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Altruistic punishment, which occurs when an individual incurs a cost to punish in response
to unfairness or a norm violation, may play a role in perpetuating cooperation. The neural
correlates underlying costly punishment have only recently begun to be explored. Here we
review the current state of research on the neural basis of altruism from the perspectives
of costly punishment, emphasizing the importance of characterizing elementary neural
processes underlying a decision to punish. In particular, we emphasize three cognitive
processes that contribute to the decision to altruistically punish in most scenarios: inequity
aversion, cost-benefit calculation, and social reference frame to distinguish self from
others. Overall, we argue for the importance of understanding the neural correlates
of altruistic punishment with respect to the core computations necessary to achieve a
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PUNISHMENT IN A COOPERATIVE SOCIETY

Hammurabi’s Code is regarded as one of the world’s oldest writ-
ten legal systems, a timeless example from the ancient world of
explicit, codified social norms and punishments instated against
those who defected (Jarus, 2014). While most modern proceed-
ings no longer follow lex talionis, today’s societies continue to rely
on cooperation between individuals to promote collective action,
produce public goods, and deter free-riding (Ostrom, 2000).

Altruistic punishment occurs when an individual forgoes a
personal gain to punish (Seymour et al., 2007). The biological
definition of “altruism,” unlike its colloquial counterpart, does
not assume or impose intentionality to the actors of altruistic
behavior (Wilson, 1992). Here, “altruistic” describes the sacrifice
of personal gain, not the motivation of this sacrifice. In second
party (SP) punishment, an individual who receives an unfair offer
in a monetary exchange or suffers from a selfish investment made
by a partner punishes by reducing the norm violator’s payout at a
cost (Fehr and Gichter, 2002; Egas and Riedl, 2008), or rejects
the unfair offer such that both players have a reduced payout
(Giith and Tietz, 1990). Third party (TP) punishment, on the
other hand, occurs when an uninvolved individual punishes the
violator at a cost (Fehr and Fischbacher, 2004; Bernhard et al.,
2006).

Altruistic punishment generates a vast array of questions about
its behavioral and neural mechanisms. The evolutionary conse-
quences for promoting prosocial behaviors, such as cooperation,
remain continuously debated (Nakamaru and Iwasa, 2006; Rand
et al., 2010; Rand and Nowak, 2013; Peysakhovich et al., 2014)
but lie outside the scope of this paper; we instead focus on neural
mechanisms that could be at play when deciding to costly punish.
Our knowledge could benefit from a framework that incorpo-
rates neural computations contributing to altruistic punishment.
Here, we explore the current literature on neuroscientific studies

Keywords: altruistic punishment, costly punishment, inequity aversion, cost-benefit calculation, social reference

of operationally-defined altruistic punishment, and emphasize
three cognitive processes that guide the decision to altruistically
punish, namely inequity aversion, cost-benefit calculation, and
social reference frame used for distinguishing self from others.
These three cognitive processes have distinct neural correlates,
as evidenced by literature that will be discussed, which could
relate to the neural mechanism that underlies the complex deci-
sion of altruistic punishment. Therefore, connecting the literature
on altruistic punishment to that of these three cognitive pro-
cesses could inform our understanding of the neural correlates
of punishment.

NEURAL CORRELATES OF ALTRUISTIC PUNISHMENT

How does the brain mediate altruistic punishment? Many studies
have directly explored this question (Table 1). Blood-oxygen-level
dependent (BOLD) signals in the bilateral anterior insula (AI),
dorsolateral prefrontal cortex (DLPFC), and anterior cingulate
cortex (ACC) are all associated with receiving unfair vs. fair offers
from another individual (Sanfey et al., 2003). Overall, converging
evidence seems to suggest an involvement of reinforcement via
the striatum in mediating altruistic punishment. One study com-
pared BOLD activity of participants punishing as the SP and TP
during a dictator game, and found differential activations in the
right nucleus accumbens (NAc) and DLPFC (Strobel et al., 2011).
Another study found greater activations in DLPFC and caudate
nucleus (CdN) among other regions when individuals received
unfair offers (Spitzer et al., 2007). Greater CdN activation has
also been associated with costly compared to symbolic punish-
ment (i.e., no reduction in endowment for either player), in which
individuals’ willingness to incur a greater cost to punish was asso-
ciated with stronger CdN activations (de Quervain et al., 2004;
White et al., 2014). Intriguingly, reducing serotonin signaling dur-
ing the ultimatum game (UG) can lead to an increase in the
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likelihood of punishing others who responded to them unfairly
by modulating striatal activations (Crockett et al., 2013), suggest-
ing that serotonin may set the sensitivity threshold for fairness-
and punishment-related processing.

