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The development of a method to feed proper environmental inputs back to the central
nervous system (CNS) remains one of the challenges in achieving natural movement when
part of the body is replaced with an artificial device. Muscle synergies are widely accepted
as a biologically plausible interpretation of the neural dynamics between the CNS and the
muscular system. Yet the sensorineural dynamics of environmental feedback to the CNS
has not been investigated in detail. In this study, we address this issue by exploring the
concept of sensory synergy. In contrast to muscle synergy, we hypothesize that sensory
synergy plays an essential role in integrating the overall environmental inputs to provide
low-dimensional information to the CNS. We assume that sensor synergy and muscle
synergy communicate using these low-dimensional signals. To examine our hypothesis,
we conducted posture control experiments involving lateral disturbance with nine healthy
participants. Proprioceptive information represented by the changes on muscle lengths
were estimated by using the musculoskeletal model analysis software SIMM. Changes
on muscles lengths were then used to compute sensory synergies. The experimental
results indicate that the environmental inputs were translated into the two dimensional
signals and used to move the upper limb to the desired position immediately after the
lateral disturbance. Participants who showed high skill in posture control were found to
be likely to have a strong correlation between sensory and muscle signaling as well
as high coordination between the utilized sensory synergies. These results suggest
the importance of integrating environmental inputs into suitable low-dimensional signals
before providing them to the CNS. This mechanism should be essential when designing
the prosthesis’ sensory system to make the controller simpler.

Keywords: prosthetic arms, sensorineural feedback, muscle synergy, sensory synergy, posture control, automatic

posture response

INTRODUCTION
Neuroprosthetics faces considerable challenges, especially when
it is necessary to account for neurological disorders (Ring and
Rosenthal, 2005). These challenges concern mainly the immense
variety of possible neural damage, which make it hard to define
a reliable sensorimotor pathway for controlling external devices
(Musallam et al., 2004). Conventional prosthetics focuses mainly
on motor control and pays less attention to the role of integrat-
ing sensory information as feedback. Without sensory feedback,
even the simplest actions, such as controlling a prosthetic arm,
can be slow and clumsy due to the lack of tactile sense (Kwok,
2013). Some researchers have proposed direct sensory feedback
through air pressure or electrical stimulation though these meth-
ods have a number of limitations. Neurophysiological studies
have found that the body position in space is estimated by inte-
grating information from multiple sensors modalities rather than
through direct sensory input (Zupan et al., 2002; Mergner et al.,
2003; Kuo, 2005; Ting, 2007). This integrated sensory feedback
can encode noise-robust, useful, and cost-effective information
in low-dimensional signals that are simple enough to accelerate
the construction of the desired control signal (Kargo and Giszter,
2000). Adding proper sensory integration mechanism into the

design of the prosthesis, therefore, may propose an access to
simpler controller.

In recent years, several studies have indicated that muscle syn-
ergy is a likely neural strategy that the central nervous system
(CNS) has adopted to simplify the control of our redundant mus-
culoskeletal system (D’Avella and Bizzi, 2005; Safavynia et al.,
2011; Alnajjar et al., 2013b). The concept of muscle synergy,
therefore, has been widely adopted as a quantitative interpretation
of motor control strategies on a neural level. Muscle synergy has
been investigated in detail in several areas of research, including
the clarification of the corresponding anatomical concept (Bizzi
and Cheung, 2013), the classification of the motor skills of healthy
subjects (Torres-Oviedo and Ting, 2007; Alnajjar et al., 2013a),
the synergetic motor control paradigm for managing joint redun-
dancy (Hayashibe and Shimoda, 2014) and the identification of
the degree of brain damage in stroke survivors (Cheung et al.,
2012).

