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Because humans and animals encounter various situations, the ability to adaptively decide
upon responses to any situation is essential. To date, however, decision processes and
the underlying neural substrates have been investigated under specific conditions; thus,
little is known about how various conditions influence one another in these processes. In
this study, we designed a binary choice task with variable- and fixed-reward conditions
and investigated neural activities of the prelimbic cortex and dorsomedial striatum in
rats. Variable- and fixed-reward conditions induced flexible and inflexible behaviors,
respectively; one of the two conditions was randomly assigned in each trial for testing the
possibility of condition interference. Rats were successfully conditioned such that they
could find the better reward holes of variable-reward-condition and fixed-reward-condition
trials. A learning interference model, which updated expected rewards (i.e., values)
used in variable-reward-condition trials on the basis of combined experiences of both
conditions, better fit choice behaviors than conventional models which updated values
in each condition independently. Thus, although rats distinguished the trial condition,
they updated values in a condition-interference manner. Our electrophysiological study
suggests that this interfering value-updating is mediated by the prelimbic cortex and
dorsomedial striatum. First, some prelimbic cortical and striatal neurons represented the
action-reward associations irrespective of trial conditions. Second, the striatal neurons
kept tracking the values of variable-reward condition even in fixed-reward-condition trials,
such that values were possibly interferingly updated even in the fixed-reward condition.
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INTRODUCTION
The cortico-basal ganglia circuit is involved not only in movement
control, but also in inference-, experience- and reward-based
decision making (Hikosaka et al., 1999; Daw et al., 2005; Cohen
et al., 2007; Doya, 2008; Ito and Doya, 2011). Many anatomical
and functional studies suggest that this diverse set of functions is
simultaneously implemented in parallel in the circuit [anatomy:
(Haber, 2003; Voorn et al., 2004; Gruber and McDonald, 2012);
function: (Tanaka et al., 2004; Balleine et al., 2007; Yamin et al.,
2013)]. A typical example of this parallel circuit is the neu-
ral implementation of response-outcome (R-O) and stimulus-
response (S-R) associations: the former association is driven by
the medial part of the circuit, including the prelimbic cortex and
the dorsomedial striatum, for producing flexible learning behav-
iors (Corbit and Balleine, 2003; Yin et al., 2005a,b), while the
latter association is implemented in the infralimbic cortex and the
dorsolateral striatum to execute inflexible behaviors (Yin et al.,
2004; Balleine and Killcross, 2006).

Abbreviations: AP, anterior-posterior; dB SPL, sound pressure level in deci-
bels; DFQ-learning, differential forgetting Q-learning; FQ-learning, forgetting
Q-learning; ML, medio-lateral; O, outcome; R, response; S, stimulus.

In the parallel decision-making circuits, humans and animals
select actions in various situations. The abilities to anticipate and
store outcomes of options in any situation are crucial. Despites
its importance in action learning, decision processes and neural
substrates involved in various situations are still unclear, partly
because behavioral experiments have usually been designed to
eliminate situational effects as far as possible, for the sake of
simplicity. These past studies may hypothesize that outcome
estimation in each condition is independently processed; how-
ever, humans often cannot perform two tasks at once without
interference (Monsell, 2003). This task-switching cost predicts
that the cortico-basal ganglia circuit contains some conditional
interferences.

Decision processes in the cortico-basal ganglia circuit are the-
oretically explained by the reinforcement learning framework
(Corrado and Doya, 2007; O’Doherty et al., 2007; Doya, 2008).
The framework has two steps for decisions: value updating, in
which agents update the expected rewards (i.e., values) with past
actions and rewards, and action selection, in which agents select
actions based on the values (Sutton and Barto, 1998). Although
task conditions are considered independently in classical rein-
forcement learning theories, we hypothesize that decision making
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under various conditions leads to some interference among con-
ditions in value updating and/or action selection. Especially when
interference occurs in value updating, its neural correlates may
be observed in the striatum, because the striatum is known to
represent and store action values (Samejima et al., 2005; Lau and
Glimcher, 2008).

Using rats, we conducted a choice task with a random
trial sequence of variable- and fixed-reward conditions to test
whether rats had condition interference. Variable- and fixed-
reward conditions were designed to investigate flexible and
inflexible behaviors, respectively; reward probabilities in the
variable-reward condition varied between blocks of trials, while
they were fixed in the fixed-reward condition. Neural activities of
the prelimbic cortex and dorsomedial striatum (i.e., a candidate
flexible-behavior network) were electrophysiologically recorded
to investigate neural substrates of condition interference. We used
rats because their parallel cortico-basal ganglia circuits for deci-
sion making are well examined and established (Voorn et al.,
2004; Balleine, 2005). Results of this study from reinforcement
learning models suggested that, although rats distinguish the trial
conditions, they update values in a condition-interference man-
ner. Some striatal neurons represented values required for the
variable-reward condition even during fixed-reward-condition
trials, suggesting that these representations caused the condition
interference between flexible and inflexible behaviors.

