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INTRODUCTION

Some professional musicians can identify a single musical note
quickly and accurately without the benefit of a reference note.
They are considered as having absolute pitch (AP) (Levitin, 1999;
Parncutt and Levitin, 2001). Neuroimaging studies have shown
that AP musicians have a reduced P300 (Nishitani et al., 1998;
Hirose et al., 2002), an increased cerebral blood flow (CBF) in
the left posterior dorsolateral frontal cortex (Zatorre et al., 1998),
and enhanced white matter connectivity and increased fractional
anisotropy in the left superior longitudinal fasciculus (Oechslin
etal., 2010).

In addition to AP musicians, quasi-AP musicians (i.e., those
with a weak form of AP) have also been studied. Using the PET,
Wilson et al. (2006, 2009) found that, during a pitch identifi-
cation (PI) test, quasi-AP musicians had significant activations
within an extensive right hemisphere network, including the
right superior and middle temporal gyri, right dorsolateral pre-
frontal cortex, right middle and inferior frontal gyri, and right
cerebellum. In contrast to the left hemispheric advantage in AP
musicians as mentioned in the previous paragraph, Wilson et al.
(2009) showed that the right hemisphere was important for PI in
quasi-AP musicians.

Thus, far, little is known about the neural basis of PI among
non-musicians. Only one study by Schwenzer and Mathiak (2011)

Previous studies have used task-related fMRI to investigate the neural basis of pitch
identification (PI), but no study has examined the associations between resting-state
functional connectivity (RSFC) and Pl ability. Using a large sample of Chinese
non-musicians (N = 320, with 56 having prior musical training), the current study
examined the associations among musical training, Pl ability, and RSFC. Results showed
that musical training was associated with increased RSFC within the networks for
multiple cognitive functions (such as vision, phonology, semantics, auditory encoding, and
executive functions). Pl ability was associated with RSFC with regions for perceptual and
auditory encoding for participants with musical training, and with RSFC with regions for
short-term memory, semantics, and phonology for participants without musical training.
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collected fMRI data while non-musicians were asked to recognize
a single pitch from a set of four frequencies in each trial. The
results showed that PI activated the right dorsolateral prefrontal
cortex (DLPFC), right medial frontal gyrus, right medial front
lobe, bilateral premotor area, and bilateral intraparietal sul-
cus (IPS). These regions subserve various functions involved in
PI: the DLPFC for working memory (Crottaz-Herbette et al,,
2004; Grimault et al., 2009); the medial frontal gyrus for error
monitoring (Volz et al., 2005); the medial frontal lobe for
retaining memory, executive function and attention (Simons
and Spiers, 2003; Baird et al., 2006); the premotor area for
planning movement (Churchland et al., 2006; Ojakangas et al.,
2006); and the IPS for spatial and quantity processing (Castelli
et al.,, 2006; Dormal and Pesenti, 2009; Santens et al., 2010;
Schwenzer and Mathiak, 2011). As was the case for quasi-AP
musicians, the right hemisphere was important for PI among
non-musicians.

Thus, far, no study has examined the role of resting-state
functional connectivity (RSFC) among different brain regions
in either AP or PI Resting-state fMRI measures the low-
frequency (~0.01-0.1 Hz) spontaneous neuronal activity in the
brain (Lv et al., 2008) and is believed to reflect neuronal func-
tion (Damoiseaux et al., 2006; Fox and Raichle, 2007; Zhang
et al., 2014). Thus, far, the only RSFC studies in musicological
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research were those that aimed to characterize the motor
systems in musicians. For example, Lv et al. (2008) found
significant RSFC between the left and right primary sensori-
motor areas in pianists. Luo et al. (2012) found significant
RSFC between the motor and multi-sensory cortices (such
as visual, auditory, and somatosensory cortices) in musicians,
which may reflect their enhanced functional integration among
the lower-level perceptual and motor networks as well as the
functional consolidation (plasticity) due to long-term music
training.

In the current study, we examined the RSFC differences
between the non-musicians with and without musical training
and the correlations between PI ability and RSFC in a large sample
of Chinese non-musicians.

