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Published studies using functional and structural MRI include many errors in the way
data are analyzed and conclusions reported. This was observed when working on a
comprehensive review of the neural bases of synesthesia, but these errors are probably
endemic to neuroimaging studies. All studies reviewed had based their conclusions
using Null Hypothesis Significance Tests (NHST). NHST have yet been criticized since
their inception because they are more appropriate for taking decisions related to a
Null hypothesis (like in manufacturing) than for making inferences about behavioral and
neuronal processes. Here I focus on a few key problems of NHST related to brain
imaging techniques, and explain why or when we should not rely on “significance” tests.
I also observed that, often, the ill-posed logic of NHST was even not correctly applied,
and describe what I identified as common mistakes or at least problematic practices in
published papers, in light of what could be considered as the very basics of statistical
inference. MRI statistics also involve much more complex issues than standard statistical
inference. Analysis pipelines vary a lot between studies, even for those using the same
software, and there is no consensus which pipeline is the best. I propose a synthetic
view of the logic behind the possible methodological choices, and warn against the usage
and interpretation of two statistical methods popular in brain imaging studies, the false
discovery rate (FDR) procedure and permutation tests. I suggest that current models for
the analysis of brain imaging data suffer from serious limitations and call for a revision
taking into account the “new statistics” (confidence intervals) logic.
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discovery rate

FOREWORD
The present text was not written by a statistician or a devel-
oper of MRI analysis, but by a “statistics-aware” MRI end user.
It may contain questionable statements or approximations. More
authoritative references are provided. On the other hand, most
of it that is correct should be obvious for a specialist, who may
not learn anything new. However, many MRI users may find
here matter of reflection. MRI is more complicated than what
efficient and widely available analysis programs may suggest.
Critically, many serious papers using sophisticated techniques
contain errors involving the simple and basic logic of statistical
inference. Most of these errors have already been denounced in
other articles. Here I made a short list of those as well as pitfalls of
MRI analysis. Readers may consult the Appendix of the compan-
ion review paper on synesthesia to read about precise examples
(Hupé and Dojat, 2015). I hope that sharing the understanding
achieved by a once naive MRI end user would benefit other MRI
end users.

The goal of this paper is not to provide new guidelines, new
statistical recipes or any kind of authoritative reference. The
“tools” used here should be shared by any scientist: common
sense, logical reasoning and thought experiments. The minimal
knowledge about statistical inference and MRI analysis, when
required, is also reminded.

The first part of this paper describes therefore what I consider
as the very basics of statistical inference, and what I understood
of Null Hypothesis Significance Tests (NHST). The second part
describes when such statistical inference was not correctly applied
in MRI studies. The list may not be exhaustive: it contains the
errors we found in our review of the literature on synesthesia.
The third part describes the main analysis pipelines used in MRI
studies. Again, the list is not exhaustive because based only on
the literature we reviewed. Even though it does not include the
latest developments, this part does describe critical steps and pit-
falls that all studies have to face. The idea is certainly not to tell
that these pipelines are wrong, or to tell which method is the
best. The idea is to highlight or to remind fundamental difficulties
that these methods tried to solve. Approximations or unverifiable
assumptions may well be appropriate for certain studies: mak-
ing them or not is the responsibility of the researcher. I hope
that trying to clarify them would help researchers taking the best
decisions.

BACKGROUND: STATISTICAL INFERENCE AND NHST
STATISTICAL INFERENCE
Empirical investigations are based on statistical inference, even
before computing any kind of statistical test: one wants to draw
general conclusions (the population) based on a limited set of
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observations (a sample). Biological and psychological measure-
ments are noisy. Most quantitative measures assume a model of
the form: empirical observation = true value + error. A single
observation is meaningless when the possible magnitude of the
error is unknown. Estimating the true value, therefore, requires
making several observations “everything else being equal.” In
statistical terms, observations need to be considered as “indepen-
dently and identically distributed (i.i.d.)” random variables. This
hypothesis depends on the empirical design and is often difficult
to prove or control entirely (the state of a subject in the scanner
can never be the same at the different times when the BOLD sig-
nal is measured). When the sources of measurement errors are
multiple, errors typically follow a Gaussian distribution (random
noise) and their sum converges toward zero. The average of obser-
vations is then a good (unbiased, convergent) estimator of the
true value. But there are cases when computing the average of
observed values is not correct or not very informative about the
population, for example when the distribution of measures is not
symmetrical around its mean, like for a Lognormal distribution.
In that case, observed for bounded measures like, often, response
times, an appropriate summary measure is the average of the log-
arithm of the measures, because after data transformation the
errors follow a Gaussian distribution1.