Furthermore, converging evidence suggests that prefrontal
regions are specialized for evaluating fairness and guiding norm
compliance during punishment. In addition to the previously
cited work implicating the DLFPC in administering punishment
as the SP, low-frequency repetitive transmagnetic stimulation to
the right DLPFC increased the acceptance rate of unfair offers
in the UG (Knoch et al., 2006). By contrast, participants with
bilateral lesions in the ventromedial prefrontal cortex (VMPFC)
exhibited the opposite pattern, accepting fewer unfair offers
(Koenigs and Tranel, 2007). Furthermore, increasing or decreas-
ing neuronal excitability using transcranial direct current stimu-
lation in the right lateral prefrontal cortex (rLPFC) differentially
controls sanction-free compared to sanction-induced transfers,
without affecting the conceptualization of fairness norm and
sanctions, when a player makes a monetary offer in either a dic-
tator or UG context (Ruff et al., 2013). These results demonstrate
that rLPFC is causally involved in norm compliance, but in strik-
ingly different ways depending on the presence of punishment
threats.

However, it remains unclear what computations are primar-
ily driving the neural signals in altruistic punishment tasks. In
the following sections, we highlight three fundamental cogni-
tive processes occurring in most altruistic punishment scenarios
that might play significant roles in driving the neural activations.
These processes may inform how different neural circuits are
implemented in driving altruistic punishment.

INEQUITY AVERSION

Altruistic punishment occurs in response to an offer perceived
to be inequitable. Inequity often evokes negative affect, which
may motivate the decision to altruistically punish (Montague
and Lohrenz, 2007). Using a resource-sharing task, Haruno
and Frith (2010) showed that BOLD signals from amygdala
(AMYG) predict individual differences in aversion to inequity,
such that prosocial orientation is driven by an intuitive aversion
for the inequitable division of resources across self and oth-
ers. Furthermore, in a task asking participants to allocate goods
between two groups of children, high insula activity was associ-
ated with choosing an equitable allocation vs. an inequitable one,
supporting the role of the insula for signaling inequity associated
with a norm violation (Hsu et al., 2008) (Figure 1A). This finding
suggests that individuals with stronger negative affective signaling
from the bilateral Al reduce inequity due to a greater sensitiv-
ity to the violation of fairness (Hsu et al., 2008). Unreciprocated
cooperation, which could be conceptualized as a violation of one’s
expectation based on the social norm, also increases activation in
the bilateral Al, as well as the left AMYG (Rilling et al., 2008).
AMYG activity during a decision-making task with losses and
gains correlated with loss aversion (Sokol-Hessner et al., 2013).
Taken together, social exchanges with an inequitable outcome
seem to recruit neural systems, including the AI and AMYG,
involved in affective signaling to influence norm compliance by
modulating fairness perception.

Because inequity motivates a punishing action, neural pro-
cesses associated with inequity detection and aversion could sig-
nificantly guide the decision to costly punish. The aversion associ-
ated with inequity, on the other hand, may reflect how the neural
signals corresponding to inequity detection are transformed and
further processed by emotion-related circuitry. Converging evi-
dence indeed indicates that task events correlated with inequity
typically activate brain regions implicated in affective process-
ing. Further research is needed to understand how these signals
influence the decision to punish.

In realistic settings, there are not necessarily tight tempo-
ral relations between the time of inequity detection and the
punishment—some punishments may occur as an immediate
reaction, whereas others may occur long after the infraction,
many days and even years following inequity detection. In the
laboratory, most studies have had focused on relatively small
time window between inequity detection and punishment for
practical purposes. The role of inequity-evoked negative affect is
likely to be greater when the time from the inequity detection to
the punishing act is relatively short. It would be interesting to
test the magnitude of affective drive in different brain regions
during punishing decisions as a function of the delay between
the time of inequity detection and forming the decision to
punish.

COST-BENEFIT CALCULATION

Cost-benefit analysis could occur when deciding to carry out
altruistic punishment, requiring that the cost of punishment be
weighed against the benefit of punishing (Egas and Riedl, 2008).
The costly punishment decision could hinge upon the value
representation of the possible outcomes (Sugrue et al., 2005),
which subsequently may depend on the severity of the opponent’s
infraction, the ratio of monetary cost to punish, the impact of the
punishment itself on the opponent, as well as any expected future
gains from punishing.