METHODS AND MATERIALS

PARTICIPANTS

Data for the current study came from a larger project conducted
with students from Beijing Normal University. 320 undergraduate
students (age range: 19-24 years, mean age = 20.45, SD = 1.18,
191 female and 129 male) had both RSFC data and data on a
PI test. Among them, 56 participants (11 males and 45 females)
had musical training experience (such as piano, keyboard, violin,
accordion, etc.), and 264 participants (118 males and 146 females)
had no musical training experience. Table 1 shows participants’
basic demographic information.

All participants had normal or corrected-to-normal vision and
no history of neurological or psychiatric diseases. They were all
right-handed as judged by Snyder and Harris’s handedness inven-
tory (Snyder and Harris, 1993). Informed written consent was
obtained from all participants before scanning. This study was
approved by the Institutional Review Board (IRB) of the State Key
Laboratory of Cognitive Neuroscience and Learning at Beijing
Normal University.

Table 1 | Characteristics of the participants.

Characteristics Mean (SD) Range
Age (years) 20.45 (1.18) 19-24
Gender (male/female) 320 (129/191)
Handedness All right-handed
Pl accuracy rate (%) 3756 (5.13) 4.76-100
Pl reaction time (millisecond) 1816.45 (423.97) 641-7187
Music training experience

Musical training

Starting age 10.67 (1.44) 8-20

Gender (male/female) 56 (11/45)

Pl accuracy rate (%) 58.80 (5.42) 9.52-100

Pl reaction time (millisecond) 1704.11 (321.78) 738.14-4174.42
No musical training

264 (118/146)
31.82 (9.49)

1859.23 (435.64)

Gender (male/female)
4.76-100
641-7187

Pl accuracy rate (%)

Pl reaction time (millisecond)

Note: Standard deviations are shown in parentheses.

PITCH IDENTIFICATION TEST

The PI test was adapted from the AP test developed by Zatorre
(2003). Because the majority of the participants had no formal
music training, only seven basic music notes from the fifth octave
were used (i.e., C4, D4, E4, F4, G4, A4, and B4, with correspond-
ing frequencies of 261.60, 293.66, 329.63, 349.23, 392.00, 440.00,
and 494.88 Hz, respectively). Participants responded by clicking
a corresponding key on the computer screen after listening to a
note. The seven pitches were randomly presented. Each pitch was
presented for 500 ms twice and was tested three times. The inter-
stimulus interval was 1000 ms. Before the formal test, there was a
practice test for 5min and participants were given feedback (i.e.,
they were told which note had been presented), again because
most of the participants had no music training. The formal test
took about 10 min to complete and it was conducted without
feedback. Accuracy rate and reaction time during the formal test
were collected (also see Hou et al., 2014). In current study we
analyzed the accuracy rate (see Table 1 for mean PI scores, stan-
dard deviations, and range; see Figure 1 for distributions of the
PI scores by group).

MRI DATA ACQUISITION

Data were acquired with a 3.0 T Siemens MRI scanner in the
MRI Center of Beijing Normal University. A single-shot T2*-
weighted gradient echo EPI sequence was used for a brief scan
(8 min) which comprised 240 continuous echo planar imaging
functional volumes with the following parameters: TR/TE/6 =
2000 ms/25 ms/90°, FOV = 192x 192 mm, matrix = 64 x 64,
and slice thickness = 3 mm. During the scan, participants laid
supine on the scanner bed. Foam pads were used to minimize
head motion. Participants were instructed to close their eyes,
keep their head still, think about nothing in particular, and just
relax. We determined whether participants were awake during
scanning by talking to the participants immediately after the
session. If they responded immediately and reported that they
stayed awake during the scan, we assumed they were awake.
Of all the participants in the original larger study, one partici-
pant was determined to have slept during scanning, whose data
were not included in the database. Anatomical MRI was acquired
using a T1-weighted, three-dimensional, gradient-echo pulse-
sequence (MPRAGE) with TR/TE/6 = 2530 ms/ 3.09 ms/10°,
FOV = 256 x 256 mm, matrix = 256 x 256, and slice thick-
ness = 1 mm. Two hundred and eight sagittal slices were acquired
to provide high-resolution structural images of the whole brain.