MATERIALS AND METHODS
All procedures were approved by the institutional committee at
the University of Tokyo and performed in accordance with the
“Guiding Principles for the Care and Use of Animals in the Field
of Physiological Science” of the Japanese Physiological Society. We
used five male Long-Evans rats (240–380 g); two rats performed
both the behavioral and electrophysiological experiments, and the
remaining three rats performed only the behavioral experiments.
Food was provided after the task to maintain animal body weight
at no less than 85% of the initial level. Water was supplied freely.

BEHAVIORAL TASK
All experiments were conducted in a 36 × 36 × 37 cm experimen-
tal chamber (O’Hara & Co. Ltd.) placed in a sound-attenuating
box (Funamizu et al., 2012). The experimental chamber had three
nose-poke holes on one wall and a pellet dish on the opposite
side of the chamber (Figure 1). Four light emitting diode (LED)
high-intensity lamps (white) were placed above the center hole
for light stimuli. A speaker was placed above the chamber for
sound stimuli. All durations of poking, presence, and consuming
of pellets were captured with infrared sensors and were recorded
with a sampling rate of 1 kHz (Cyberkinetics Inc.; Cerebus Data
Acquisition System).

Our task had variable- and fixed-reward conditions; one of the
conditions was randomly assigned for each trial with proportion
of 70% and 30%, respectively (Figure 1). Only in fixed-reward-
condition trials, a light stimulus was presented to inform rats
of the trial condition. In each trial, rats first performed a nose-
poke in the center hole, and they continued poking until a “go”
tone with a frequency of 5 kHz, an intensity of 50 dB SPL (sound
pressure level in decibels with respect to 20 μPa) and a duration
of 500 ms was presented. In the fixed-reward condition, a light
stimulus was presented for about 600 ms immediately after the
initiation of center-hole poking. If rats failed to continue poking
until the presentation of the “go” tone, an error tone was pre-
sented (1 kHz, 70 dB SPL, 50 ms), and the trial was scored as an
error. After the presentation of “go” tone, rats selected either the
left or right hole within 15 s and received a reward of a food pellet
(25 mg), presented stochastically. A reward tone (20 kHz, 70 dB
SPL, 2000 ms) was presented immediately after the choice in a
rewarded trial. In contrast, a no-reward tone (1 kHz, 70 dB SPL,
50 ms) was presented in a non-rewarded trial. If rats did not select
choices within 15 s from the presentation of the “go” tone, the
error tone was also presented, as in the error trial.

In the variable-reward condition, the reward probabil-
ity of each choice changed among four settings: 90–50%,
50–90%, 50–10%, and 10–50% in regard to left-right choices.

FIGURE 1 | Free choice task. Variable- and fixed-reward conditions were
randomly assigned for each trial in a 70% / 30% ratio, respectively. In both
conditions, each trial was initiated when a rat poked its nose into the center
hole (C), after it had to keep poking for 1600–2600 ms until a “go” tone
sounded (Hold). During the fixed-reward condition only, a short light stimulus
was presented during the center-hole poking to inform rats that the trial was
a fixed-reward-condition trial. After the presentation of “go” tone (Go), rats

had to choose either a left (L) or a right (R) hole, and a reward of a food pellet
was dispensed stochastically (D) (Choice). In the variable-reward condition,
reward probabilities were selected randomly (90–50%, 50–10%, 10–50%,
and 50–90% for left-right) and the reward setting changed based on the
choice performance of rat. In the fixed-reward condition, the reward
probability was constant with either 90–50% or 50–90% for all the sessions,
and the reward setting was pre-determined for each rat.
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Variable-reward-condition trials with the same reward-
probability setting were referred to as a block; a block consisted
of at least 20 trials. Subsequently, the block was changed when
the rat selected the more rewarding hole in ≥80% of the last 20
variable-reward-condition trials (Ito and Doya, 2009; Funamizu
et al., 2012). The block change was conducted so as to (i) include
all four reward-probability settings in each of the four blocks and
(ii) not to repeat any of the settings. Each rat performed at least
four blocks per day (i.e., per session) and any sessions consisting
of fewer than five blocks were excluded from the analysis.

In the fixed-reward condition, the reward probability was con-
stant in all sessions, and was set to either 90–50% or 50–90% in
the left-right choices for each rat. Each rat selected the more-
rewarding choice more than 80% through a session in fixed-
reward condition, and any sessions in which rats failed to select
the optimal choice were not used in the analysis.

Thus, our task required the rats to select the more-rewarding
hole ≥80% of the time in both variable- and fixed-reward con-
ditions. Therefore, the rats needed to distinguish the trial type
in order to achieve the 80% correct-choice criterion, when the
more-rewarding holes of variable- and fixed-reward conditions
were different.

In both the variable- and fixed-reward conditions, we provided
an extinction phase which never presented a reward for choices in
a random sequence of five variable-reward-condition trials and
five fixed-reward-condition trials (i.e., successive 10 trials in total)
to characterize the behaviors in variable- and fixed-reward con-
ditions. The extinction phase was conducted after the reward
probability of variable-reward-condition block was identical to
that of fixed-reward condition. In the extinction phase, we investi-
gated the sensitivity to this treatment from the choice preferences
of rats. Flexible or inflexible behaviors should change or retain
choices with the outcome extinction, respectively.