The normal distribution of errors, assumed in most cases, is
difficult to verify unless many observations are available. A criti-
cal question is the minimum number of observations needed for
any statistics (including summary statistics). Summary statistics
and tests can be computed with even a very small number of
observations. However, estimating the validity of the assumptions
supporting statistical inference is impossible with small numbers.
Non-parametric, randomization or bootstrap tests are theoret-
ically more valid because they rely on fewer assumptions. For
example, the results of a permutation test are theoretically valid
whatever the sample size as long as the assumption of exchange-
ability is valid. However, these results may not be empirically valid
for small numbers because too few measurements may not be rep-
resentative enough of the population: one can never exclude the
possibility that something unnoticed went wrong with one mea-
sure or subject. Any statistical measure should not be critically
dependent on any single measure. Crossvalidation methods could
be systematically applied for small samples. You may, for exam-
ple, remove one subject in your analysis to check if the results still
hold (leave-one-out procedure, jackknife) or split your sample
in two (half-split reliability). But cross-validation is only possible
when you have enough data (see below). A related problem due

1The mean of the log data is therefore also the median and the mode of the
distribution of the transformed data; it is called the “location” parameter of
the lognormal distribution. Most synesthesia studies of response times, RT,
(e.g., synesthetic Stroop tests) computed the mean of non-transformed RT
as summary measures; moreover, they often used invalid criteria to exclude
so-called “outliers,” values larger than 2 or 3 standard deviations; such defi-
nition of an outlier supposed the RT distribution to be Gaussian (and even if
it was the case this would not be a sufficient reason to exclude these values).
Conclusions based on NHST and close to the decided significance threshold
may well be sensitive to such incorrect procedures. Classical transformations
for RTs are lognormal and inverse. “Transformation” of the data should be
understood as the way to apply a lognormal or inverse model.

to small samples is known in statistics as overfitting, which leads
to an inflation of observed significance and effect size when a few
measures drive most of the effect. Overfitting can be overcome
with cross-validation methods (for example by reporting the min-
imum effect size or larger p-value measured when removing any
one measure or subject). Removing outliers based only on the dis-
tribution, without prior knowledge (or documented assumption)
on the data distribution, is however not acceptable practice (fit-
ting of the data to the statistical model; if the data distribution
does not conform to the validity conditions of the model, a better
model should be found2).

THE ILL-POSED LOGIC OF NHST: TYPE III ERRORS
NHST correctly compute the probability of observing an empir-
ical value (the sample statistics) under the assumption that the
Null hypothesis is true. When this probability is low, one may
decide to take the risk of rejecting the Null hypothesis. If the
Null is true, this risk corresponds to a Type I error. Such reason-
ing allows neither computation of the probability of being wrong
when not rejecting the Null Hypothesis (which is a Type II error),
nor computation of the probability of being wrong when rejecting
the Null (Cohen, 1994; Kline, 2004). This is because the computed
probabilities concern the random samples given a true popula-
tion value, which is never known. What we are interested in is the
probability of the population value given the observed value in a
given sample. Such computation is not possible without knowing
the priors (Bayes theorem). As phrased by Killeen (2005), when a
p-value is below 0.05 (arbitrary, conventional threshold), one can
only be “surprised.” However, publication standards enforce that
almost only so-called “significant” results be published, and that
“significant” rejections of the Null hypothesis be considered as
“proven.” Such strong emphasis on “significance” is problematic
with MRI studies (in particular), where controlling everything
is not possible, like for example the exact matching of subjects
when comparing groups (empirical groups of synesthetes and
controls may differ on things other than synesthesia, for exam-
ple, motivation) or the exact balance between stimuli (attention
bias, if for some reason one condition looks more interesting than
the other). In other words, in a given experiment small differ-
ences of no interest for the question at stake always exist: the
Null hypothesis is never true. False premises (the Null hypoth-
esis) “lead to conclusions that may be logically consistent but
empirically invalid” (Killeen, 2005), what is called a Type III error
(correctly rejecting the Null hypothesis but for the wrong reason).
Of course such differences will not be reliable if the paradigm
or procedure changes, and, therefore, not replicable. But they
will generate “significant” effects when increasing the number of
measures (e.g., Cohen, 1994). Indeed, if you consider the Cohen

2Note that the better model could be as simple as deciding of cutoff crite-
ria, for example the exclusion of very short and very long response times; but
this would not be a statistical criterion; the author would have to justify that
too short or too long RTs are not possible values reflecting the task; and such
exclusion criterion may well exclude values that were not detected as outliers.
Here, we are not dealing with the cases when the “true” distribution is known
and yet estimators, like central tendency measures, may be biased because of a
few extreme values; these cases may be dealt with robust statistics (e.g., Pernet
et al., 2012).
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measure of effect size d′ = (µ1 − µ2)/sd (difference of means
over the standard deviation), you obtain t = d′∗sqrt(n), mean-
ing that any weak effect becomes significant when increasing the
number of measures n. This is an empirical law of statistics. Such
consideration led Friston (2012) to recommend that MRI studies
should not involve too many subjects lest very small, unreliable
effects be published (the optimal number was between 16 and
32; note that this is still larger than in most studies on synes-
thesia considered in our review, but in most cases this number
would produce underpowered, not reproducible, studies: Yarkoni
et al., 2010; Button et al., 2013). But large samples may only be
a problem when relying solely on a “significance” threshold. By
increasing n you get a better estimation of your effect size, and
this is what you want (Cumming, 2012; Ingre, 2013). Friston also
argued that within small samples only effects large enough will
be significant, and these are the effects we are most interested in,
so “significant results from small samples should be taken more
seriously than the equivalent results in oversized studies.” This
logic is however faulty. In fact, if within small samples “signifi-
cant” effects are indeed always measured as large, this is obtained
with a large confidence interval. At p = 0.05, the 95% confidence
interval of the true effect size includes zero, meaning that a very
small effect, possibly due to sampling error, may easily be “signif-
icant” (and estimated as large) in a small sample (e.g., Christley,
2010), especially because of the inflation of observed significance
and effect size in small samples (Yarkoni, 2009). Sampling error
is inversely proportional to sampling size. In other words, larger
samples are always better, and p < 0.05 is not a sufficient criterion
to be surprised and doubt about the Null hypothesis (Johnson,
2013), because we already know that due to empirical constraints
the Null hypothesis is never true (whatever the presence or not of
any effect related to the design and tested question).