REGION OF INTEREST (ROI) SELECTION

Because the current study did not collect task-related fMRI, we
selected seed regions based on a previous task-related fMRI study
for PI among non-musicians (Schwenzer and Mathiak, 2011).
That study found seven significant ROIs (with MNI coordi-
nates indicated): right dorsolateral prefrontal cortex (x = 40, y =
20, z = 36), right medial frontal gyrus (x = 4, y = 18, z = 50),
right medial frontal lobe (x = 34, y = 48, z = 8), left premotor
area (x = —30, y = —6, z = 50), right premotor area (x = 24,
y = —2, z=>52), left intraparietal sulcus (x = —36, y = —34,
z = 40), and right intraparietal sulcus (x = 40,y = —40,z = 44).
The radius was 6 mm. Please see all ROIs in Figure 2.
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FIGURE 1 | The distribution of participants’ accuracy rate on the pitch identification test. (A) the total sample of 320 participants; (B) the participants
with musical training; (C) the participants without musical training.

DATA PREPROCESSING

Image preprocessing was carried out using Data Processing
Assistant for Resting-State fMRI (DPARSF) (http://www.nitrc.
org/projects/dparst/) version 2.2. DPARSF is a convenient plug-
in software based on Statistical Parametric Mapping (SPM)
and Resting-State fMRI Data Analysis Toolkit (REST) (http://
www.restfmri.net). The Digital Imaging and Communications in
Medicine (DICOM) files were first arranged and the parameters
(such as time points, TR, slice number, voxel size et al.) were
then set. DPARSF then produced the preprocessed data (with
slice timing, realignment, normalization, and smoothing) and
the results of functional connectivity (FC), regional homogene-
ity (ReHo), amplitude of low-frequency fluctuation (ALFF) and
fractional ALFF (fALFF). The current study used the FC analysis.
The first 10 volumes were discarded to allow the magnetisation to
approach a dynamic equilibrium, and for the participants to get
used to the scanner noise. No participants showed head motion
above 3.0 mm of maximal translation (in any direction of x, ¥,
or z) and 2.5° of maximal rotation throughout the course of
scanning (Yan et al., 2009). Data pre-processing, including slice
timing, realignment, normalization, smoothing, regressing out
head motion parameters (using a least squares approach and a
6-parameter spatial transformation), and spatial normalization
to the Montreal Neurological Institute (MNI) template (resam-
pling voxel size of 3 x 3 x 3 mm), were conducted using SPM8
and DPARSF version 2.2 (Yan and Zang, 2010; Kuhn et al., 2012).
A spatial filter of 5 mm FWHM (full-width at half maximum) was
used.

STATISTICAL ANALYSIS

SPSS 16.0 version was used to analyze the behavioral data. For
the RSFC analysis, the Resting-State fMRI Data Analysis Toolkit
(REST) (http://www.restfmri.net) was used (Yan and Zang, 2010;
Song et al.,, 2011). To examine the music training effects, we
conducted independent-sample ¢-tests on a whole brain Z-value
map between the participants with and without musical train-
ing. Within each group, we then correlated the Z-value map
with the PI score. Gender was included as a covariate. Monte

Carlo simulations were performed using the AFNI AlphaSim
program for multiple comparison correction. By iterating the
process of random image generation, spatial correlation of vox-
els, thresholding, and cluster identification, the program pro-
vides an estimate of the overall significance level achieved for
various combinations of individual voxel probability threshold
and cluster size threshold (Bennett et al., 2009; Wu et al., 2011).
Using this program, a threshold correction adjustment was used
with a voxel-wise p < 0.05, 1000 simulations, cluster size > 212
(5724 mm?). Because the interpretations of negative RSFC (or
anti-correlations) are still being debated and their neuronal basis
is unclear (e.g., Weissenbacher et al., 2009; but for recent devel-
opments, see Chai et al., 2012; Liang et al., 2012), we focused
on our analyses on positive RSFC. In addition, we focused
on positive behavioral correlates of these RSFC and presented
the negative behavioral correlates in the Supplemental Online
Materials.

RESULTS

The mean accuracy rate on the PI test was 37.56% (SD = 5.13),
ranging from 4.76 to 100% (15 participants had 100%) (see
Figure 1A). For the participants with musical training, the mean
accuracy rate on the PI test was 65.19% (SD = 3.09), ranging
from 9.52 to 100% (12 participants had 100%, Figure 1B). For
the participants without musical training, the mean was 31.82%
(SD = 9.49), ranging from 4.76 to 100% (3 participants had
100%, Figure 1C). The group difference was significant, t(313) =
10.21, p < 0.001.