SURGERY
After rats practiced the free choice task, they were anesthetized
with sodium pentobarbital (50 mg/kg, i.p.) and placed in a stereo-
taxic frame (Narishige). Atropine sulfate (0.1 mg/kg) was also
administered at the beginning of the surgery to reduce the vis-
cosity of bronchial secretions (Takahashi et al., 2011; Funamizu
et al., 2013). The cranium and dura over recording sites were
removed and four small craniotomies were conducted for anchor-
ing screws. The screws were used for the ground electrode in
electrophysiology. Two drivable parallel electrode bundles were
inserted into the prelimbic cortical site in the right hemisphere
(2.5 mm in anterior-posterior (AP) and 0.55 mm in medio-lateral
(ML) from the bregma with a depth of 2.5 mm from the surface
of brain). The three electrode bundles were inserted into the dor-
somedial striatum site in the right hemisphere (0.2 mm in AP,
2.0–3.0 mm in ML with a depth of 3.4 mm) (Stalnaker et al., 2010;
Wang et al., 2013). Each electrode bundle was lowered 125 μm
after each session such that we could get new neurons in every ses-
sion (Ito and Doya, 2009). The bundle was composed of seven or
eight Formvar-insulated nichrome wires with the bare diameter
of 25 μm (A-M Systems). The wires were inserted into a stainless-
steel guide cannula with an outer diameter of 0.3 mm. The tip of
each wire was electroplated with gold to obtain an impedance of

100–200 k� at 1 kHz. In total, five electrode bundles were inserted
in the brain, and 14 and 24 wires were inserted in the prelimbic
cortex and dorsomedial striatum, respectively.

ELECTROPHYSIOLOGICAL RECORDING
During the choice task, recorded neural signals were amplified
and stored with a 62-ch multiplexer neural-recording system
(Triangle biosystems international; TBSI) and a Cerebus data
acquisition system (Cyberkinetics Inc.) with an amplified gain of
1000, a band-pass filter of 0.3–7500 Hz, and a sampling frequency
of 30 kHz. We then applied an offline digital high-pass filter of
200 Hz (Matlab; The Mathworks). When the signal became below
or above its root mean square (RMS) times 5.5, the signal was
defined as spike activity (Torab et al., 2011). Offline spike sorting
was conducted using Spike 2 (CED), with which spike waveforms
were classified into several groups based on template matching.
Groups of waveforms that appeared to be action potentials were
accepted, while all others were discarded.

HISTOLOGY
After electrophysiological recording, rats were anesthetized with
sodium pentobarbital (50 mg/kg, i.p.), and a positive current of
10 μA was passed for 10–20 s through one or two electrodes
of each bundle to mark the final recording positions (Ito and
Doya, 2009). Rats were perfused with 10% formalin containing
3% potassium hexacyanoferrate (II), and the brain was carefully
removed from the cranial bone. Sections were cut at 90 μm with a
vibratome (DTK-2000, D.S.K.) and stained with cresyl violet. The
position of each recorded neuron was estimated from the final
position and the distance that the bundle was moved. If the posi-
tion was outside the prelimbic cortex or dorsomedial striatum,
the data were discarded.

BEHAVIORAL ANALYSIS
In the analyses of behaviors during the choice task, error trials (in
which rats failed to keep poking in the center hole, or took more
than 15 s to select the left or right hole) were removed, and the
remaining sequences of successful trials (in which rats successfully
made a left or right choice) were used.

Model-free analysis
We first analyzed choice preferences during the extinction phase
to identify whether rats had flexible or inflexible behaviors in the
variable- and fixed-reward conditions. We then assessed the inter-
ference of variable- and fixed-reward conditions in the choice
behaviors. We compared conditional choice probabilities between
two trial sequences: repeated sequences [e.g., variable-reward-
condition trial to variable-reward-condition trial (Var. – Var.)], in
which probabilities were calculated based on the action-outcome
experience in the last trial with a same condition; and interleaved
sequences (e.g., Var. – Fix. – Var.), in which probabilities were
calculated based on the experience in the next-to-last trial with
the same condition, so that the last different-condition trial was
ignored (Figure 4Bi). If the choice of each condition was inde-
pendently learned and the interleaved trial caused no interference,
conditional probabilities in the two trial sequences became the
same.
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Model-based analysis
We analyzed choice behaviors of rats with reinforcement learning
models and a fixed-choice model to test (i) whether interference
occurred in choice learning, and (ii) whether it occurred in the
value updating or action selection phase. We denoted the action as
a ∈ [L (left), R (right)], the reward as r ∈ [1, 0] and the condition
as C ∈ [V (variable), F (fixed)]. We assumed that rats predicted
the expected reward of each choice (i.e., action value) in each
condition, Qa,C : rats had four action values in total. A choice
probability was predicted with the following soft-max equation
based on the action values:

P (a (t) = L) =
1

1 + exp
[
QR,C(t)(t) − QL,C(t)(t) + GC(t)

{
QR,C (t) − QL,C (t)

}] ,

(1)

where C(t) and C were trial and non-trial conditions, i.e., C �=
C(t); for example, when the presented trial was a variable-
reward condition, C was a fixed-reward condition. GC(t) was a
free parameter depending on the trial condition. This parameter
adjusted the contribution of action values of a non-trial condition
in the choice prediction.

