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The formation of the six-layered structure of the mammalian cortex via the inside-out
pattern of neuronal migration is fundamental to neocortical functions. Extracellular cues
such as Reelin induce intracellular signaling cascades through the protein phosphorylation.
Migrating neurons also have intrinsic machineries to regulate cytoskeletal proteins and
adhesion properties. Protein phosphorylation regulates these processes. Moreover, the
balance between phosphorylation and dephosphorylation is modified by extracellular cues.
Multipolar-bipolar transition, radial glia-guided locomotion and terminal translocation are
critical steps of radial migration of cortical pyramidal neurons. Protein kinases such as
Cyclin-dependent kinase 5 (Cdk5) and c-Jun N-terminal kinases (JNKs) involve these steps.
In this review, I shall give an overview the roles of protein kinases in neuronal migration.
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CYTOSKELETON DYNAMICS DURING NEURONAL
MIGRATION
During brain development, the extensive migratory movements
of neurons from their birth place to final location are essential
for neural circuit formation and proper brain function. The six-
layered structure of the mammalian cerebral cortex is formed by
coordinated neuronal migration via inside-out patterning. While
early-born neurons are located in the deep layer, late-born neu-
rons pass through the existing cortical layers to reach the super-
ficial layer to form the six-layered structure. Three coordinated
migration modes are observed in radially migrating neurons
in the developing cerebral cortex: multipolar migration, glial-
guided locomotion, and somal translocation (Nadarajah et al.,
2001; Tabata and Nakajima, 2003; Noctor et al., 2004). During
these processes, neurons change their morphology and adhe-
sive properties. During the development of the cerebral cortex,
radial migrating neurons change their morphology from mul-
tipolar to bipolar in the intermediate zone (IZ) (Tabata and
Nakajima, 2003). This requires the function of cytoskeletal regu-
lators and is inhibited by many gene mutations and experimental
manipulations. These facts imply the importance of the regula-
tion of cytoskeletal dynamics during this morphological transi-
tion. Following this, bipolar cells migrate by locomotion along
the radially oriented processes of radial glia (Nadarajah et al.,
2001; Noctor et al., 2004). During the mode of locomotion in
migrating neurons, the nucleus is surrounded by microtubule-
enriched arrays, fork-like in the front and cage-like behind (Tsai
and Gleeson, 2005). Asynchronous movements of the centrosome
(C) and the nucleus (N) are observed in locomotion (Tsai and
Gleeson, 2005). The centrosome moves first into a cytoplasmic
dilation/swelling in the leading process and then the nucleus fol-
lows (nucleokinesis) due to a pulling force from microtubules
and dynein motors located at the centrosome. Cytoplasmic dila-
tion/swelling is a structure specific to migrating neurons, at the

proximal region of the leading process during the locomotion
mode of migration (Nishimura et al., 2014). This coordinated
relationship is called nucleus-centrosomal (N-C) coupling (Tsai
and Gleeson, 2005). Retraction of trailing process occurs due
to actomyosin-dependent motor functions (Bellion et al., 2005).
This microtubule-actin remodeling is regulated dynamically dur-
ing the locomotion mode of radial neuronal migration (Schaar
and McConnell, 2005). Finally, migrating neurons along radial
glial fibers change their migration mode to terminal translocation
(Nadarajah et al., 2001), which is similar to somal translocation.

LESSONS FROM THE HUMAN DISORDER LISSENCEPHALY
Failure of neuronal migration causes severe developmental abnor-
malities in the layering of the cerebral cortex and results in
the human disorder lissencephaly, which means “smooth brain.”
Microtubule- and actin-associated proteins regulate the dynamics
of microtubule and actin cytoskeletons during neuronal migra-
tion; therefore, deletions and mutations of crucial genes involved
in cytoskeletal processes lead to human lissencephaly (Dobyns,
1987) and mouse mutants with a neuronal migration phenotype.

Mutations in doublecortin (DCX) are the most common
genetic cause of X-linked lissencephaly (des Portes et al., 1998;
Gleeson et al., 1998). Male mice with a Dcx gene mutation exhibit
mild histological defects only in hippocampus (Corbo et al.,
2002) due to redundant compensation from doublecortin-like
kinase (DCLK). This notion is supported by phenotypic analysis
of Dcx/Dclk double-knockout (DKO) mice, which display severe
abnormalities in cortical lamination due to neuronal migration
defects (Deuel et al., 2006; Koizumi et al., 2006b).