One of the remaining unsettled debates concerning muscle
synergies is how they are selected and evaluated by the CNS to
adapt to the surrounding environment including body dynamics
(Latash, 2008). Answering this fundamental question is essential
to understanding the mechanism used by the CNS to handle the
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complexity of sensorimotor interactions in the body. To answer
this question, we introduce the term “sensory synergy” to sup-
plement muscle synergy in order to understand the mechanism
of mapping stimuli to behavior (Figure 1). In contrast to mus-
cle synergy, which defines suitable combinations of muscles to
adapt the behavior to the environment, we hypothesize that sen-
sory synergy plays essential roles in integrating a compendium
of sensory feedback to simplify the construction of muscle syn-
ergy. We define a single sensory synergy as a group of weighted
sensory inputs whose function is to provide the quality of the
resulting motion as feedback to the CNS through a single syn-
ergy recruitment signal in order to facilitate the generation of the
next command, thus accelerating the search time for the optimal
muscle synergy. Sensory synergies studies could be the simplified
way to understand sensory signaling. In nature, sensory signals
of different modalities are in general redundant and plastic to
ensure delivering appropriate environmental information to the
CNS (Day and Guerraz, 2007). If one sensory modality is dis-
rupted or become unavailable, the other modality can take over
(Dickstein et al., 2001; Lanska, 2002). In some cases one of the
sensory modalities can even override all others modalities and
drives them (Diedrichsen et al., 2007).

To conduct this study, we recorded the kinematics pat-
terns and muscle activities of nine healthy participants in
an automatic posture response experiment (APR). The results
highlight the synergy characteristics common to all individ-
uals, which were found to depend on the quality of their
APRs skills. Results revealed a potential link between the sen-
sory and muscle synergies in terms of synergy size that may
enhance sensorimotor transformations. This study should be use-
ful to inspire the development of sensory system for effective

neural prosthetic devices which can be operated with simple
controller.

MATERIALS AND METHODS
EXPERIMENTAL SETUP
In this study, an experiment was conducted to determine the
relation between the APR measured skills of the participants
and their computed sensory and muscle synergies. The par-
ticipants were nine healthy men (mean age, 34.5 ± 9 years).
All the participants were right-handed and had no history of
major neurological disorders or posture balance impairment.
All experimental protocols were approved by the RIKEN ethics
committee.

During the experiment, the participants were instructed to
stand upright in the akimbo position (Figure 2A) on a mov-
able platform, placing their feet on foot-ground contact sensors
located approximately 10 cm apart (Figure 2B). We chose this
standing position, in which hands are placed on a little above
the hips and the elbows are bowed outward, to reduce any
impact of the arms in restoring the body balance and to facili-
tate the capturing of motion markers attached on the participants’
bodies. The platform was programmed to perform lateral dis-
placements of 11 cm with velocity of 6.4 cm/s. The participants
were also instructed to make an effort to maintain their bal-
ance in an upright posture during the platform displacements
and to avoid any body movements other than lateral hip flex-
ion/extension and ankle inversion/eversion. The direction and
timing of displacement was chosen at random and therefore it
was unpredictable to the participants during the experiment.
Before the experiment, each participant was asked to practice
balancing on the platform for 20 min to become familiar with

FIGURE 1 | Conceptual model of a neural sensorimotor synergy system. An example of two input sensory synergies (W(1),(2), IC(1),(2)) and two output
muscle synergies (OW(1),(2), OC(1),(2)).
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FIGURE 2 | Experimental setup. (A) A participant in the akimbo position
standing on the movable platform. Body motion was captured with a VICON
motion capture system using 42 markers attached to various parts of the
participant’s body (see Supplementary Figure 1 for more information about
markers positions). (B) Experimental setup, muscle locations, joint locations,
platform motion pattern and displacement speed, EMG record range, and

representative EMG activities and muscle lengths of two muscles in response
to the platform displacement. The participant’s EMG responses occurred with
a latency of approximately 50 ms following the displacement. The sensory
synergy was computed in the period between 0 and 50 ms (shaded area in the
muscle length plots), and muscle synergy was computed in the period
between 50 and 100 ms (shaded area in the muscle activation plots).

the experimental environment. At the time of the experiment,
each participant experienced leftward and rightward platform
displacements (mean ± SD: 18 ± 4 cm), and electromyograms
obtained in five trials of leftward displacement were used for data
analysis.