A fixed-choice model had the action value as a free parameter,
assuming a constant value in all trials:

{
QR,C = qC

QL,C = 1 − qC
, (2)

where qC was a free parameter depending on the value condition.
If the fixed-choice model fit a choice behavior, the behavior had
no-learning and no condition-interference in value updating.

Figure 2 shows the scheme of proposed reinforcement learn-
ing models. We updated the action value in each condition, Qa,C ,
in accordance with Ito and Doya (2009):

Qa,V (t + 1) =
⎧⎨
⎩

(
1 − α1,C(t),V

)
Qa,V (t) + α1,C(t),V k1 if a = a (t) , r (t) = 1(

1 − α1,C(t),V
)

Qa,V (t) − α1,C(t),V k2 if a = a (t) , r (t) = 0(
1 − α2,C(t),V

)
Qa,V (t) if a �= a (t)

Qa,F (t + 1) =
⎧⎨
⎩

(
1 − α1,C(t),F

)
Qa,F (t) + α1,C(t),Fk1 if a = a (t) , r (t) = 1(

1 − α1,C(t),F
)

Qa,F (t) − α1,C(t),Fk2 if a = a (t) , r (t) = 0(
1 − α2,C(t),F

)
Qa,F (t) if a �= a (t) ,

(3)

where a(t), r(t) and C(t) were the action, reward, and condi-
tion at trial t, respectively. Action values of both variable- and
fixed-reward conditions were updated every trial, irrespective
of the trial condition. α1, α2, k1, and k2 were free parame-
ters. α1 showed the learning rate in the chosen option, and
α2 showed the forgetting rate in the un-chosen option. k1 and
k2 indicated the strengths of reinforcers in reward and non-
reward outcomes, respectively. α1 and α2 depended on the trial
condition, C(t), and the action-value condition, C, to capture

FIGURE 2 | Interference reinforcement learning model. Our reinforcement
learning models assumed that rats estimated expected rewards (values) of
left and right choices in both variable- and fixed-reward conditions, i.e., QV

and QF ; models had four action values in total. All action values were
updated both in variable-reward-condition (A) and fixed-reward-condition (B)

trials. α was the learning rate or forgetting rate in the selected or unselected
option, respectively; α depended on the trial condition and value condition. k
was the reinforcer strength of the outcome. A choice probability was
predicted with a soft-max equation based on all values. The soft-max
equation had a free parameter, G, which adjusted the contribution of action
values from the non-trial condition in the choice prediction.

differences in (i) learning of variable- and fixed-reward condi-
tions, and (ii) learning by its own condition and by the other
condition. Equation (3) had 10 parameters in total.

Equation (3) could take a variety of updating rules by select-
ing utilized parameters, so that updating rules for the values of
variable- and fixed-reward conditions (the upper and lower part
of Equation 3, respectively) could be different. When we set α2 =
k2 = 0, the equation became a standard Q-learning (Q-learning)
(Watkins and Dayan, 1992; Sutton and Barto, 1998). We referred
to the equation with α1 = α2 as a forgetting Q-learning (FQ-
learning), and we referred to the full-parameter equation as a
differential forgetting Q-learning (DFQ-learning) (Ito and Doya,
2009).

When we set α1,C,C = α2,C,C = 0 where C �= C in value
updating (Equation 3) and GC = 0 in action selection
(Equation 1), the equations deal with variable- and fixed-reward
conditions independently; we referred to the model as an inde-
pendent model. When we set α1,C,C = α2,C,C = 0 in Equation
(3), the model independently updated action values of each con-
dition, but interferingly predicted the choices; we referred to it
as an action interference model. Also, when we set GC = 0 in
Equation (1), the model interferingly updated action values of
the variable- and fixed-reward conditions; we referred to it as a
learning interference model.

Initial action values for reinforcement learning models were
0.5 in the left and right choices of the variable-reward condition
(i.e., the average reward probability of the four reward-probability
settings), and were 0.9 and 0.5 in the optimal and non-optimal
choices of the fixed-reward condition.

Model comparison
We employed the normalized likelihood to test how well the mod-
els fit the choice behaviors of rats (Ito and Doya, 2009; Funamizu
et al., 2012). The normalized likelihood, Z, was defined as follows:
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Z =
[∏N

t = 1
z(t)

] 1
N

, (4)

where N and z(t) were the number of trials and the likelihood at
trial t, respectively. The likelihood, z(t), was defined as follows,
with the predicted left choice probability P(a(t) = L):

z (t) =
{

P (a (t) = L) if a (t) = L
1 − P (a (t) = L) if a (t) = R

. (5)

We conducted a 2-fold cross validation for model comparison. In
the cross validation, all sessions analyzed were divided into two
equal groups. One group provided the training data, and the other
group provided the validation data. The free parameters of each
model were determined such that the normalized likelihood of the
training data was maximized. With the determined parameters,
the normalized likelihood of each session in the validation data
was analyzed. Then, we switched the roles of the two datasets and
repeated the same procedure to obtain normalized likelihoods in
all sessions. Cross-validation analysis implicitly took into account
the penalty of the number of free parameters (Bishop, 2006).