DCX is a microtubule-associated protein (MAP) that has
two microtubule-binding domains (Gleeson et al., 1999; Horesh
et al., 1999; Taylor et al., 2000). DCX stabilizes microtubules
and enhances microtubule polymerization (Francis et al., 1999;
Gleeson et al., 1999; Horesh et al., 1999; Taylor et al., 2000; Moores
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et al., 2006). Dcx-deficient neurons exhibit delayed centrosomal
and nuclear movements and weakened N-C coupling, indicat-
ing the involvement of DCX in these processes (Corbo et al.,
2002; Koizumi et al., 2006a). DCX function is modulated by its
phosphorylation by several kinases in site specific manner, includ-
ing Microtubule affinity-regulating kinase 2 (MARK2), Protein
kinase A (PKA), Cyclin-dependent kinase 5 (Cdk5), and c-Jun N-
terminal kinases (JNKs) (Figure 1). MARK2 and PKA phospho-
rylate DCX at Ser47 and reduce its microtubule-binding activity
(Tanaka et al., 2004a; Toriyama et al., 2012). Phosphorylation of
DCX at Ser47 is also required for its proper localization to the
leading process of migrating neurons (Schaar et al., 2004). Cdk5
phosphorylates DCX at Sr297 and enhances its microtubule-
binding activity (Tanaka et al., 2004b). JNK phosphorylates DCX
at Thr321, Thr331, and Ser334, which correspond to Thr326,
Thr336, and Ser339 in mouse Dcx (Gdalyahu et al., 2004). We
reported that Ser332 is also a JNK phosphorylation site of mouse
Dcx (Jin et al., 2010). Phosphorylation at these sites is required
for DCX localization in leading process. The importance of the
balance between phosphorylation/unphosphorylation is empha-
sized by the requirement of a dephophorylated state of DCX at
neurite tips during neuronal migration (Schaar et al., 2004).

The regulation of DCX function by phosphorylation at specific
sites implicates the importance of kinase function in neuronal
migration. Phosphorylation is a post-translated modification of
proteins. Phosphorylation sites are categorized into two types,
Tyr residues and Ser/Thr residues, which are phosphorylated by
tyrosine kinases and serine/threonine kinases, respectively. The
activation of Src-family tyrosine kinases by Reelin and their roles
in neuronal migration will be discussed in other chapters. Thus,
I will discuss the major Ser/Thr kinases that regulate neuronal
migration.

Cdk5
Cdk5 is serine/threonine kinase and its high activity is detected
in post-mitotic neurons. Cdk5 forms heterodimer with its acti-
vating subunits, p35 or p39. The involvement of Cdk5 in neu-
ronal migration was revealed by the analyses of Cdk5KO mice
(Ohshima et al., 1996; Gilmore et al., 1998). Cdk5KO mice lack
the laminar structure of the cerebral cortex (Ohshima et al.,
1996). Birth-date labeling of the embryonic brain showed pro-
found migration defects in cortical neurons (Gilmore et al., 1998).
p35KO mice have milder abnormalities in neuronal migration
(Chae et al., 1997). The identical phenotype of double-knockout

FIGURE 1 | Schematic structure of DCX and phosphorylation sites by

each protein kinase. Doublecortin (DCX) has two tubulin-binding domains,
47–135 and 174–259, and patient mutations cluster in these domains (Sapir
et al., 2000; Taylor et al., 2000). DCX has S/T-P rich domain and Cdk5 and
JNK phosphorylate specific sites in this domain.

p35/p39 mice and Cdk5KO mice indicates the redundant func-
tion of p35 and p39 (Ko et al., 2001). Conditional Cdk5KO
mice showed an inverted cortical layer structure in layers II–VI
(Ohshima et al., 2007). Cdk5 regulates multiple steps of radial
migration of cortical neurons during the locomotion mode of
migration (Figure 2). These include the transition from multi-
polar to bipolar morphology in the IZ (Ohshima et al., 2007),
formation of leading processes (Kawauchi et al., 2006), and for-
mation of a cytoplasmic dilation/swelling, which is a structure
specific to migrating neurons, at the proximal region of the
leading process (Nishimura et al., 2014).