DATA RECORDING
Surface electromyography (EMG)
Data on muscle activity was collected by wireless surface EMG
(BTS FREEEMG 300, BTS Bioengineering, Italy). EMG electrodes
were used to record data from six dominant leg and lumbar
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muscles (Hoy et al., 1990): the flexor hallucis longus (FHL) and
tibialis anterior (TA), which mainly control the ankle strategy in
lateral perturbation; and the tensor fasciae latae (TFL), gluteus
medius (GM), rectus abdominalis (RA), and erector spinae (ES),
which control the hip strategy and the lumbar joint in lateral per-
turbation (Runge et al., 1999). The EMG electrodes were placed
in accordance to the guidelines of the Surface Electromyography
for the Non-Invasive Assessment of Muscles (SENIAM) European
Union project (Hermens et al., 1999). The entire time-series EMG
data were rectified and processed using a low-pass filter with a
cutoff frequency of 32 Hz. EMGs were normalized by their respec-
tive maxima measured during the experiment. All signals were
resampled to 1 kHz.

Motion capture system
Kinematic patterns of the participants’ movements were cap-
tured with a motion capture system (Workstation 5.2.4, VICON).
Forty-two markers (spheres covered with reflective tape) were
attached to various parts of the participant’s body prior to the
experiment (see Supplementary Figure 1 for more information
about markers positions). The motion capture system consisted
of six cameras, and tracked and reconstructed the motion of each
of the recorded markers in 3D space.

Foot-ground contact sensors
The ground reaction forces for each participant were calcu-
lated based on data obtained from foot-ground contact sensors

(FingerTPS, Pressure Profile Systems, Los Angeles, CA) dis-
tributed over three segments of each foot.

ESTIMATION OF THE CHANGES IN MUSCLE LENGTH
Software for Interactive Musculoskeletal Modeling (SIMM), a
graphical software system for developing and analyzing models
of musculoskeletal structures, was used in this study (Delp and
Loan, 1995; Neptune et al., 2008). SIMM uses a full body model
created by a set of bones from a male adult subject. Muscle param-
eters in the middle trunk and the lower limb were adjustable
according to the scaling bone computed by the recorded mark-
ers from the subjects. Each participant’s body weight was used to
allocate the body segments of the model (de Leva, 1996). SIMM
was then used to perform inverse dynamics calculations driven by
various data collected from the experiments (i.e., motion capture
data, and foot-ground contact sensor data), see Figure 3. Changes
in muscle length that is a positive muscle stretch from resting
value, as a representation of the activation of proprioceptors
(muscle spindles), obtained through inverse dynamics calcula-
tions was used as sensory data to compute the sensory synergies.
Although 92 muscles and 34 degrees of freedom were considered
in the inverse dynamics calculations, due to the simplicity of the
applied task (i.e., the fact that the lateral disturbance of a body
standing upright can be simplified as a three-link inverted pendu-
lum model (Jiang et al., 2002), and the selected quick and short
time period to monitor both sensory and muscle data), we con-
sidered sensory synergy calculations using the lengths of the six

FIGURE 3 | General procedure for calculating sensory and muscle synergies from the collected experimental data using inverse dynamics

calculations in SIMM.
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dominant muscles for which EMG data were recorded are fair
enough at this stage (Figure 3). Although it has been argued that
the structure of synergies is dependent upon the number and
choice of muscles included within the synergies analysis (Steele
et al., 2013), we assume that the selected dominant muscles can
cope with this issue since they have more influence in carrying
out the concerned motion (Alnajjar et al., 2013b; Wojtara et al.,
2014). Adding other muscles for synergy calculations should not
affect significantly the results (Steele et al., 2013), see also the
Supplementary Figure 2.

