R 59.7 —-34.4 6.6 56.2 —-34.4 7.7 6.40 74 0.08 superior temporal gyrus (posterior)
R 60.4 —-20.5 -11.4 63.9 —20.6 -10.3 5.55 33 0.12 middle temporal gyrus
TRANSIENT ADAPTATION > STEADY-STATE ADAPTATION
L —-51.3 —50.7 38.1 —53.8 —b3.2 36.8 5.55 31 0.1 super marginal gyrus
R 44.6 14.1 —-37.2 47.0 13.9 —-34.9 6.00 32 0.24 temporal pole
STEADY-STATE ADAPTATION > TRANSIENT ADAPTATION
L —45.4 —4.1 —-6.7 —46.7 —-6.0 3.4 7.15 40 0.15 superior temporal gyrus (anterior)
R b5.9 -22.3 0.8 53.2 —-19.3 -1.2 9.72 52 0.12 superior temporal gyrus (posterior)

(Continued)
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Table 1| Continued

Hemi Center Peak t-value Cluster size Mean effect Region
(voxels) size (%)

X Y z X Y z
TRANSIENT ADAPTATION > STEADY-STATE ADAPTATION?
L —45.6 7.9 —33.8 —47.4 22.4 —26.4 4.60 113 0.16 temporal pole
L —-42.0 —66.7 27.7 —53.8 —53.2 36.8 5.55 380 0.10 lateral occipital gyrus
R 44.7 —69.0 13.8 40.8 —-72.9 27.3 6.31 217 0.08 lateral occipital gyrus
STEADY-STATE ADAPTATION > TRANSIENT ADAPTATION?
L —-62.0 —-34.8 1.5 —70.6 —-27.2 10.7 5.01 17 0.12 superior temporal gyrus (posterior)
L —45.8 -0.8 -7.9 —46.7 —6.0 3.4 7.15 151 0.12 superior temporal gyrus (anterior)
R 47.6 2.9 -11.2 50.0 10.5 -3.7 5.63 m 0.13 superior temporal gyrus (anterior)
R 58.6 —25.3 2.9 53.2 -19.3 —-1.2 9.72 209 0.10 superior temporal gyrus (posterior)

Unless noted, all contrasts are threshold = p < 0.01 (0.05 corrected).
@ threshold = p < 0.05 (0.05 corrected).

FIGURE 5 | Overlay of stimulus and adaptation effects in the STG. Voxels
in the dorsal or ventral STG that were significantly active in the Phonemic >
Single-Formant or Phonemic > Non-Phonemic contrasts (i.e., phoneme

specific) are displayed in red. Voxels in the STG that were significant in any of
the three adaptation contrasts (i.e., acoustic-form specific) are shown in
yellow. Overlapping voxels are colored orange.

area for stimuli with more complex spectrotemporal structure,
such as speech, animal vocalizations, or environmental sounds
(Altmann et al., 2007; Joly et al., 2012; Lewis et al., 2012). In the
current study, the bilateral dorsal STG demonstrated adaptation
to the transition and steady-state portions of the stimulus regard-
less of whether the stimulus was phonemic or not, suggesting that
it plays a role in representing certain types of spectrotemporal fea-
tures that are relevant (but not exclusive) to phoneme perception,
such as the multi-frequency harmonics that form the steady-
state period or the rapid frequency sweeps that occur during the
transition period of speech syllables.

Increased activity in the dorsal STG was observed for all three
adaptation conditions compared to baseline, however, there were

some differences in the patterns of activation. First, the activation
clusters in the two conditions with a change in the steady-state
period (SS and TSS) were larger than those for the transition
condition (T). Second, direct contrasts between the T and SS
conditions (Figure 4) showed greater activity for SS in bilateral
anterior and posterior STG, suggesting that neurons encoding
information about the steady-state period are located across the
entire STG, while the transition period is primarily encoded by
neurons in an areas confined to the middle STG lateral to HG.
The steady-state and transition periods of the stimuli used in
the experiment have different types of spectrotemporal struc-
ture. The transition period consists of relatively fast changes in
spectral content, while the steady-state period has relatively little
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spectral variation over time. It is possible that neural processing
during these two time periods involves different populations of
neurons, which are sensitive to different types of spectrotemporal
features. Studies in monkeys suggest that neurons in more ante-
rior cortical fields (R and AL) have longer latencies and longer
sustained responses than the more centrally-located A1, suggest-
ing that these neurons process acoustic information over longer
time windows (Tian and Rauschecker, 2004; Bendor and Wang,
2008; Scott et al.,, 2011). If the anterior auditory neurons in
human have similar windows of integration as in the monkey
(>100 ms), then these neurons would be less sensitive to the fast
temporal changes during the transition period, resulting in less
adaptation in the T condition. It has been suggested that these
anterior auditory fields form an auditory ventral stream, in which
both acoustic and linguistic information is processed at increas-
ing longer time scales (Rauschecker and Scott, 2009). In speech,
much of the longer acoustic information (i.e., prosody) is derived
by tracking pitch intonation, which is primarily determined from
the vowel steady-state periods. Although these neurons might
be less sensitive to fast temporal changes during the transition
period, they might be optimally tuned to detecting changes in
the steady-state period. In line with this view, is the finding that
sentences with scrambled prosody show reduced activation com-
pared to normally spoken sentences in bilateral anterior STG
(Humphries et al., 2005). In addition to the anterior STG, the
current study also found a similar activation pattern in the pos-
terior STG. This set of areas is thought to be part of a dorsal
auditory stream involved in sound localization and speech-motor
coordination (Hickok and Poeppel, 2007; Rauschecker and Scott,
2009; Liebenthal et al., 2013). Like the anterior areas, decreased
sensitivity in the posterior STG to the transition period could
be related to longer processing windows. In contrast, the find-
ing of high activity levels for both the T and SS conditions in a
section of the middle STG, adjacent to the ventral STG area that
showed greater response to the Phonemic condition, suggests that
these two types of acoustic features are important for phoneme
processing.