THE ILL-POSED LOGIC OF NHST: MULTIPLE COMPARISONS
NHST compute the chance of observing values that deviate from
a theoretical value, due to random sampling noise. Repeating tests
at the 5% chance level guaranties observing some extreme values
at least once (http://xkcd.com/882/). Voxel-based analysis in MRI
requires to perform thousands of NHST, and, therefore, to adjust
the individual statistical threshold accordingly to reduce the risk
of making at least one error (correction for multiple comparisons
in order to control the “family-wise error,” FWE, when consid-
ering the whole family of tests). Subjectively, it may yet still be
surprising that a p-value equal to 0.001 and measured at a given
voxel should be considered as non-significant (one chance over
1000) only because many more voxels were tested. Yet it should
(Bennett et al., 2009). On the other hand the procedure to cor-
rect for multiple comparisons increases the risk of Type II error,
which is the risk of not rejecting the Null hypothesis when, in
fact, it is false. With limited power, a true effect at a given voxel
may not be more “significant” than a random variation at another
voxel. In MRI, these procedures are, therefore, often considered as
“too conservative,” but, as pointed by Nichols (2012), “that’s like
saying a meter is too short. FWE is just a measure of false posi-
tive risk, a stringent one.” The correct way to decrease the type II
error is to increase the sample size, not to increase the risk of false
positives.

The crucial question is, in fact, the definition of the family of
possible inferences to consider for a given question. For example,
one may study only voxels in the visual cortex when measur-
ing the response to visual stimuli. But when there is no obvious
consensus for the definition of the family, this procedure looks
arbitrary since the set size depends on the number of observed
comparisons (the rest of the brain may have been recorded but
not analyzed). Some statisticians, therefore, recommend “good
practices” where researchers should tell in advance what com-
parisons they will make, to avoid deciding post-hoc what tests
to include in their analysis. Yet such a practice would yield to at
least paradoxical, if not absurd, consequences when, for example,
two researchers with the exact same data set would reach different
conclusions only because they had different hypotheses (Dienes,
2011); or if one of them, by being more ambitious and perform-
ing additional tests (maybe useful control tests), would not reach
“significance” and, therefore, publication standards. This thought
experiment suggests that we should consider the number of pos-
sible comparisons (the whole family) and not only the number of
actual comparisons—which is also absurd (the number of possi-
ble, maybe useful, comparisons to include in the family may be
infinite in cognitive science): clearly, how to choose a statistical
threshold to decide whether an effect is “significant” or not is an
ill-posed problem. I am not going to solve this problem here but I
consider that “significant” results should be qualified given the a
priori used to obtain them. Bayesian intuition (http://xkcd.com/
1132/) interferes with NHST when not acknowledged (Dienes,
2011).

AN ALTERNATIVE TO NHST
Like others (e.g., Cumming, 2013), I consider that publica-
tion should prefer confidence intervals to arbitrary significance
threshold, in order to allow cumulative science (Yarkoni et al.,
2010) rather than trying to reach conclusions after each study (CIs
do not allow any probability statement on the population: a 95%
CI means that, when repeating the experiment, 95% of the sam-
ples will include the true value within their 95% CI. This does
not mean that the true effect lies between the bounds of a given
95% CI with 95% probability. Conclusions should therefore wait
for meta-analyses: Cumming, 2012). In MRI, though, this may
not always be easy or feasible given the thousands of compar-
isons made at each voxel. Improved solutions do exist to avoid the
emphasis on dichotomous thinking based on an arbitrary thresh-
old, which cannot be computed “correctly” anyway (Jernigan
et al., 2003; Allen et al., 2012; ideally, results should be presented
on the flat reconstructed cortical surface, or those in 3D should be
available as an interactive, online, resource for every MRI study,
like at http://neurovault.org/). Methods to plot the spatial distri-
bution of confidence intervals over the brain have been proposed
(Engel and Burton, 2013; Rosenblatt and Benjamini, 2014).