COMPUTING SENSORY SYNERGIES
The core feature of sensory synergies is the reduction of the
dimensionality of sensory signals provided as feedback to the
CNS. Let us express the sensory data of s sensors by using a
matrix S:

S ∈ Rs×t, (1)

where s and t are the number of sensors and the sampling number,
respectively. The output of the sensor synergy computation IC is
described as follows:

IC = WS (2)

where
IC ∈ Rn×t, W ∈ Rn×s (3)

We consider that the sensor synergy computation adds the mean-
ing to the specified combination of the sensor input. The mean-
ingful signal IC is translated into the muscle synergy input
OC in the low-dimensional space. This signal transfer from IC
to OC can be considered as the semantic compression of the
body-environment interaction in the real environment descried
as the M-S transition. IC can be uniquely estimated from S
when the well-sophisticated sensor and muscle synergies are
used to control the body. Therefore, we assume that the follow-
ing equation is optimized as the inverse of the muscle synergy
computation:

S = IW
I
C + E, (4)

Where
IW ∈ Rs×n, E ∈ Rs×t (5)

W can be regarded as the pseudo-inverse of IW . We consider
that W is uniquely computed from IW when the motion is
well-sophisticated. Figure 1 describes the relationships of S, W,
and IC.

In Equation (4), n signals are used to represent s sensors
by using the sensory synergy IW and the synergy recruitment
IC. To reduce the dimensionality of the sensory data, we set
n to be smaller than s. The error between S and IW IC is
expressed as E, which must be small enough to represent s sensors.
The magnitude of E can be described by an index of similar-
ity L (Equation 6), which is sensitive to both the shape and the
magnitude of the measured and reconstructed sensory patterns
(Torres-Oviedo and Ting, 2007):

L = 100

⎛
⎜⎜⎜⎜⎝1 − 1

s

s∑
i = 1

√
1
t

t∑
j = 1

E2
ij√

1
t

t∑
j = 1

S′2
ij

⎞
⎟⎟⎟⎟⎠ , (6)

where S′ =IWIC, and Eij and S′
ij are the elements of matrices E

and S’, respectively. The range of L is 0 < L < 100. When the
magnitude of E decreases, L increases. We considered a value of
L > 75% to indicate a good fit to the original data. Through pre-
liminary trial runs, we found that this criterion ensured that each
muscle would be reconstructed well. A reasonable value for n was
chosen by using the index L with the non-negative matrix factor-
ization algorithm (NMF) (Lee and Seung, 2001). See Figure 5 for
an example.

COMPUTING MUSCLE SYNERGY
Muscle synergy was calculated following similar steps as for
sensory synergy. The number of signals for representing m mus-
cles can be reduced by applying the NMF algorithm using the
following matrix:

M = OWOC+E, (7)

Where in this case

OW ∈ Rm×n,O C ∈ Rn×t, E ∈ Rm×t (8)

Again, n signals are used to represent m muscles by using
the muscle synergy OW and the synergy recruitment OC. To
reduce the dimensionality of muscle data, we set n to be smaller
than m.

SENSORY SYNERGY SIZE
The synergy coordination index (SCI) was used to evaluate the
resulting synergy space. The space here is represented by the angle
θ between the utilized synergies (Figure 4). Let us assume that
sensory synergy W is expressed as

W =
[

W (1) W (2) W (3) · · · W (n)
]
,

where W (i) ∈ Rs is a basis vector of the synergy space. Because we
use NMF to estimate W , the synergy space exists only for positive
vector components. Furthermore, vectors W (i)(i = 1 · · · n) are in
general not orthogonal to each other. The size of the synergy space
depends on the relative angles between the vectors W (i). To quan-
tify the size of the synergy space, we define the space size as the
sum of the inner products of W (i) and W (j):

SCI = 2

n(n − 1)

n∑
i �= j

W (i)W
(j)

. (9)

The range of SCI is from 0 to 1. SCI = 1 implies that all vec-
tors W (i) are identical, whereas SCI = 0 implies that all vectors
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FIGURE 4 | Conceptual model of the meaning of sensory synergy

space size. Two synergies IW (1) and IW (2) abstracted from three sensory
activations s1, s2, and s3, which are positivite. The area of the region
between IW (1) and IW (2) represents the size of the synergy space. A
similar concept is also applied to the muscle synergy space size by
replacing sensor s with muscle m.

W (i) are orthogonal to each other. The synergy space is smaller
for larger values of SCI.