Inhibition of Cdk5 activity leads to the over-stabilization
of microtubules, resulting in the dysregulation of microtubule
dynamics in migrating neurons (Kawauchi et al., 2005). Cdk5
phosphorylates a number of microtubule-associated proteins:
DCX (Tanaka et al., 2004b), Ndel1 (Lis1-binding protein, also
called Nudel) (Niethammer et al., 2000; Sasaki et al., 2000),
FAK (Xie et al., 2003), and CRMP2 (Uchida et al., 2005). Ndel1
was originally identified as a novel Lis1-interacting protein and
was found to be enriched at centrosomes (Niethammer et al.,
2000; Sasaki et al., 2000). Ndel1 is phosphorylated by Cdk5
(Niethammer et al., 2000; Sasaki et al., 2000). Phosphorylated-
Ndel1 (p-Ndel1) binds to cytoplasmic dynein heavy chain
(CDHC) and katanin; its binding is required for the localiza-
tion of katanin in the centrosome (Toyo-Oka et al., 2005). 14-
3-3epsilon (YWHAE) binds to p-Ndel1 and protects p-Ndel1
from phosphatase attack (Toyo-Oka et al., 2003). Lis1 and 14-
3-3epsilon (YWHAE) are important for neuronal migration
and their deletions have been found in lissencephaly patients
(Hirotsune et al., 1998; Toyo-Oka et al., 2003). These protein
localizations in the centrosome, with the Lis1-Ndel1-dynein com-
plex, regulate nucleokinesis by promoting N-C coupling during
the locomotion mode of neuronal migration (Shu et al., 2004;
Tsai and Gleeson, 2005). FAK phosphorylation by Cdk5 is also
required for nucleokinesis (Xie et al., 2003; Xie and Tsai, 2004).

FIGURE 2 | Functions of Cdk5 in neuronal migration. Cdk5 is required
for the radial migration of later-generated neurons in the cerebral cortex.
Cdk5 is necessary for multipolar-to-bipolar transition (Step 1) and
locomotion through the regulation of nucleokinesis of migrating neurons
(Step 2). For these steps, Cdk5 regulates the dynamics of
microtubules-cytoskeleton, actin-cytoskeleton and cell-adhesion through
the phosphorylation of its substrate proteins.
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CRMP2 was originally identified as an intracellular mediator of
Sema3A signaling (Goshima et al., 1995). We have identified
CRMP2 as a Cdk5 substrate by using Cdk5KO mouse brains
(Uchida et al., 2005). Interestingly, Cdk5 phosphorylates CRMP2
at Ser522 and its phosphorylation is required for further phos-
phorylation of CRMP2 by GSK3β at Ser518, Thr514, and Thr509
(Uchida et al., 2005; Yoshimura et al., 2005). CRMP2 binds to
the tubulin heterodimer (Fukata et al., 2002) and their bind-
ing is regulated by Cdk5/Gsk3β phosphorylation (Uchida et al.,
2005; Yoshimura et al., 2005; Yamashita and Goshima, 2012).
Involvement of CRMP2 and its phosphorylation in neuronal
migration will be tested in CRMP2 mutant mice (Yamashita et al.,
2012).

Recently, Nishimura et al. demonstrated that p27kip1 that is
phosphorylated and stabilized by Cdk5 is required for the forma-
tion of a cytoplasmic dilation/swelling (Nishimura et al., 2014).
Stabilization of p27kip1 by Cdk5 is also involved in the regulation
of the actin cytoskeleton during neuronal migration (Kawauchi
et al., 2006). Cdk5 phosphorylates the actin-binding proteins,
Drebrin and Neurabin-I, and may regulate neuronal migration
(Causeret et al., 2007; Tanabe et al., 2014).

Rap1 signaling is involved in neuronal migration and is reg-
ulated by Cdk5 (Utreras et al., 2013). Rap1 activation pro-
motes the cell-surface localization of N-cadherin (Jossin and
Cooper, 2011). The N-cadherin-mediated adhesion complex is
required for multipolar-bipolar transition (Jossin and Cooper,
2011) and radial fiber-dependent neuronal migration (Kawauchi
et al., 2010). A previous study has shown that pharmacologi-
cal inhibition of Cdk5 activity enhances N-cadherin-mediated
cell-cell adhesion (Kwon et al., 2000). Rap1 activation depends
upon Rap1-GEFs, including Rap1GEF1 (also known as C3G) and
Rap1GEF2. RapGEF1 activation of Rap1 controls somal/terminal
translocation triggered by Reelin (Franco et al., 2011; Jossin and
Cooper, 2011; Sekine et al., 2012) via the stabilization of lead-
ing processes toward the marginal zone (Franco et al., 2011;
Sekine et al., 2012). Interestingly, RapGEF2 KO mice showed
a neuronal migration defect phenotype in the subcortical area,
which indicated the involvement of RapGEF2 in multipolar-
bipolar transition (Bilasy et al., 2009). Recently, Ye et al. have
shown that Cdk5 phosphorylates RapGEF2 at Ser1124 and
its phosphorylation is required for Rap1 activation (Ye et al.,
2014). Previous studies have shown that RapGEF1-dependent
Rap1 activation is dispensable in multipolar-bipolar transition
(Sekine et al., 2012); therefore, Cdk5 mediated Rap1 activa-
tion via RapGEF2 phosphorylation is important for this tran-
sition. As proposed by Ye et al. (2014), the two pathways of
Reelin and Cdk5 are not simply parallel, but rather act on
successive phases of neuronal migration via Rap1 activation.
Cdk5-mediated RapGEF2 phosphorylation controls multipolar-
bipolar transition and Reelin-mediated RapGEF1 activation pro-
motes terminal translocation (Figure 3). This idea fits well with
our previous observations in mutant mice that lack Cdk5/p35
and Reelin/Dab1 (Ohshima et al., 2001, 2002; Ohshima and
Mikoshiba, 2002).