NEURAL ANALYSIS
Striatal neurons have often been classified into phasically and ton-
ically active neurons (Lau and Glimcher, 2008; Kim et al., 2009);
however, our recording could not find clear criteria to support
the classification, partly because the number of neurons recorded
was too small. The following analyses were performed without the
classification.

To test how neural activities in the prelimbic cortex and dor-
somedial striatum were modulated during the task, we employed
a stepwise multiple regression analysis (Matlab; Mathworks).
Regression analysis was used to investigate neural correlates with
actions, rewards, conditions, and associations. The analysis also
detected neural correlates with the variables in a reinforcement
learning model (Samejima et al., 2005; Ito and Doya, 2009).
When the analysis was applied sequentially with a time window
of 600 ms, advanced with a time step of 300 ms, we could cap-
ture the temporal dynamics of neural coding (Kim et al., 2009;
Sul et al., 2011). The regression analysis was defined as follows:

y (t) = β0 + β1C (t) + β2a (t) + β3r (t) + β4–23X (t)

+ β24–28MC = C(t) (t) + β29–33MC = V (t)

+ β34C (t − 1) + β35a (t − 1) + β36r (t − 1)

+ β37T (t) , (6)

where β0–37 were regression coefficients. y(t) was a spike count
with a time window of 600 ms at trial t. C(t), a(t), and r(t) were
the trial condition (a dummy variable of 1 or −1 for the variable-
or fixed-reward condition, respectively), action (1 or −1 for the
right or left choice), and reward (1 or −1 for the reward or
non-reward outcome) at trial t, respectively. These variables at
trial t−1 were also included in the regression analysis as C(t−1),
a(t−1), and r(t−1). X(t) showed their interactions [i.e., C(t) ×
a(t), C(t) × r(t), a(t) × r(t), C(t) × a(t) × r(t)] with a dummy

variable of 1 or −1; each interaction had 4, 4, 4, and 8 combina-
tions, and the total was 20 combinations. When a neuron repre-
sented at least one combination of each interaction, we defined
the neuron as interaction- or association-coding neuron. For
example, when a neuron represented a combination of action and
reward, i.e., a(t) × r(t), we defined the neuron as action-reward
association coding. MC = C(t) were the five model variables for the
presented-trial condition, consisting of the action values (QL,C(t),
QR,C(t)), state value [P(a(t) = L) × QL,C(t) + (1 − P(a(t) =
L)) × QR,C(t)], chosen value (Qa(t),C(t)) and policy (QL,C(t) −
QR,C(t)) (Lau and Glimcher, 2008; Ito and Doya, 2009; Sul et al.,
2011). MC = V were also model variables, but for the variable-
reward condition. MC = V were assumed to be tracked both in
the variable-reward-condition and fixed-reward-condition trials
in our reinforcement learning models (Equation 3). In contrast,
values for the fixed-reward condition did not appear in the regres-
sion analysis, because the values were turned out to be constant
and were difficult to capture with the analysis (see Results). T(t)
was the trial number for detecting a slow drift of firing rate. When
Equation (6) had significant regression coefficients (two-sided
Student’s t-test, p < 0.01), the neuron was defined as encoding
the corresponding variables. In the model variables (i.e., MC = C(t)

and MC = V ), we could not get enough neurons encoding each
individual variable, because of our sparse recording. Thus, we
defined neurons as value coding when they encoded at least one
of the five model variables. Model variables were derived from the
proposed reinforcement-learning model in which free parameters
were set to achieve the maximum likelihood in each session.

First, to investigate neural correlates of actions (i.e., responses:
R), rewards (i.e., outcomes: O) and R-O associations, regres-
sion analysis was conducted only with neural activities during
variable-reward-condition trials. By reducing the condition terms
at trial t, Equation (6) became as follows:

y (t) = β0 + β1a (t) + β2r (t) + β3–6X (t) + β7–11MC = V (t)

+ β12C (t − 1) + β13a (t − 1) + β14r (t − 1) + β15T (t) .

(7)

Second, to investigate neural correlates of conditions (i.e., stimuli:
S) and S-O associations, we extracted trials in which rats selected
the optimal side of fixed-reward condition. By focusing on the
optimal side, we excluded a potential bias caused by the choice
asymmetry in the fixed-reward condition in which rats mainly
selected the optimal side. By reducing the action terms at trial t,
Equation (6) became as follows:

y (t) = β0 + β1C (t) + β2r (t) + β3–6X (t) + β7–10MC = C(t) (t)

+ β11–14MC = V (t) + β15C (t − 1) + β16a (t − 1)

+ β17r (t − 1) + β18T (t) . (8)

In Equation (8), model variables had 4 terms because the cho-
sen value became identical to the action value in either a left
or right choice. Third, to investigate value-coding neurons, the
regression analysis of Equation (6) was applied to neural activities
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in all trials. Value-coding neurons were also investigated in fixed-
reward-condition trials; in this case, Equation (7) was applied for
fixed-reward-condition trials.