COMMON MISTAKES WITH STATISTICAL INFERENCE
Neuroimaging a large cohort of subjects is difficult especially
when having to recruit synesthetes, so the question of the min-
imum number of subjects required is crucial. Sinke et al. (2012)
reminded us “that at least 12 subjects should participate in a fMRI
group study (Desmond and Glover, 2002) but high reliability
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and sensitivity will only be achieved with more than 20 sub-
jects” (Desmond and Glover, 2002; Thirion et al., 2007). These
numbers may even be too low, especially for structural stud-
ies where the brain differences between two groups of healthy
controls vs. synesthetes if any may be subtle. Most studies in neu-
roimaging (Yarkoni et al., 2010) and even neurosciences (Button
et al., 2013) are underpowered. What “underpowered” means is
not so clear, because this depends on the (unknown) size of the
effects studied. Presenting data with confidence intervals rather
than p-values (see previous paragraph) directly indicates to the
reader the precision of the estimation, who can thus evaluate
directly the power of the study (and therefore whether enough
subjects were tested). However, since most MRI studies on synes-
thesia used small or even very small sample sizes, as well as the
NHST logic, I first consider what should be the absolute mini-
mal size for a “group” analysis, and then identify cases where the
NHST logic, which may not be the optimal way to reach scientific
conclusions (Meehl, 1967; Cohen, 1994; Kline, 2004; Cumming,
2012; Lambdin, 2012), is not even correctly applied. In partic-
ular, all computations depend on making the Null hypothesis,
yet sometimes authors do not really make it or do not clearly
define it.

SAMPLE SIZE WEAKNESS
I relied on intuitive considerations in order to evaluate the results
of studies based on very small numbers of subjects.

(a) If we consider two conditions (for example the intensity of
the BOLD signal for two stimuli) and have too few measure-
ments to quantitatively interpret the difference of signal3, we
may still look at the sign of the difference. If the BOLD signal
is always larger for a stimulus than the other, this is certainly
meaningful. The most simple and robust way to evaluate
“always” against chance is the sign test. This is equivalent
to tossing a coin many times. The chance of always getting
heads (or tails) is 7.3% when flipping a coin 5 times and 4.1%
for 6 times (two-tailed test). Our usual, arbitrary, threshold
being 5%, 6 should be the absolute minimum number of
observations (or subjects) to be able to measure any “signif-
icant” effect; at least 7 subjects are required to verify that the
result does not depend on any critical value (leave-one-out
crossvalidation). Studies with less than 6 subjects should be
treated as single-subject studies, and therefore the results of
each subject should be shown (no group average).

3It would be convenient to be able to propose a value for � too few �.
Simmons et al. (2012) did request that “authors must collect at least 20
observations per cell.” This value was based on simulation, not on theoretical
grounds. It is also related to power and decision criteria based on NHST. Here,
the question concerns the meaning of quantitative values. At the very begin-
ning of this paper, I reminded that “quantitative measures assume a model of
the form: empirical observation = true value + error.” We learn in mathemat-
ics class that the Central Limit Theorem states that the sample mean follows
a normal distribution when the sample is drawn randomly and the sample
size is large enough, 30 being considered as large enough. However, I am not
aware of any theoretical justification for this number. This may yet be a rea-
sonable rule of thumb; based on my own experience, it is very difficult to verify
whether a distribution may be close enough to the normal distribution with
fewer than 30 values.

(b) When comparing two groups of subjects on a given mea-
sure, what is the minimum number of subjects to be able to
observe a “significant” difference? If the values in one group
are all above the values in the other group, non-parametric
Mann-Whitney gives a p-value below 0.05 only when groups
include at least 4 subjects (p = 0.03). With 4 subjects no
cross-validation at all is possible. The minimum size to reach
half-split reliability is 8 subjects in each group. Group com-
parisons between 4 and 8 should, therefore, be treated with
caution.

ACCEPTING THE NULL HYPOTHESIS ERROR
NHST only permit rejecting the Null hypothesis with some con-
fidence, they do not provide any criterion for accepting the Null
hypothesis. This is well known yet such error is often made when
comparing the significance of tests performed independently in
two groups (Nieuwenhuis et al., 2011), for example when com-
paring statistical maps in synesthetes vs. controls. Finding sig-
nificant activations in synesthetes but not controls for a given
contrast does not allow the conclusion that these activations are
significant only in synesthetes. A direct comparison is required
(typically testing the interaction between stimuli and group).

DOUBLE DIPPING CIRCULAR ERROR
Computing the FWE over all brain voxels when one is only inter-
ested in a specific brain region increases the risk of Type II error.
A common practice to increase power is to use a priori infor-
mation, for example a region of interest (ROI), which allows
reduction of the number of meaningful comparisons (reduced
family or set size). But a circular error is made when using the
same data to choose the “interesting” voxels and to test them
(Kriegeskorte et al., 2009, 2010; Vul et al., 2009): the so-called a
priori information is, in fact, defined a posteriori.