SIMILARITY BETWEEN THE SENSORY/MUSCLE SYNERGY
RECRUITMENTS (S/M SIMILARITY)
The S/M similarity describes the similarity between the sensory
and muscle synergy recruitment signals IC and OC (Figure 1).
The S/M similarity is calculated using correlation coefficient:

r
(
x, y

) = |

m∑
i = 1

(xi − x)(yi − y)

mSxSy
|, (10)

Here, x and y are two vectors to be compared (in this case, IC
for x and OC for y), x and y are their mean values, and Sx and
Sy are their standard deviations. The S/M similarity ranges from
0 to 1.

A high similarity value indicates that muscle synergy recruit-
ment is highly correlated with sensory synergy recruitment. To
avoid the ordering issue in the NMF algorithm, we re-sorted the
resulting synergies to obtain the highest similarity.

MEASURING THE APR’s SKILL OF THE PARTICIPANTS
To quantify the APR’s skill of each participant, a numerical scor-
ing system, based on visual observation by an examiner, was
developed (Table 1). To encourage the participants to perform at
their best and to maintain a high level of motivation, the scores
were also displayed to the participants throughout the experiment
on a screen. To ensure the effectiveness and reliability of the scor-
ing system, a video was recorded for all the experiments and the
examiner used it to re-score offline the participant performance
and compare it to the original scores. Similarity ratios were higher
than 98% for all experiments (see an example, Supplementary
Video 1). The scoring system was designed to measure the par-
ticipants skills in responding to the designed APR task, but it
was not used to confirm or not the overall balance ability of the
participants.

Table 1 | Numerical scoring system to quantify the APR’s skill of

participants.

Case Score

The participant maintained his hands and feet on its initial
position

+2

The participant’s hand(s) were displaced/unattached from its
initial position

+1

The participant’s feet were lifted from its initial position −1

The participant was completely lost his balance and moved out
of the platform

−2

RESULTS
NUMBER OF UTILIZED SYNERGIES
All the participants successfully completed the assigned tasks,
and their respective APR scores varied considerably. The num-
ber of utilized synergies n was the same across the participants.
For sensory synergy, two synergies were enough to project the
collected sensory data (Figure 5A). Similarly, two muscle syn-
ergies were enough to represent the measured muscle activa-
tions (Figure 5B). From these findings, the sensory or muscle
synergies were analyzed on the assumption that two syner-
gies were enough for each participant to complete the assigned
task.

Figure 6 shows an example of the resulting pair of synergies for
two representative participants. Figures 6A,B show the sensory
and muscle synergies computed from data for participant #1 (rel-
atively good balance, score = 1.15), and Figures 6C,D show the
sensory and muscle synergies computed from data for participant
#7 (relatively poor balance, score = −0.9).

As seen in Figure 6, notably different strategies were adopted
by each of the participants. These appear to represent their level
of skill in responding to the disturbance. Participant #1, for
instance, seems to have utilized two muscle synergies: one to con-
trol the lumbar region with the hip joints (OW (1)) and another
to evoke the ankle and hip strategies (OW (2)). Similar strate-
gies were also represented by the sensory synergies, where the
ankle and the hip muscle length sensors were grouped together,
and the hip and lumbar joint sensors were in another group.
A correlation between the sensory and muscle synergy recruit-
ment signals IC and OC was also observed. The control signal
for precise posture control appeared with a delay of approxi-
mately 20 ms after the first signal. In contrast to these trends,
participant #7 utilized an independent synergy for the ankle strat-
egy alone (OW (2)), and another synergy to control the hip and
the lumbar joints (OW (1)). Thus, the coordination between the
utilization of these two muscle synergies seems to be weaker in
participant #7 than participant #1. Also, the sensory and muscle
synergy recruitment signals seem to show a poor match for this
participant. The following two sections highlight the details of
these characteristics and relate them to the balancing skills of the
participants.