RESULTS
BEHAVIORAL ANALYSIS
Model-free analysis
Figure 3 shows an example of choice behaviors of a rat. In
variable-reward-condition trials, the rat changed choices depend-
ing on the current setting of reward probabilities to successfully
select the better rewarding option. In fixed-reward-condition tri-
als, on the other hand, the rat exhibited fixed behaviors and made
the optimal choice more than 80% of the trials. In total, this study
analyzed 111 sessions of behavioral data (rat1, 9 sessions; rat2, 21
sessions; rat3, 39 sessions; rat4, 2 sessions; rat5, 40 sessions). Rats
underwent an average of 5.57 ± 0.223 blocks (mean ± standard
error, here and hereafter) for each session, and required 53.1 ±
1.48 trials in each block to select a more-rewarding choice ≥80%
of variable-reward-condition trials. In detail, when the more-
rewarding choices of variable- and fixed-reward conditions were
identical (e.g., the blocks with a light-blue color in Figure 3), the
number of trials per block was 33.5 ± 1.65 and 50.9 ± 2.50 in the
high (50–90%) and low (10–50%) reward probabilities, respec-
tively; on the other hand, when the more rewarding choices of
variable- and fixed-reward conditions were different, the number
of trials was 54.5 ± 3.27 and 75.9 ± 3.31 trials, which were signif-
icantly larger than those when the more-rewarding choices of two
conditions were identical (Mann–Whitney U-test, p = 1.12E-8
and 1.06E-8 in the high and low reward probabilities). Thus, the
speed to find the better rewarding choice in variable-reward con-
dition depended on the optimal side of fixed-reward condition,
suggesting that there was some behavioral interference between
the two conditions.

Figure 4A characterized the choice preferences in the extinc-
tion phase. Extinction phase consisted of a random trial

FIGURE 3 | Example of choice behaviors. Vertical bars in the upper
portions of the inset indicate the left (L) and right (R) choice in each trial. Tall
and short bars show rewarded and non-rewarded trials, respectively. Dark
blue and pink bars indicate trials with variable- and fixed-reward conditions
and lines in the center indicate the left-choice frequency of a given rat in the
last 20 trials. The reward probability of the fixed-reward condition was
50–90% for the left-right choice. The reward-probability setting of
variable-reward-condition block is shown at the top. In blocks with a
light-blue color, more-rewarding choices of variable- and fixed-reward
conditions were identical. Rats succeeded in distinguishing the variable-
and fixed-reward conditions for action learning.

FIGURE 4 | Choices in variable- and fixed-reward conditions. (A)

Extinction phase. Probabilities of the optimal choice were quantified before
and during extinction-phase trials, which were introduced in the variable-
and fixed-reward conditions. Means and standard errors are shown. Before
the extinction phase, reward probabilities of variable- and fixed-reward
conditions were identical: ∗p < 0.05; ∗∗p < 0.01 in a Mann–Whitney U-test.
(Bi) Example of a conditional-probability calculation in repeated (a) and
interleaved sequences (b). Depending on the action-outcome experience at
trial t-1 for (a) and trial t-2 for (b), the conditional probability at trial t was
analyzed. In these examples, the conditional probability of
variable-reward-condition trial (Var.) was analyzed, based on the
action-outcome experience in the last and the next-to-last trial with a
variable-reward condition in (a) and (b), respectively. In (b), the experience in
the interleaved trial t-1 with the fixed-reward condition was ignored.
Action-outcome experiences had 4 types: optimal choice rewarded (Opt.
rewarded); optimal choice not rewarded (Opt. not rewarded); non-optimal
choice rewarded (Non-Opt. rewarded); non-optimal choice not rewarded
(Non-opt. not rewarded). If the choices of variable- and fixed-reward
conditions were independently learned, the conditional probabilities
of repeated and interleaved sequences became the same. (ii,iii) Comparison

(Continued)
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FIGURE 4 | Continued

of conditional probabilities in variable- (ii) and fixed-reward condition (iii).
Conditional probabilities of making a choice to the optimal side of
fixed-reward condition were compared between repeated (white bars) and
interleaved sequences (black bars). Means and standard errors of
probabilities are shown. Dotted line shows the average choice probability.
White and black bars indicate significant differences under some
action-outcome experiences, meaning that the interleaved trial interferingly
affected the choices: ∗∗p < 0.01 in a Mann–Whitney U-test.

sequence of five variable-reward-condition trials and five
fixed-reward-condition trials; Figure 4A showed the choices in
each condition separately. In the fixed-reward condition, rats con-
tinued to select the optimal choice, even after reward omission.
In sharp contrast, in the variable-reward condition, rats quickly
changed choices (Mann–Whitney U-test, p = 3.30E-11 − 1.96E-
34). This result indicated that rats had flexible and inflexible
behaviors in variable- and fixed-reward conditions, respectively.

If rats had condition interference, choices in one condi-
tion were affected with action-outcome experiences in the other
condition. Figure 4B compared conditional choice probabilities
between the repeated sequences and interleaved sequences to test
whether the last different-condition trial in interleaved sequences
interferingly affected the choices. In variable-reward condi-
tion (Figure 4Bii), we found that the interleaved fixed-reward-
condition trial significantly shifted the rats’ choices to the optimal
side of fixed-reward condition in 2 out of 4 action-outcome expe-
riences (Mann–Whitney U-test, p = 1.58E-31 and 9.47E-30).
Although choices in the fixed-reward condition were also signif-
icantly affected by the previous variable-reward-condition trial
(Figure 4Biii) (p = 1.05E-9 and 0.00144), the condition interfer-
ence in fixed-reward condition was weak as compared to that in
the variable-reward condition. Taken together, these results indi-
cate that flexible behaviors are more likely affected by events in
another condition than inflexible behaviors.