In examining effort as a proxy for cost required for some ben-
efit, a lesion to ACC reduced a rat’s willingness to expend effort to
receive a large reward, whereas control animals typically expended
energy (Walton et al., 2003). When human subjects performed
a similar effort-based task, BOLD activity in the dorsal ACC
and striatum increased with respect to the net value of the out-
come rather than the amount of effort anticipated (Croxson et al.,
2009). Single-unit recordings in rat ACC during a choice task of
two options differing in cost-benefit ratio found a population of
neurons with elevated firing rates during the pursuit of a high
cost, high reward option, an effect that did not solely reflect vari-
ations in physical effort or food acquisition, suggesting the ACC’s
role in integrating information about cost and reward (Hillman
and Bilkey, 2010) (Figure 1B). Furthermore, in a competitive set-
ting, a population of ACC neurons signals the choice with the
greatest net utility based on the cost of competing and the benefit
of reward (Hillman and Bilkey, 2012). Inactivating ACC in mice
decreases their preference for the option requiring greater effort
(Hosking et al., 2014). Although such efforts related to acquiring a
reward or completing a task may not be directly translatable to the
monetary loss in costly punishment, they share the basic principle
of incurring a cost to potentially obtain a desired outcome.
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FIGURE 1 | Representative studies on the neural components of
altruistic punishment. (A) Left: Hsu et al. (2008) found that activation in
the bilateral insula (left) is negatively correlated with inequity in a task
involving allocating differential benefits across two groups of children.
Right: Individual’s activations (beta values) were negatively correlated with
individual inequity-aversion parameters. Modified from Hsu et al. (2008)
with permission. (B) In the study by Hillman and Bilkey (2010), mice
navigated through a maze in which they either chose a “low cost, low
reward” (LCLR) arm (left) or a “high cost, high reward” (HCHR) arm
(right). For each of the three typical HCHR-biased ACC cells shown here
(i—iii), firing rates that are pseudo-color mapped onto the spatial position
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of the maze illustrate overall higher activity for the HCHR compare to the
LCLR option. The bar graphs show the mean firing rates (FR) across
different spatial positions (“epochs”) for HCHR and LCLR choices for
each cell. The percentage of HCHR choices is also indicated. Modified
from Hillman and Bilkey (2010) with permission. (C) Left:
Otherreferenced representation of rewards allocated to another monkey
in the room found in the subpopulation of neurons in the gyrus of the
anterior cingulate cortex (ACCg). Right: Mirrored (commonly-referenced)
representation of rewards received by an actor and another monkey
found in the subpopulation of ACCg neurons. Modified from Chang et al.
(2013) and Chang (2013), with permission.
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Some studies have related a nonsocial reward currency with
social rewards, which could be occurring in altruistic punish-
ment when a player sacrifices money to punish another player. An
exchange rate between viewing social images and receiving mon-
etary rewards that falls along a distribution correlated with the
valuation of the image is reflected in the hemodynamic activity of
the posterior VMPEC (Smith et al., 2010). Functional connectiv-
ity of the VMPFC to temporal-parietal junction, MPFC, middle
temporal gyrus, and posterior cingulate cortex suggests a network
governing subjective valuations of social reward (Smith et al.,
2014). Weighing the cost and benefit in the social reward domain
is not a behavior restricted to humans. Rhesus macaques also
are willing to exchange small amounts of juice rewards in order
to view socially salient images but require juice overpayment to
view less desirable images (Deaner et al., 2005). Importantly, the
specific amount of juice sacrificed or demanded falls along a
distribution that is correlated with the valuation of the image,
generating an exchange rate between social (image) and nonso-
cial (juice) rewards. Similar to such an exchange rate between
monetary (or primary reinforcer in monkeys) and social reward,
participants forgo a monetary reward to punish in SP or TP pun-
ishment, in which the loss is compensated by the reduction in
their opponent’s endowment. If punishing the defector is in fact
rewarding (de Quervain et al., 2004), the punishing cost could be
thought in part as being exchanged with a social reward.

Regardless of whether the gains of altruistic punishment are
monetary or social, cost-benefit calculations may play a key role
in the neural processes leading up to a decision to punish at a
predicted cost. Examining cost-benefit relations in both nonso-
cial rewards and social rewards and associated neural activity
across different individuals during costly punishment decisions
may reveal intriguing insights into the mechanisms underlying
the decision to costly punish.