NULL HYPOTHESIS ERROR (A HYPOTHESIS IS NOT AN A PRIORI)
When wanting to use a priori information to decrease the set
size and increase power, many studies mistook their hypothesis
for an a priori (Hupé et al., 2012b). For example, assuming that
“color area” V4 is activated by synesthetic colors is a reasonable
hypothesis, leading authors to apply “small volume correction,”
that is, only correcting their p-values by the number of voxels in
the vicinity of V4. By doing so, however, they cannot suggest that
V4 is activated by synesthetic colors, since the correct descrip-
tion of their reasoning is: “if it is hypothesized that voxels in V4
are activated by synesthetic colors (this is the hypothesis that led
to restricting the Null hypothesis to V4), then voxels in V4 are
observed with ‘significant’ activation.” This leads to some circu-
larity: the activation is detected only if one supposed it exists,
which means not making the whole brain Null hypothesis. The
correct interpretation of their analysis is: “if we assume that synes-
thetic colors must activate V4, then we can identify which voxels
if any within V4 are most likely to be activated by synesthetic
colors.” This analysis can therefore be meaningful, especially if
no “significant” voxel is found, but its description must include
the conditional probability. Showing that some voxels in V4 are
indeed activated by synesthetic colors requires one to make the
Null hypothesis, that is, making the hypothesis that no voxels in
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V4 are activated by synesthetic colors. This Null hypothesis is not
compatible with the restriction of the family of relevant inferences
to the V4 region (unless stating that no activation by synesthetic
colors is possible anywhere else in the brain4).

RANDOM VS. FIXED EFFECT
Ideally, we are interested in generalizing an effect observed in a
sample of subjects to the population. To do that we consider that
differences between subjects are random variations. Other sub-
jects could have been tested (the choice of subjects is supposed
to be random). When computing only one summary measure by
subject the only measured variance to compute NHST is across-
subject variability, and “subject” is, therefore, a random variable.
But often, several measures (repetitions) are computed by subject,
leading to within-subject variability in addition to across-subject
variability. One may be interested in the differences between the
chosen subjects. In that case, one can contrast across-subject vari-
ability against the pooled within-subjects variability (noise term).
This is called a fixed-effect analysis (if you want to replicate the
analysis you should test the same subjects5). If two conditions
were tested (fixed effect), results across subjects apply only to the
tested sample. In order to be able to generalize to the population,
across-subject variability needs to be included in the noise term
by specifying in the statistical design that “subject” is a random
variable (“mixed model,” which includes both fixed and random
effects). In complex data analyses, in particular, whether subject
variability is taken as a random factor is not always clear, for
example when a network analysis requires computing one single
statistics for a group of subjects.

SELECTIVE REPORTING
In several studies interesting comparisons were planned, as can be
deduced from the Methods section. Unfortunately in some stud-
ies only selective results are then reported. Non-reported results,
maybe not consistent with the main message in the paper, could,
however, be informative to the community. Selective report-
ing practices can sometimes be detected when too many “just
significant” results are published (e.g., Francis, 2012).

4Let’s be very clear about that: I am not arguing against the use of small vol-
ume correction (SVC) or region of interest (ROI) analysis (ROI analyses do
not need to use NHST: they may simply show Confidence Intervals). I am only
pleading for awareness of the Null hypothesis as well as consistency. Small vol-
ume correction determines a t- or z-score above which voxels are considered
as significant. When data is available this threshold should be applied to the
whole brain. If voxels outside the small volume are above this threshold this
means that the restriction of the family of tests was not justified (often studies
reported such unexpected activation while maintaining the conclusion based
on SVC). Likewise, ROI analyses should be completed by whole brain analyses
to avoid pinhole conclusions.
5A significant main effect of the variable “subject” means that across-subjects
differences are not only due to sampling error. Possible interactions between
the tested effect and “subject” should then be examined. I do not know of
any MRI study that considered subject variability that way. In the rare cases of
fixed-effect analyses across-subject variability was simply factored out, implic-
itly making the very strong assumption that the measured variable could not
be influenced by subject variability (as if a single “supersubject” had run the
whole experiment).

PITFALLS OF MRI STATISTICS
The analysis of MRI data requires specific models that go beyond
the simple principles of statistics described above, in order to
address two major problems.

(1) MRI measures information locally (within each voxel) over
the whole brain. A voxel is not a functional unit. On one
hand, each voxel contains thousands of neurons; on the
other hand, functional or structural information may be dis-
tributed over several voxels: measures across voxels are not
independent, but to an unknown, experiment dependent,
degree. This makes difficult the proper control of the inflated
risk of false positives across many voxels.

(2) Brains are different so the measure in corresponding voxels
across subjects may not sample comparable information. A
fundamental problem is what information is being matched
between brains; the thorough discussion and possible reso-
lutions of this problem is beyond the scope of the present
paper.

Here I describe the logic of the statistical models used in the
reviewed papers (Hupé and Dojat, 2015), again the way I under-
stand it as a “statistics-aware” MRI user, not a statistician.

REGIONS OF INTEREST
When possible, a powerful method to match information between
brains is to identify functional units that are similar in each brain
(e.g., Poldrack, 2007). For example, retinotopic mapping allows
identification of (at least) visual areas V1 to V4 in each subject
with some confidence. Signals can then be measured in each of
these regions of interest (ROI) and compared across subjects.
A related approach is the use of functional localizers to iden-
tify brain regions that respond more to motion or color (for
example). A problem arises when there is a lack of strict corre-
spondence between structure and function (for example, there is
no single “color” region, and this is certainly not strictly retino-
topic V4: Brewer et al., 2005; Hupé et al., 2012c), or when the
protocol may not unambiguously identify a functional area (for
example, the classical Mondrian localizer for color areas lacks
specificity related to color processes; moreover, the definition of
the ROI requires an arbitrary threshold, which leads to make an
inference error of the type “Accepting the Null hypothesis error”;
see Jernigan et al., 2003). The ROI approach is, therefore, interest-
ing and powerful but the results depend on the hypotheses made
to define and identify the ROIs, which may involve questionable
choices when done beyond retinotopic areas.