We then compared group differences in RSFC between
the seed regions and other brain areas. Compared to par-
ticipants without musical training, those with musical train-
ing showed stronger RSFC between the right dorsolateral pre-
frontal cortex seed and the bilateral superior temporal gyri
and right inferior parietal lobule; between the right medial
frontal gyrus seed and the right precuneus; between the left
premotor area seed and the right cerebellum, right supe-
rior medial frontal gyrus, and left pars triangularis; between
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FIGURE 2 | Seven seed ROIs. L, left; A, anterior; P, posterior.

Right dorsolateral prefrontal cortex(BA 9)
Right medial frontal gyrus(BA 8)
® Right medial frontal lobe (BA 10)
@ Left premotor area (BA 6)
Right premotor area (BA 6)
® Left intraparietal sulcus (BA 40)
Right intraparietal sulcus (BA 40)

Table 2 | Positive differences in RSFC between participants with and without musical training.

ROI seeds Cluster location BA Peak (MNI) Cluster size t
X y z

Right dorsolateral prefrontal cortex Right superior temporal gyrus 48 42 -27 66 252 4.15
Right inferior parietal lobule 40 54 —45 39 257 3.23
Left superior temporal gyrus 48 -18 14 —6 246 3.35

Right medial frontal gyrus Right precuneus 5 0 —48 63 457 4.39

Left premotor area Right cerebellum 6 —-60 —45 224 4.49
Right superior medial frontal gyrus 8 9 30 60 400 3.73
Left pars triangularis 45 -33 42 ) 213 4.07

Right premotor area Right inferior temporal gyrus 20 63 -18 -21 616 4.40
Right pars triangularis 45 45 45 -15 320 4.33
Right cerebellum 42 —66 —45 241 4.09
Left inferior temporal gyrus 20 —60 -18 —24 2005 4.79
Left middle frontal gyrus 9 -39 18 48 1429 5.25

Left intraparietal sulcus Left middle frontal gyrus 46 -33 18 45 380 4.29

Note: AlphaSim corrected p < 0.05, cluster size > 212.

the right premotor area seed and the bilateral inferior tem-
poral gyrus, right pars triangularis, right cerebellum, and
left middle frontal gyrus; and between the left intrapari-
etal sulcus seed and the left middle frontal gyrus. Detailed
information of these results are shown in Table2 and
Figure 3.

Correlations between RSFC and PI were obtained for each
group of participants. For participants with musical training, pos-
itive correlates of PI ability included RSFC between the bilateral
premotor area seeds and the left cerebellum (see Table 3 and

Figure 4). For participants without musical training, positive cor-
relates of PI ability included RSFC between the right dorsolateral
prefrontal cortex seed and the right cerebellum, and between the
left premotor area seed and the bilateral inferior parietal lob-
ule, right pars triangularis, and left superior temporal gyrus (see
Table 3 and Figure 5).

In addition to the positive relationships between RSFC
and cognitive performance, our analysis also revealed several
significant negative relationships between RSFC and musical
training and between RSFC and PI ability. These results are
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FIGURE 3 | Differences in positive RSFC between participants with and without musical training (AlphaSim corrected p < 0.05, cluster size > 212). L,

Right medial frontal gyrus seed

N2

Right premotor area seed

B/

presented in Supplementary Tables S1, S2 and Supplementary
Figures S1-S3. Finally, because our ROIs were selected based on
a previous task fMRI study, which might have missed impor-
tant seed regions, we conducted a whole-brain analysis across the
Automated Anatomical Labeling (AAL) ROIs. Additional associa-
tions between RSFC and musical training and between RSFC and
PI ability were identified. These results and a brief discussion are
presented in Supplementary Tables S3, S4.

DISCUSSION

Using a large sample of non-musicians, the current study aimed
to examine how RSFC was associated with musical training and
PI ability.

MUSIC TRAINING AND RSFC
Whole-brain analysis revealed significant RSFC differences
between participants with and without musical training. First,
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Table 3 | Positive correlations between RSFC and PI for the two groups.