Greater activation for the T condition was found in several
areas outside of auditory cortex. It has been suggested that vowels
and consonants contribute differently to speech perception, with
vowels containing the majority of acoustic information about
prosody and segmentation, and consonants providing linguistic-
based information about lexical identity (Nespor et al., 2003).
The activation differences between T and SS could also be related
to this distinction. Greater sensitivity to the steady-state periods
corresponding to vowels was found in purely auditory regions
and greater sensitivity to the transition period corresponding
to the consonant was found in parts of the cortex consid-
ered to be heteromodal and possibly involved lexical semantic
processing.

Higher levels of activity in the bilateral ventral STG were seen
for the Phonemic condition compared to the Non-Phonemic and
Single-Formant sounds. This is consistent with findings from a
large body of studies that have found greater activation in this
area in response to speech syllables compared to non-speech audi-
tory controls (Obleser et al., 2007; Leaver and Rauschecker, 2010;
Liebenthal et al., 2010, 2005; Leech and Saygin, 2011; Woods et al.,

2011). Furthermore, the left ventral STG has been shown to have
categorical response to speech syllables varied along an acoustic
continuum suggesting that this area is involved in abstract repre-
sentations of sound (Liebenthal et al., 2005; Joanisse et al., 2007).
In the current study, the Non-Phonemic and Single-Formant
stimuli were synthesized with parameters very closely matching
the spectrotemporal composition of the Phonemic stimuli. Thus,
the observed differences in activation cannot be attributed sim-
ply to differences in acoustic form. The fact that this area did not
respond to adaptation further supports the view that it encodes
abstract representations of sound.

The results from the current study support the view that there
are multiple hierarchical processing streams extending from pri-
mary auditory cortex to anterior, posterior, and lateral parts of the
temporal lobe (Rauschecker et al., 1995; Kaas and Hackett, 2000;
Hickok and Poeppel, 2007; Rauschecker and Scott, 2009). The
dorsal and ventral parts of the STG observed in the current study
represent two stages along these hierarchical pathways. Neurons
in the dorsal STG encode information about complex spectrotem-
poral features by integrating across simpler acoustic features
represented in earlier stages in the hierarchy in primary audi-
tory cortex. The ventral STG, in turn, integrates information from
the dorsal STG to build more complex representations related
specifically to phonemic patterns. As the representations become
more complex, they also become more abstract with reduced sen-
sitivity to acoustic form, allowing categorical identification of
acoustically varying sounds, such as speech phonemes. In addi-
tion to this dorsal/ventral hierarchy, the difference observed here
between adaptation to the transition and steady-state segments of
the stimuli suggests that there are important anterior-posterior
differences in the superior temporal cortex beyond those asso-
ciated with the dual-stream model of auditory processing. The
results are consistent with the existence of several functional path-
ways tuned to different types of acoustic information, specifically
only slow spectrally changing information in anterior and pos-
terior STG and both slow and fast spectral information in the
middle STG.

Finally, on the medial side of the STP, a larger response was
found for Non-Phonemic and Single-Formant sounds compared
to Phonemic sounds. This area did not activate in the adapta-
tion contrasts. Other studies have observed a similar preference
for non-speech over speech sounds in this region (Tremblay
et al., 2013). Its location in medial auditory cortex suggests that
it is homologous to the medial belt identified in the monkey.
Interestingly, a study of the response properties of medial belt
neurons in the monkey suggests a similar preference for spec-
tral wide-band stimuli as in lateral belt neurons (Kuémierek and
Rauschecker, 2009). However, unlike lateral belt neurons, medial
belt neurons do not show preferential responses to monkey vocal-
izations (Ku$mierek and Rauschecker, 2009). Thus, it is possible
that the preference for non-phonemic sounds in medial audi-
tory cortex could represent a tuning to sounds with unfamiliar,
simpler harmonic structure.

In conclusion, we identified distinct regions of auditory cor-
tex that were differentially sensitive to acoustic form and stimulus
type, suggesting a hierarchical organization of auditory fields
extending ventrolaterally from primary auditory cortex to the STS
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and with varying sensitivity to acoustic form along the anterior to
posterior axis of the STG. These results extend our understanding
of the brain areas involved in auditory object identification and
speech perception.
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