RANDOM FIELD THEORY: PEAK STATISTICS
Voxelwise comparisons across subjects do not rely on such
hypotheses and choices, but directly face the two major problems
of brain differences and performing thousands of comparisons.
The solution to structural differences, spatial smoothing and
transforming each brain to a common space, would be correct
only if we had exactly the same brain except for some linear
(or even non-linear) scaling factors. Inferences based on across-
subjects statistics depend on how wrong this approximation is.
To address the problem of multiple comparisons, the random
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field theory (RFT) takes into account correlations over neigh-
boring voxels to control the risk of false positives over the whole
brain (Worsley et al., 1992). RFT is applied to statistical maps,
for example the difference of BOLD signal in each voxel mea-
sured for two different stimuli, typically expressed as a t-value
or z-score (Friston et al., 1995). RFT estimates the smoothness
(spatial correlations) and variance of the statistical map in order
to approximate the upper tail of the maximal distribution of the
statistics: it computes the t or z threshold above which there
is less than say 5% chance of observing one cluster of voxels
with values above that threshold, under the Null hypothesis6 .
These “peak statistics” require several assumptions to be exact
(Petersson et al., 1999; Nichols and Hayasaka, 2003), in particular
the “reasonable lattice approximation,” which is obtained when
data have been sufficiently spatially smoothed and the distribu-
tion of errors (across trials or subjects) is Gaussian. A major issue
for this kind of multivariate analysis is the spatial heterogeneity
of variance across the brain (“non-stationarity”), especially for
structural data (Ashburner and Friston, 2000).

The measure of peak statistics using the RFT, to be optimal
(powerful), requires that the spatial filter used to smooth the data
be about the same size as the spatial extent of the effect to be
measured. This extent is typically unknown and can be very dif-
ferent depending on what is measured and where in the brain.
Even if a functional activation is very specific and is localized at
the exact same anatomical region in each brain (for example the
depth of a given sulcus), if much anatomical variability of this sul-
cus exists across subjects (even after normalization to a common
standard space) this activation could reveal as significant across
subjects only when applying a very large spatial filter (note that
the localization of the effect would be less precise). This consid-
eration led Poline and Mazoyer (1994) to propose a multifiltering
approach. This method has not been pursued because it required
large computer resources, a problem now obsolete, even though
it was efficient and robust (Poline et al., 1997) and relied on the
theoretically strong RFT. It also introduced a new problem of
multiple comparisons (the number of “independent” filter sizes)
as well as overfitting (such an approach may fit the spatial filter to
random noise in the data).

RANDOM FIELD THEORY: CLUSTER EXTENT STATISTICS
Cluster extent statistics is an alternative strategy to voxelwise statis-
tics, now widely used, which somehow addresses the same issue
as the multifiltering approach. Using RFT, it is possible to com-
pute the number k of voxels in a cluster, all with values above a
given t or z threshold, beyond which there is less than say 5%
chance of observing a cluster, under the Null hypothesis (Poline
and Mazoyer, 1993). Such computation requires deciding on an
arbitrary threshold, but then controls the risk of false positives
over the whole brain. Most MRI studies now report this cluster

6Estimation of the upper-tail distribution is by definition a one-tailed test.
This is correct for the statistics of interactions (F-test), but testing differ-
ences between two populations requires performing two tests. Under the
Null hypothesis, and, therefore, not assuming the direction of the effect, all
reported effects obtained at “p = 0.05” should, therefore, be reconsidered as
“p = 0.10” for a two-tailed test.

extent statistics, which is typically more sensitive than voxel-
wise statistics to revealing significant effects. The interpretation
of the effects, however, is not as straightforward as for voxelwise
statistics, because the inference concerns “having k contiguous
voxels above a given threshold” (in other terms, nothing can be
said about specific subregions of the cluster; yet most reviewed
papers, including ours, only reported one voxel coordinate). Such
an effect could be obtained, for example, if all subjects have a
weak but similar activation all over the visual cortex (a weak but
widespread effect in each subject). But significant clusters can
also emerge for highly focal activations but differently localized
in each subject, like obtained when contrasting colored against
greyscale Mondrian stimuli (peak activations are observed in each
subject within the same region, but with much variability in
the precise anatomical location and number of peaks: Brewer
et al., 2005; Hupé et al., 2012b,c). Whatever its interpretation,
the validity of cluster extent statistics depends crucially on spa-
tial smoothing and the chosen threshold, so these values should
be systematically reported (in our review we reported them in the
summary of each study).