ROl seeds Cluster location BA Peak (MNI) Cluster size r
X y z

PARTICIPANTS WITH MUSICAL TRAINING

Left premotor area Left cerebellum -33 —-87 -27 725 0.58

Right premotor area Left cerebellum -30 —-87 -27 317 0.46

PARTICIPANTS WITHOUT MUSICAL TRAINING

Right dorsolateral prefrontal cortex Right cerebellum 9 -78 —45 298 0.24

Left premotor area Right pars triangularis 45 51 33 24 271 0.23
Right inferior parietal lobule 40 33 —48 42 251 0.22
Left superior temporal gyrus 48 —48 21 27 227 0.23
Left inferior parietal lobule 7 -30 —66 54 323 0.28

Note: AlphaSim corrected p < 0.05, cluster size > 212.

Left premotor area seed

¥/

A, anterior; P, posterior.

Right premotor area seed

FIGURE 4 | Positive correlations between RSFC and PI for participants with musical training (AlphaSim corrected p < 0.05, cluster size > 212). L, left;

Right dorsolateral prefrontal

cortex seed

212). L, left; A, anterior; P, posterior.

Left premotor area seed

FIGURE 5 | Positive correlations between RSFC and PI for participants without musical training group (AlphaSim corrected p < 0.05, cluster size >
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musical training was associated with increased functional con-
nectivity linking the right DLPFC seed to the bilateral superior
temporal gyrus and right inferior parietal lobule (the latter is
within the default mode network). These results are aligned
with previous findings of music training effects on these regions’
functions in language processing. For example, musical training
has been found to improve phonological and semantic processing
in the superior temporal gyrus (Platel et al., 2003; Lai et al., 2014),
phonological processing in the inferior parietal lobule (Bermudez
and Zatorre, 2005; Bermudez et al., 2009; Lai et al., 2014), and
executive functions in the inferior parietal lobule (Bermudez and
Zatorre, 2005).

Second, musical training was associated with increased func-
tional connectivity linking the right medial frontal gyrus seed
to the right precuneus. The precuneus, another region within
the default mode network, is responsible for musical memory,
imagery and emotion (Demorest et al., 2010). Previous research
has shown that musical training can improve this region’s visual
“mental imagery” in a pitch change task (Platel et al., 1999;
Meister et al., 2004).

Third, the participants with musical training showed sig-
nificantly increased functional connectivity linking the bilat-
eral premotor area seeds to the regions that subserve the
functions of object recognition (bilateral inferior temporal gyrus,
Bogousslavsky et al., 1987; Heywood et al., 1995; Olson et al.,
2007), auditory processing and speech (bilateral inferior temporal
gyrus, bilateral pars triangularis, McGuire et al., 1995; Onitsuka
etal., 2004; Kaplan et al., 2010; Romanski, 2012), the maintenance
and selective retrieval of memory components (left middle frontal
gyrus, Bermudez and Zatorre, 2005), executive functions (right
superior medial frontal cortex, Talati and Hirsch, 2005), and
behavior or movement control and auditory encoding (right cere-
bellum, Gaab et al., 2003; Petacchi et al., 2005; Schulze et al.,
2009). This cluster of strengthened RSFC may reflect the benefits
of music training on cognitive abilities such as vision, kinesthesia,
motion perception, verbal processing, and even higher cognitive
functions (Zatorre and Beckett, 1989; Zhou, 2004; Bermudez and
Zatorre, 2005).

Finally, the participants with musical training showed signif-
icantly increased functional connectivity linking the left intra-
parietal sulcus seed to the left middle frontal gyrus. The IPS is
mainly responsible for musical, spatial, and quantity processing
(Cappelletti et al., 2007; Husain and Nachev, 2007; Offen et al.,
2010; Cheng et al., 2013). Foster and Zatorre (2010) found an
increased activation in the intraparietal sulcus for music note
processing, perhaps involving the visual-spatial mapping scheme
(i.e., imagining notes on a staff or using a spatial coding for
their relative pitch height) during pitch processing (also see Zhou,
2004; Rusconi et al., 2005; Williamson et al., 2011). Schulze et al.
(2009) found that the middle frontal gyrus was involved in the
tonal working memory. It seems that music training strengthened
connectivities between the above two regions and consequently
pitch perception and memory (Zatorre and Beckett, 1989; Gaab
etal., 2003; Zhou, 2004).