SOCIAL REFERENCE FRAME

Any behavior that involves another individual requires a set of
representations across self and others. Costly punishment, in par-
ticular, may require the evaluation of others’ internal states when
an individual is faced with outcomes that could ultimately ben-
efit another individual or a group. Evidence demonstrates that
there are shared networks in the brain that compute information
with respect to self and others (Decety and Sommerville, 2003).
Importantly, these shared representations seem to be generalized
to multiple cognitive domains. The brain regions related to the
affective response to pain, including the rostral portion of ACC,
bilateral insula (both medial and anterior), and the brainstem, are
activated in groups who either receive an electric shock to their
own finger or watch a significant other receive a shock (Singer
et al., 2004). Furthermore, it was shown that observing another
person experiencing pain activates a broad range of brain areas
across frontal and parietal cortices as well as AMYG, areas that
are implicated in emotional and social cue processing (Ochsner
et al., 2008). Likewise, a TP observer could take on a SP perspec-
tive such that another player’s misfortune is construed as his own.
A recent study suggests that some brain areas may process self-
specific misfortune but other areas may project other’s misfortune
onto one’s own. Corradi-Dell’Acqua et al. (2013) found selective

activation in MPFC when participants were shown unfair offers
involving themselves but not others, whereas Al activations were
also associated with unfair offers to others (2013). Whether
“perspective-taking” or “affective projection” is a prerequisite to
promoting TP remains to be explored.

In addition, the TP observer likely infers the reward contin-
gencies from the perspectives of the two players after punishing.
Such multidimensional inferences across oneself and another
individual must require a signal transformation across self and
others (Chang, 2013) (Figure 1C). Insight into this transforma-
tion could be obtained by examining how reward outcomes across
self and others are encoded in the brain. A recent study tested
such encoding mechanisms when pairs of rhesus macaques were
engaged in a social reward exchange paradigm (Chang et al.,
2013). When an actor monkey was choosing to deliver juice
rewards between himself and a recipient (Self/Other) as well as
between the recipient and no one (Other/Neither), anatomically
distinct regions of the primate frontal cortex encoded the reward
outcomes across self and others using different social reference
frames. Neurons in OFC primarily signaled the received rewards
of the actor monkey, whereas neurons in the sulcus of ACC
(ACCs) predominantly signaled the foregone rewards of the actor.
Notably, one subpopulation of neurons in ACC gyrus (ACCg)
exclusively signaled the rewards received by the recipient, whereas
another subpopulation mirrored the rewards received by the actor
or the recipient. In addition to these “other-regarding” neurons,
another subpopulation in ACCg exclusively encoded one’s own
reward outcomes. The specialized function of ACCg in signal-
ing the rewarding events of others was also recently reported in a
human neuroimaging study (Apps and Ramnani, 2014). An accu-
rate readout of self- and other-referenced reward information
could be critical for mediating the concept of actor and recipient
during altruistic punishment.

In both SP and TP punishment, the punisher must be able to
accurately process affective responses and reward outcomes as a
result of punishment across himself and the other player or play-
ers involved. As such information is essential to behaviors directed
at other individuals, it is critical to comprehend the amount and
specific nature of neural activations driven by such computations
in social punishment scenarios.

CONCLUDING REMARKS

Costly punishment poses some of the most interesting evolution-
ary questions for scientists. Cooperation, which rests inherently
on the shared needs of individuals and groups, seems to be at
complete odds with traditional evolutionary theories that pit
individuals against each other in a race for survival and repro-
duction. Yet cooperation in animal and human behavior often
determines the survival of entire populations. The neural under-
pinnings of altruistic punishment in humans are actively being
investigated, but many questions remain unanswered. Several
studies so far suggest the lateral aspect of the prefrontal cortex
as a key locus in mediating altruistic punishment (Knoch et al.,
2006; Spitzer et al., 2007; Strobel et al., 2011; Ruff et al., 2013).
These regions may reflect the computations of cognitive vari-
ables. However, some studies also highlight the importance of
the insula and AMYG for their role in affective processing during
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such punishments (Hsu et al., 2008; Haruno and Frith, 2010).
The neural processes related to these cognitive and affective vari-
ables are likely to interact with one another up until the time of
punishment. Such ongoing interactions may provide the basis for
internal deliberation on a decision to punish, as well as mediating
a potential change of mind before the execution of that decision.

A paradigm with high temporal sensitivity may reveal how
cognitive and affective signals in the brain converge or diverge
across the entire timespan of deciding to punish at a cost. For
example, future investigations combining fMRI with another
method allowing for a higher temporal resolution, such as elec-
troencephalography or functional near-infrared spectroscopy,
may reveal new, crucial information on the region-to-region
interactions between neural signals correlated with inequity aver-
sion, cost-benefit calculation, and information processing across
self and others. Furthermore, developing a nonhuman primate
model of costly punishment may complement research in humans
by providing more detailed neuronal mechanisms of the three
core neural processes involved in altruistic punishment through
single-unit recording and pharmacological interventions of spe-
cific populations of neurons. Another important factor to con-
sider in any social neuroscience research is the context in which a
given social behavior takes place. Understanding how social con-
text gates the neural processes associated with inequity aversion,
cost-benefit calculation, and information processing across self
and others will better inform the complex contingencies behind
altruistic punishment.
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