RELATION BETWEEN APR’s SKILL LEVEL AND SYNERGY SIZE
Figure 7A shows the relation between the APR’s skill level of
the participants and their computed sensory synergy size, where
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FIGURE 5 | Similarity L between the recorded and reconstructed (A)

sensory data and (B) muscle activation patterns from all possible

computed numbers of synergies (Equation 6). The plots show means and

SD for each participant. The horizontal dashed line indicates the predefined
threshold (75%), and the vertical dashed line indicates the selected number
of utilized synergies.

FIGURE 6 | Calculated sensory and muscle synergies for two representative participants. (A,C) Sensory synergies for participant #1 / participant #7. (B,D)

Muscle synergies for the participant #1 / participant #7. Muscle order: 1, FHL; 2, TA; 3, TFL; 4, GM; 5, RA; 6, ES.

the two appear to be directly proportional (the sensory syn-
ergy size is smaller for high-skill participants than for low-skill
participants).

Figure 7B shows the relation between the sensory and
muscle synergy sizes for all the participants, where it is
clear that the sensory synergy seems to be consistent with
the muscle synergy size. The correlations between sensory
and muscle synergies are stronger when the synergy size is
smaller.

RELATION BETWEEN APR’s SKILL AND I/O SIMILARITY
Figure 8 shows the relationship between the participants’ scores
and the correlation of their sensory and muscle synergies
recruitments, IC and OC, respectively. From the figure, good
performers show high correlation between the sensory/muscle
synergies recruitments than bad performers. This high correla-
tion could be the result of the smaller size of sensory and muscle
synergies that facilitate mapping between environmental input
and motor control.
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FIGURE 7 | (A) Relation between balance skill level and sensory synergy
size. (B) Relation between sensory synergy size and muscle synergy size.
(P, Participant).

FIGURE 8 | Relation between balance skill level and sensory and

muscle synergy recruitment signals.

DISCUSSION
RELATION BETWEEN SENSORY AND MUSCLE SYNERGIES
This paper formulates a sensory synergy framework and empha-
sizes its advantage as a biologically plausible model that
offers low-dimensional environmental input feedback that may
improve on current approaches to neural prosthetic development.

The main challenge in computing sensory synergy is to deter-
mine the relation between sensory and muscle synergies in a
low-dimensional space. To that end, we adopted a simple task
in which we used the changes on muscle length as a measure of
the activation of proprioceptors over a period of 50 ms to esti-
mate the sensory synergies. The period of 50 ms from the onset of
muscle activities was considered in order to compute the muscle
synergies. Only dominant muscles which have more influence in
carrying out the motion were selected for synergies calculations.
A posture control experiment with nine healthy participants was
conducted to examine the relation between sensory and mus-
cle synergies. The results suggest that the degree of coordination
between the resulting sensory synergies (synergy size) can serve
as an effective marker for characterizing to which extend the
behavior is adapted to the environment.

Results reveal that participants with high APR scores showed
well-tuned sensory synergies that project, in a smaller synergy
size, a compendium of sensory data as feedback indicating the
body posture. This smaller size suggests the existence of a sophis-
ticated controller that simplifies and accelerates the transforma-
tion of the signal into a motor command, thus a correlation
between the input IC and output OC was observed, and a control
signal for precise posture recovery was emerged, Figures 6A,B.
The smaller synergy size tends to show that joints are not
controlled independently, thus guarantee a coordinated output
movement, Figure 7B. In participants with weak scores, on the
other hand, we observed a larger synergy size that suggests less
trained controller which hardly was able to handle the introduced
sensorimotor signaling, P7, P8, and P9, in Figures 7B, 8. The large
synergy size that appeared in this group of participants, seems to
cause passing larger amounts of unnecessary sensory information
that may obstruct the formation of an optimal sensory signaling
mapping to the desired motor control.

For future direction, we are planning to examine the contri-
bution of other sensory modalities information, such as vision,
center of pressure, etc., during a balance training phase that can be
applied to the participants who only showed weak scores (Alnajjar
et al., 2013b). We expect to observe an automatic converge of
neural representation during the participants training that would
increase the sensory weights for only those dominant sensors who
mainly contributed to trigger muscle response and decrease the
weights for those who were less efficient. This tuning of sensation
weights could be depending on the task and the environment. The
next stage of this study will be also targeting overcoming some of
the limitations of this preliminary work. For instance, the sub-
jective scoring system can be enhanced by abstracting it from the
motion capture system. The time needed for the participant to
recover his/her balance, or the degree of sway which is caused by
the platform disturbance could be utilized to design a more robust
scoring system.