Cdk5 is also required for the radial migration of hippocam-
pal neurons (Ohshima et al., 1996, 2007) and Purkinje cells in the
developing cerebellum (Ohshima et al., 1999; Kumazawa et al.,

FIGURE 3 | Sequential Rap1 activation by Cdk5 and Reelin signaling.

Cdk5 and Reelin signaling activate Rap1 through the activation of different
Rap1GEFs in the control of the radial migration of cortical neurons in the
cerebral cortex in a sequential manner.

2013). Inward migration of granule cells and migration in the
rostral migratory stream is also Cdk5-dependent (Ohshima et al.,
1999; Hirota et al., 2012; Kumazawa et al., 2013; Umeshima
and Kengaku, 2013). Compared with the analysis of the molec-
ular mechanisms of neuronal migration in radial migration in
the cerebral cortex, the mechanisms of neuronal migration in
hippocampal and cerebellar neurons remain to be elucidated.

GSK3β
Two members of the GSK-3 family in mammals, GSK3α and
GSK3β, show 98% amino acid sequence identity within their
kinase domains and overall share 85% identity (Doble and
Woodgett, 2003). Both isoforms are highly expressed in the
developing brain. GSK3-signaling is a strong regulator of neu-
ronal progenitor proliferation in the developing cerebral cortex
(Chenn and Walsh, 2002; Kim et al., 2009). To study the role
of GSK3 in neuronal migration, Morgan-Smith et al. produced
Gsk3a−/−Gsk3bloxP/loxP; Neurod6-Cre (Gsk3:Neurod6) mice and
analyzed neuronal positioning after birth. The Nuerod6-Cre mice
induce recombination in post-mitotic cortical excitatory neurons
after E11 (Goebbels et al., 2006). Gsk3-deleted neurons expressing
the upper layer marker exhibited migration failure in the cerebral
cortex. Radial migration in the hippocampus was also affected
(Morgan-Smith et al., 2014). Hypophosphorylation of CRMP2
at Thr514 (Yoshimura et al., 2005) and Dcx at Ser327 (Bilimoria
et al., 2010) was observed in the cortex of Gsk3:Neurod6 mice
(Morgan-Smith et al., 2014).

JNK
JNKs are members of MAPK signaling pathway. There are three
related genes in mammals: Jnk1, Jnk2, and Jnk3. All three Jnk
genes are expressed in the developing mouse brain. JNKs act as
the final effector kinases within a classical cascade consisting of
MAPKKKs (MAP3Ks), MAPKKs (MAP2Ks), and MAPKs. Like
other MAPKs, JNKs are activated by MAP2K-mediated phospho-
rylation. MKK4 and MKK7 are the MAP2Ks that phosphorylate
JNKs.
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Genetic deletion studies of Jnk1 and the MAP3K and MAP2Ks
for Jnk1, Dlk1, Mkk4, and Mkk7, in mice suggest their involve-
ments in the migration of cortical projection neurons (Hirai et al.,
2006; Wang et al., 2007; Westerlund et al., 2011; Yamasaki et al.,
2011). Deletion of the upstream activators of JNKs, Dlk1 (Hirai
et al., 2006), Mkk4 (Wang et al., 2007), and Mkk7 (Yamasaki et al.,
2011) inhibits radial migration. On the other hand, deletion of
Jnk1 results in accelerating radial migration (Westerlund et al.,
2011). These results could be explained by Jnk2 and/or Jnk3 play-
ing opposing roles to Jnk1 in radial migration. Double deletion
of Jnk1 and Jnk2 causes embryonic lethality (Kwon et al., 2000);
therefore, further study using the conditional deletion of genes
will be necessary to resolve this issue. Pharmacological inhibi-
tion of JNK activity using SP600125 inhibits the radial migration
of cortical neurons (Kawauchi et al., 2003; Hirai et al., 2006).
However, a recent study has shown that SP600125 inhibits 74
kinases (out of 353 tested) at 10 μM, including MEK1, MEK2,
MKK3, MKK4, and MKK6 (KINOMEscan LINCS data base).
Thus, the results obtained using SP600125 are difficult to inter-
pret because of its low specificity for JNK.