Contrary to parametric tests of the central tendency (like the
ANOVA), statistics of maximal values (peak or cluster extent) are
very sensitive to deviations from their conditions of validity, like
unequal variance and extreme values (outliers). Empirical dis-
tributions (obtained with data permutations) are indeed highly
skewed, especially for cluster extent (see Figure 1 by Hayasaka
and Nichols, 2004), making the estimation of the upper tail very
sensitive to such deviations. Much effort has been devoted, there-
fore, to produce a Gaussian distribution of the statistics at each
voxel and minimize the impact of non-stationarity. When the
roughness/smoothness of images was poorly estimated, p-values
were shown to be up to ±20% inaccurate (Poline et al., 1995).
Improved methods include, for example, smoothness estimation
from standardized residual images (Kiebel et al., 1999), or weight-
ing by the variance in each group, even under deviation from nor-
mality (Behrens Fisher problem), using Brunner Munzel statistics
(Brunner and Munzel, 2000; Neubert and Brunner, 2007; Rorden
et al., 2007). In classical ANOVA the conditions of validity are
easily checked by examination of residuals, which is more diffi-
cult with multivariate analysis. A method is implemented in SPM7

“Distance” toolbox (Kherif et al., 2003) to visualize the multivari-
ate distribution of residuals and identify possible outliers. Note
however that the identification of “true” outliers can be obtained
only with large data sets, like N > 30. Rejecting outliers based
on small populations like used in MRI studies may lead to the
rejection of valid observations and therefore fitting the data to
the model instead of fitting the model to the data (data identified
as outliers could in any case be rejected only for an independent,
valid, reason that can apply to the whole sample). Inspection of
residuals is rarely reported in MRI studies and never in the papers
that we reviewed.

Non-stationarity also causes the reasonable lattice approxima-
tion to break down at low thresholds of statistical values (high
p-values). For cluster-extent statistics, t or z-statistics thresh-
olds should therefore be at least above 3 (Poline et al., 1997)

7http://www.fil.ion.ucl.ac.uk/spm/

Frontiers in Neuroscience | Brain Imaging Methods February 2015 | Volume 9 | Article 18 | 6

http://www.fil.ion.ucl.ac.uk/spm/
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Hupé Common mistakes and pitfalls in neuroimaging studies

or 4 (Smith and Nichols, 2009; see also Woo et al., 2014).
Non-stationarity had also led Ashburner and Friston (2000) to
discourage cluster-size statistics for VBM data. However, simula-
tions based on empirical data show that a large degree of spatial
smoothing is indeed necessary but also usually sufficient to obtain
reliable results (this procedure also weakens the weight of large or
extreme values measured locally in only a few subjects), at the
cost of the precision of localization of effects. Thus, Silver et al.
(2011) recommended that “cluster size inference should only be
used with high cluster-forming thresholds and smoothness”, such
as p = 0.001 for voxel threshold and a 12 mm Gaussian kernel
(Full Width at Half Maximum, FWHM). They observed in simu-
lations that “false positive rates ranged from 9.8 to 67.6%” when
using a 6 mm Gaussian kernel and thresholds such as p = 0.05
or p = 0.01. The required spatial smoothing may be different for
VBM (including diffusion anisotropy, DTI) and FMRI, and must
also depend on each study. I don’t know of any study reporting
a measure of stationarity in their data, and whether any tool is
available.

Even when applied under optimal conditions, cluster extent
statistics pose several problems. Nichols acknowledged knowing
“of no formal proof that cluster inference has such strong control
of Familywise error” (Nichols, 2012), while Smith and Nichols
(2009) suggested that it may be “hard to persuade the exper-
imenter to honestly correct for “multiple comparisons” across
different thresholdings.” I consider indeed that this statistics faces
the same problems as the multifiltering approach: multiple test-
ing and possible overfitting8. It also poses the problem of selective
reporting and comparison between studies. Usage wants authors
reporting only the value of the cluster-forming threshold. But did
they try other thresholds? Are results different at other thresh-
olds, for example could other “significant” clusters be discovered
that may be more difficult to explain? When authors report only
voxelwise statistics (for example no significant difference between
two conditions or two groups) did they also compute cluster
extent statistics and observed no significant cluster? While visu-
alization of effects rather than significance maps may solve this
problem in the future (Allen et al., 2012), for the present studies,
meta-analysis faces strong limitations.

PERMUTATION TESTS
While SPM software is relying mostly on RFT and parametric
computations, FSL9 software favors permutation tests, which can
be applied to voxel maximum t- or z-value and cluster extent
statistics. Permutation tests are elegant because they only require
the assumption of exchangeability. However, the nature of the
inference also depends on this assumption. If nothing else is
known, the only conclusion based on a “significant” permuta-
tion test is that exchangeability is violated—that is, two groups
are different. However, one cannot infer what the nature of the

8The “threshold-free cluster enhancement” statistics (TFCE, Smith and
Nichols, 2009), implemented in FSL, somehow overcomes this problem, by
proposing a single statistic. It however requires deciding on two parameters,
instead on only one (cluster defining threshold). Values for these parameters
are proposed by default in FSL that are supposed to be appropriate for most
studies (Smith and Nichols, 2009).
9http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/.