RSFC AND PI ABILITY
For participants without musical training, there were two main
findings. First, there was a positive correlation between the right

dorsolateral prefrontal cortex seed and the right cerebellum. The
cerebellum, traditionally viewed as a motor structure, is found to
be active in a wide variety of sensory and cognitive tasks. Schulze
et al. (2009) found that a music pitch memory task elicited
cerebellar activations in both AP and non-AP musicians (also see
Gaab et al.,, 2003). It has also been found to be involved in higher
cognitive processes such as working memory (Baddeley, 2003;
Marvel et al.,, 2012) and multimodal encoding (Stewart et al.,
2003; Cullen, 2012; Billings et al., 2014). In a meta-analysis of 15
PET and fMRI auditory studies, Petacchi et al. (2005) found that
a variety of auditory tasks consistently activated the cerebellum.
The RSFC-PI relationship between the dorsolateral prefrontal
cortex and the cerebellum perhaps reflects the role of this func-
tional connectivity in pitch memory and discrimination (Gaab
et al., 2003).

Second, there were significant correlations between PI ability
and RSFC linking the left premotor area seed to the right pars
triangularis, left superior temporal gyrus, and bilateral inferior
parietal lobule. These three regions are responsible for language
processing: the pars triangularis and superior temporal gyrus for
semantic processing (Kaplan et al., 2010; Romanski, 2012; Lai
etal., 2014), and the superior temporal gyrus and inferior parietal
lobule for phonological processing (Hickok and Poeppel, 2004,
2007; Scott and Wise, 2004; Bermudez and Zatorre, 2005; Limb
et al., 2006; Bermudez et al., 2009; Romanski, 2012). As men-
tioned earlier, these regions have been shown to be affected by
music training. Interestingly, the RSFC between these regions and
the DLPFC seed was associated with music training as reported in
the previous section, but the RSFC between these regions and the
premotor area seed was associated with PI ability for participants
without music training. Further research is needed to explicate
these differential associations.

For the participants with musical training, whose sample size
was relatively small, there were only two significant associations:
between the bilateral premotor area seeds and the left cerebel-
lum. These functional connectivities suggest that better PI ability
may rely on stronger connection between auditory encoding at
the cerebellum to movement preparation and control at the pre-
motor area (e.g., Gaab et al., 2003; Petacchi et al., 2005; Schulze
et al., 2009).

LIMITATIONS OF THE CURRENT STUDY

Several limitations of the current study need to be noted. First, in
order to accommodate the non-musician participants, we used a
PI test that had a restricted range of notes and included practice
trials. Thus, our results cannot be generalized to AP musicians.
Second, because we did not include task-related fMRI for PI in
this study, we relied on a previous study for ROI selection (as well
as AAL for additional ROIs in the supplementary result), which
might have missed important seed regions for our participants.
Third, our sample size of the participants with music training
was small and thus had less statistical power, which might have
contributed to the divergent results between the two groups of
participants. Fourth, our data were correlational, so it was not
clear whether there were causal relations among musical training,
PI ability, and RSFC. Fifth, because there was no effective way to
monitor whether participants slept during the resting-state scan-
ning other than immediate post-scan self-report, it was uncertain
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how many participants might have drifted away from wakefulness
toward sleep, a concern that has been raised recently about RSFC
studies (Tagliazucchi and Laufs, 2014). Finally, our participants
were Chinese whose native language is a tonal language. Previous
research has shown that speakers of tonal languages might have
an advantage in AP or PI ability (Deutsch et al., 2004; Gandour
et al., 1998; also see Bidelman et al., 2013, for an advantage of
Cantonese speakers). Therefore, our results need to be replicated
among speakers of non-tonal languages.

SUMMARY

With a large sample of Chinese non-musicians, the current study
compared RSFC differences between participants with and with-
out musical training and correlated RSFC with PI ability within
each group. The results showed that musical training was asso-
ciated with increased RSFC within the networks for multiple
cognitive functions, such as vision, phonology, semantics, audi-
tory encoding, and executive functions. Moreover, PI ability was
associated with RSFC with regions for perceptual and auditory
encoding for participants with musical training, and with RSFC
with regions for short-term memory, semantics, and phonology
for participants without musical training.
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