We further tested whether the differences in choice proba-
bilities were observed by simply ignoring the trial condition.
Supplementary Figure 1 shows the conditional choice probabil-
ities in the variable-reward condition. We found that the expe-
rience of optimal choice rewarded in the fixed-reward condition
affected the choices in the subsequent variable-reward condition
significantly less than that in the variable-reward condition did.
This weak effect of the fixed-reward condition indicates the exis-
tence of condition interference, while rats did not completely
ignore the conditions.

Model-based analysis
To quantify the interference in variable- and fixed-reward con-
ditions, we analyzed choice behaviors with reinforcement learn-
ing models. Figure 5A modeled the choices of rat in Figure 3
with the learning interference model in which FQ-learning
(i.e., a modified Q-learning) and fixed-choice model, assum-
ing constant action values, were used to update values of
the variable- and fixed-reward conditions, respectively (see
Materials and Methods). In variable-reward-condition trials, the
FQ-learning captured the quick change of choices, while, in
fixed-reward-condition trials, the fixed-choice model captured

FIGURE 5 | Learning interference model. (A) Prediction of choice
probability. The learning interference model predicted choice behaviors of
rat in Figure 3 between the 289 and 493 trials. Trials consisted of all four
reward-probability settings in the variable-reward condition and the
extinction phase. FQ-learning and fixed-choice models were employed as
learning rules of variable- and fixed-reward conditions, respectively. Free
parameters of the learning interference model were set to achieve
maximum likelihood in this session. Dark blue and pink lines show
predicted left choice probabilities of the model in variable- and fixed-reward
conditions, respectively. Other lines and symbols are as in Figure 3. The
learning interference model accurately predicted the choice behaviors of
rat. (B) Model variables. (i) Action values of the variable-reward condition
were predicted by FQ-learning. (ii) Choice probabilities in the fixed-reward
condition were predicted by the fixed-choice model.

the continuous selection of the optimal choice. Action values
of the variable-reward condition were updated in both variable-
reward-condition and fixed-reward-condition trials, and a quick
change of values predicted rapid choice changes in the variable-
reward condition (Figure 5B). In contrast, the fixed choice
probability for the fixed-reward condition predicted inflexible
behaviors.

First, we separately fit reinforcement learning models to the
choices in variable- and fixed-reward conditions and analyzed
normalized likelihoods in 2-fold cross validation (Figure 6A). In
the variable-reward condition, FQ-learning and DFQ-learning
better fit the behaviors than the Q-learning and fixed-choice
models (two-sided paired t-test, p = 3.95E-26 − 1.41E-44), while
the results were completely opposite in the fixed-reward condi-
tion (p = 6.63E-6 − 4.33E-8), indicating that the choice strategy
depended on the condition. Based on the results, we employed
the FQ-learning and fixed-choice models for the learning rules of
variable- and fixed-reward conditions, respectively. We then com-
pared normalized likelihoods among the independent model, the
action interference model, and the learning interference model
(Figure 6B), to test whether condition interference happened in
the action selection or value updating phase. The learning inter-
ference model better fit the choice behaviors of rats than did

www.frontiersin.org February 2015 | Volume 9 | Article 27 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive


Funamizu et al. Condition interference in rats

FIGURE 6 | Model fitting. (A) Trials with variable- (i) and fixed-reward
conditions (ii). Results of 2-fold cross validation were compared among the
four models: F-C, fixed-choice model; Q: standard Q-learning; FQ: forgetting
Q-learning; DFQ: differential forgetting Q-learning. Means and standard
errors are shown. The number of free parameters in each model is shown
in parentheses: ∗∗p < 0.01 in a two-sided paired t-test. (B) All trials.
FQ-learning and fixed-choice models were employed as learning rules of
variable- and fixed-reward conditions, respectively.

other models (p = 4.91E-22 and 1.34E-28), and this significant
trend was the same when DFQ-learning and Q-learning were
employed as the learning rules of variable- and fixed-reward con-
ditions, respectively (p = 2.84E-8 − 1.94E-28). In the learning
interference model, FQ-learning for the variable-reward condi-
tion updated the values with the events in both the variable-
reward-condition and fixed-reward-condition trials, while the
fixed-choice model for fixed-reward condition had a fixed-choice
probability in all trials (see Materials and Methods). Thus, these
results indicate that (i) condition interference occurred in the
value updating phase, (ii) the choices in variable-reward con-
dition were affected adversely by events in the fixed-reward
condition, and (iii) choices in the fixed-reward condition were
not affected by events in either the variable- or fixed-reward
conditions.