JNKs phosphorylate the microtubule regulatory proteins,
DCX, MAP2, MAP1b, and SCG10 (Chang et al., 2003; Kawauchi
et al., 2003; Gdalyahu et al., 2004; Tararuk et al., 2006; Jin et al.,
2010; Björkblom et al., 2012). We have shown that phosphoryla-
tion of DCX at Ser332 by JNK disrupts its microtubule binding
(Jin et al., 2010). SCG10 is a tubulin interacting protein, which is
phosphorylated by JNK SCG10 at Ser62 and Ser73 (Tararuk et al.,
2006). Phosphorylation of SCG10 at Ser73 is reduced in Jnk1−/−
brains (Tararuk et al., 2006). Knockdown of SCG10 increases the
rate of radial migration (Westerlund et al., 2011), suggesting a role
for SCG10 in neuronal migration. The involvement of JNK in the
regulation of the tangential migration of inhibitory neurons from
ganglionic eminence is also reported (Myers et al., 2014).

MARK2
MARK2/Par-1 was originally identified as a regulator of cell polar-
ity in C. elegans (Par-1). In parallel it was also identified as a
protein kinase that regulates microtubule stability, microtubule
affinity-regulating kinase 2 (MARK2) (Drewes et al., 1997).
In vivo overexpression of MARK2/Par-1 results in a loss of neu-
ronal polarity (Sapir et al., 2008). A reduction in MARK2/Par-1
causes neuronal migration arrest with more stable microtubules
(Sapir et al., 2008). MARK2/Par-1 phosphorylates tau, MAP2,
MAP4, and DCX (Biernat et al., 1993; Drewes et al., 1997; Schaar
et al., 2004). Phosphorylation of these microtubule-associated
proteins (MAPs) causes the removal of MAPs and DCX from
microtubules.

shRNA-MEDIATED OFF-TARGET TOXICITY CAUSES
NEURONAL MIGRATION DEFECTS
Acute inactivation of gene function by shRNA, together with in
utero electroporation, is a widely used method to study neu-
ronal migration. In some cases, such as DCX, neuronal migration
phenotypes caused by shRNA knockdown or knockout by gene
deletion show a discrepancy (Corbo et al., 2002; Bai et al., 2003).
Recently, Baek et al. have shown that shRNAs cause neuronal
migration defects via an off-target effect (Baek et al., 2014).

They have demonstrated that shRNA alters endogenous miRNA
pathways and leads to reduced let7 miRNA expression. This dis-
ruption of let7 causes neuronal migration defects. They have
designed scrambled shRNAs of Dcx and found half cause neu-
ronal migration defects. These results offer a warning for the
interpretation of neuronal migration studies using shRNAs. They
have also shown that switching from shRNA to a shmiRNA con-
struct can avoid these toxic effects. Therefore, studies of neuronal
migration using the shRNA method need to be re-evaluated by
knockdown studies using shmiRNA or genetic deletion.

FUTURE PROSPECTS OF RESEARCH
The activation of protein kinases are regulated by intrinsic and
extrinsic factors. For example, Cdk5 activity is regulated by the
amount of its activating subunits, p35 and p39. p35, and p39 are
expressed in post-mitotic neurons; therefore, they are regulated
by the degree of neuronal maturation. Cdk5 activity is also regu-
lated by several extracellular factors (Sasaki et al., 2002; Cheung
et al., 2007; Fu and Ip, 2007; Fu et al., 2007). Gsk3β activity
is regulated by Wnt signaling and JNK activity is regulated by
extracellular stimuli. Therefore, coordinated neuronal migration
is regulated by multiple signaling pathways external to migrating
neurons through the balanced activation of protein kinases as dis-
cussed above. One direction for future studies will be to examine
the molecular mechanisms that regulate protein kinase activity
by extracellular factors. For example, Sema3A is shown to regu-
late radial migration (Chen et al., 2008); however, its regulation
of intracellular protein kinase activity remains to be elucidated.
For this purpose, the development of a method to monitor kinase
activity in vivo will be valuable for the future research. Studies
on the identification of the downstream effectors (substrates) of
protein kinases are important to understand the mechanisms by
which each protein kinase is involved in neuronal migration. In
this regard, comparative phosphoproteomics using brain samples
from kinase-null mutant mice will be useful (Uchida et al., 2005;
Contreras-Vallejos et al., 2014).
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