From our initial results, we believe that sensory synergies are
important to clarify low dimensional meaningful signals that
simplify the work of the CNS when recruiting proper muscle syn-
ergies. It is also the key to determine the level of how much the
body adapts to the surrounding environment. Designing prosthe-
sis based upon the concept of sensory and muscle synergies can
lead to make the controller simpler.
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FIGURE 9 | A conseptual design of neural sensorimotor synergy system

(future direction). (A) The acquired sensory signals and inferred artificial
sensory synergies contribute to the sensory synergy. (B) The prosthesis
controller computes motor commands based on the artificial sensory

synergies. (C) The motor commands are recruited at the activators of the
prosthesis in order to enable the wearer to control the motors. The motion of
an artificial wrist joint adapts to the motion of the disarticulated arm in order
to facilitate grasping and manipulation tasks.

SENSORY SYNERGY AND THE FUTURE OF NEUROPROSTHETICS
A critical aspect of functional forearm prostheses is the ability to
perform sensorimotor tasks. Mainstream powered forearm pros-
theses are controlled using surface EMG signals. The interface
commonly uses EMG sensors to switch between different activa-
tion states of the prosthesis. With this control method, the user
often experiences difficulty in learning how to control the pros-
thesis or how to generate an activation signal for a larger number
of degrees of freedom and/or finer control of speed and force.
Although research has been focusing on the motor control aspect,
it is also very necessary to account for somatosensation, espe-
cially for proprioceptive and tactile modalities (Peerdeman et al.,
2011).

Work on artificial hands indicates that a reduction in dimen-
sionality can decrease the complexity of controlling prosthesis
(Jerde et al., 2003; Katsiaris et al., 2012). The integration of tactile
sense and proprioception is regarded as essential for implement-
ing the ability to perceive environmental input (Rincon-Gonzalez
et al., 2011). The identification of the sensory synergy onset may
provide valuable cues that make it possible to extract the intent of
the action, for example, the target of a reaching movement. Using
sensory synergies is expected to allow for early recognition of the
goal compared to when muscle synergies are used, as the latter
is the result of modulation. This difference may be essential for
implementing continuous and gentle movements in an activated
system.

Figure 9 shows an example of future practical applications
of this study. The neural sensorimotor synergy system extends
the system in Figure 1 by including prosthetic and exoskeletal
artifacts. The dimensionality of the sensory stimulus is reduced
through sensory synergy. A controller modulates sensory syner-
gies to motor commands, and the modulation takes place in a
space of reduced dimensionality compared to that of the input
and output spaces. Motor commands are recruited at activators.
In our ongoing research, we are applying this new principle of
control to forearm prosthesis (Figure 9), and we are currently
conducting clinical experiments involving the control of the fore-
arm prostheses in accordance with the user’s intention through
the neural sensorimotor synergy system (Oyama et al., 2013;
Iwatsuki et al., 2014). In short, from Figure 9, the dimension-
ality of the sensory stimulus to the prosthetic device is reduced
by sensory synergy as part of the sensory system of the users, as
illustrated in Figure 9A. The output from the sensory synergy is
used as the input to both the CNS and an artificial controller.
Compared with raw environmental inputs, the output from the
sensory synergy should be easier to communicate to the CNS
when sensory synergy is well defined. The control signals for the
prosthetic device are created through motor synergy (Figure 9B).
This synergy combines the signals from the CNS and the prosthe-
sis controller and creates a higher-dimensional signal to control
the prosthetic device. The prosthesis controller (Figure 9C) mod-
ulates the signal from the sensory synergy to the motor synergy.
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One of the roles of this prosthesis controller is the generation
of reflexive motions to protect the users in case of unpredictable
environmental changes.
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