difference is. This is the case, for example, for the classic Wilcoxon
test, a permutation test based on ranks (Manly, 1997). This test
is typically used as an alternative to the parametric t-test when
normality is violated. However, like the t-test, valid inference
on the central tendency (mean or median) is only guarantied
when the variances are similar (homoscedasticity hypothesis).
Permutation tests are also sensitive to outliers. Imagine that when
comparing a group of 20 synesthetes to a group of 20 controls
using a given statistic, 5 subjects are clearly outliers (larger values)
to a normal distribution of this statistic, all of them synesthetes.
These values drive a larger summary value across synesthetes than
controls. By using a permutation test you do not assume nor-
mality so you would not identify (and possibly exclude) these
subjects. You may well observe that the larger value across synes-
thetes can hardly be due to chance—the permutation test would
mostly compute the chance of having the 5 extreme values all
within the same group, which is 0.5∧5 = 0.03. You would, there-
fore, conclude that the two groups are different. Such a conclusion
is correct but the interpretation would be wrong if you con-
clude that a correlate of synesthesia is a larger value for your
measure. Such an interpretation would be based on a model
of the type: empirical observation = true value + error. This
model is clearly wrong here. The correct interpretation is that
the group of synesthetes is more likely to include outliers for
this measure. In fact, this fictitious example could happen quite
easily in case of comorbidity, as suggested for the higher rate of
radiologically determined white matter hyperintensities (one of
the imaging criteria for the diagnosis of multiple sclerosis) in
self-referred synesthetes who had participated in neuroimaging
research (Simner et al., 2014). The correct interpretation should
be the presence of comorbidity in the tested sample, but this
would tell nothing about the correlates of synesthesia. In most
cases, of course, the results of permutation tests do not depend so
strongly on outliers (and in the example above, at most one such
case was observed in any single study, and when identified, could
be excluded from the analysis). But each time one wants to infer
about the central tendency of an effect, permutation tests provide
statistical measures that are inexact to an unknown degree. Only
with “everything else being equal” can we make strong inferences
on the central tendency. In that case, parametric statistics (when
possible) should provide the exact same results. Parametric mod-
els are often more powerful when they include covariates (like
blinks in fMRI studies or brain size in VBM studies)10.

FALSE DISCOVERY RATE
All the statistical measures described above were developed to
control the risk of being wrong when rejecting the Null hypoth-
esis. An alternative is the computation of the false discovery rate
(FDR), the expected proportion of false positives among detec-
tions (Benjamini and Hochberg, 1995). This test has the great
advantage of providing meaningful results even when multiple

10Usage of covariates in permutation tests for MRI seems rare. In addi-
tion, the correct estimation of the upper-tail distribution (for peak or cluster
extent statistics) with Monte-Carlo stimulations or permutations requires a
very large number of samples or permutations, especially for highly skewed
statistics on cluster extent.
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tests are not independent, like across voxels. This also provides
two-tailed statistics on the central tendency and does not rely on
the unstable estimation of the upper tail of the statistics (when
applied voxelwise). However, similarly to Bayesian statistics, FDR
results depend on the probability of non-Null effects: measured
FDR p-values for an effect of interest depend on how often the
Null hypothesis is non-true. This becomes a problem when many
Null hypotheses are non-true for the wrong reasons or because
the family of tests is too large (it includes tests that have lit-
tle reason to be included in the “family”). Let’s take a simple
example: synesthetes may blink more often after synesthetic stim-
uli because they start thinking about the synesthetic color and
they need to refocus on the task. Blinks activate a large por-
tion of the visual cortex, mostly along the parieto-occipital cortex
and the anterior calcarine, with only minimum influence on
responses beyond V4 or in central V4 (Hupé et al., 2012a). Such
a behavior may therefore not affect the central V4 responses to
colored stimuli. However, this will affect the computation of the
FDR value. This makes therefore the interpretation of the FDR
value more problematic than FWE-corrected p-values, obtained
under the Null hypothesis. As a consequence, sloppy designs may
generate more easily “significant values”: FDR may “detect” the
expected (“desired”) effect more easily when many differences
unrelated to the question asked are present. This non-desirable
behavior is counter-intuitive, since “sloppy” designs would be
rather expected to increase variance (which they may also do,
fortunately) and therefore decrease significance.

CONCLUSION
I would like to be able to provide some recommendations on the
best (or at least the less bad) way to analyze MRI data, but I am
not qualified to do so. I should remind the reader that this text
was not written by a statistician or a developer of MRI analysis.
If recommendations should yet be done to users, the first one
should be to better detail the analysis pipeline (Poldrack et al.,
2008). The second one would be to try understanding better the
tools used (like I strove here), to be aware of their strong limita-
tions, and be suspicious of “hypothesis-free” solutions (like FDR
or permutation tests). The third recommendation would be data
sharing (Poline et al., 2012; Poldrack et al., 2013). But recommen-
dations should also be directed to developers of MRI tools. After
decades of p-value diktat (Meehl, 1967; Cohen, 1994; Kline, 2004;
Lambdin, 2012), psychologists may be at last ready to switch to
Confidence Intervals, thanks in particular to the success of the
pedagogical effort by Cumming (2012, 2013). The challenge will
be to apply the Confidence Interval logic to the huge and complex
data sets of brain imaging studies.
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