In the learning interference model, the degree of condition
interference was captured by the free parameters, i.e., learning
rates. We set the free parameters to achieve the maximum like-
lihood in each session; in variable-reward condition, the learning
rate for updating values with events in the variable-reward con-
dition (α1,V,V ) was 0.734 ± 0.0192, while the learning rate with
events in the fixed-reward condition (α1,F,V ) was 0.432 ± 0.0206.
This indicates that interference from the fixed-reward condition
was weaker than learning from the variable-reward condition
(Wilcoxon signed-rank test, p = 8.07E-20).

NEURAL ANALYSIS
We recorded neural activities from 2 rats during 19 sessions in
total, and recorded from 26 neurons (rat 3: 24, rat 5: 2) in the
prelimbic cortex and 26 neurons (rat 3: 6, rat 5: 20) in the dor-
somedial striatum. Some neurons were recorded from a slightly
central part of the dorsal striatum, but we analyzed them as the

FIGURE 7 | Tracks of electrode bundles. Each diagram shows a coronal
section referenced to the bregma (Paxinos and Watson, 1997). Data
recoding from the sites (A,B) were treated as neuronal activities from the
prelimbic cortex and dorsomedial striatum, respectively. Gray-level of boxes
distinguishes electrode tracks from each rat.

part of dorsomedial striatum (Figure 7) (Stalnaker et al., 2010;
Wang et al., 2013).

Action, reward, and condition coding
To investigate temporal dynamics of neural coding in the pre-
limbic cortex and dorsomedial striatum, regression analyses were
conducted with a time window of 600 ms advanced with a time
step of 300 ms. Figure 8A shows results of regression analysis
in the variable-reward condition for investigating the coding of
actions (i.e., responses: R), rewards (i.e., outcomes: O), and R-O
associations (Equation 7). When the number of neurons encod-
ing each variable exceeded the threshold of 32.3% (9 out of 26
neurons), we determined that the prelimbic cortex or dorsome-
dial striatum significantly encoded the variable (z-test, p < 0.05).
In action coding, both prelimbic and striatal neurons participated
significantly (46.2%, z-test, p = 0.00924) (Figure 8Ai at the mid-
dle column). Prelimbic neurons encoded actions during choice
timing, while striatal neurons encoded them only after the choice,
suggesting that action execution was represented in the prelimbic
cortex. Prelimbic and striatal neurons equally and significantly
represented rewards after the reward or no-reward cue. At this
cue timing, more prelimbic than striatal neurons encoded R-O
associations (χ2-test, p = 6.25E-4) (Figure 8Aiii). A representa-
tive prelimbic neuron increased activities only after the reward
tone at left choice (Figure 8B).

For investigating the coding of conditions (i.e., stimuli: S) and
associations between conditions-rewards [i.e., stimuli-outcomes
(S-O)], we conducted regression analysis on the trials in which
rats selected the optimal side of the fixed-reward condition
(Equation 8). There was no significant difference in the num-
ber of prelimbic cortical and dorsomedial striatal neurons that
functioned as reward-coding neurons (Figure 9Ai), consistent
with results in the variable-reward condition (Figure 8Aii). In
the prelimbic cortex and the striatum, the number of condition-
coding neurons did not reach the significant level in our sam-
ple (32.3% for n = 26) (Figure 9Aii). The number of neurons
encoding S-O associations was significant only in the striatum
(38.5%; z-test, p = 0.0248) (Figure 9Aiii). A representative stri-
atal neuron increased activity only at the no-reward cue in
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FIGURE 8 | Coding of response-outcome (R-O) association. (A) The
proportion of neurons coding actions (responses: R) (i), rewards
(outcomes: O) (ii) and R-O associations (iii). In regression analysis with
variable-reward-condition trials, the proportion of neurons with significant
regression coefficients is shown: p < 0.01 in a two-sided Student’s t-test.
Orange and green lines indicate neurons in the prelimbic cortex and
dorsomedial striatum, respectively. When the proportion of neurons
exceeded the threshold (32.3%), we defined that the prelimbic cortex or
the striatum significantly represented the variable (z-test, p < 0.05). In each
column, proportions of neurons are aligned with a different timing: left,
initiation of center-hole poking; middle, end of center-hole poking; right,
onset of reward or no-reward cue (R/NR cue). Gray bars in the middle

column show the timing of right- or left-hole poking in 99.3% of all trials.
Small black triangles indicate that the proportions of neurons in the
prelimbic cortex and dorsomedial striatum had significant differences:
p < 0.01 in a χ2-test. (B) Representative prelimbic cortical neuron
encoding the R-O association. Neural activities at the onset of reward or
no-reward cues in the variable-reward condition are shown, as in the right
column of (A). Green and orange colors show left and right choices in
rewarded trials, respectively. Light blue and red colors show non-rewarded
trials. Raster plot: colors of spikes differ with actions and outcomes of
trials. Tone presentations and poking periods are shown with gray boxes.
The lower part shows the average spike density function smoothed with a
Gaussian kernel with a standard deviation of 50 ms.

variable-reward condition (Figure 9B). Overall dorsomedial stri-
atal neurons mainly represented the no-reward cue in variable-
reward condition, suggesting that they differentiated and ignored
the outcomes in variable- and fixed-reward conditions, respec-
tively (Figure 9C).

Value coding
In addition to elucidating neural coding of basic task features
(i.e., actions, rewards, and conditions), investigations of the cod-
ing of decision variables (values) are important for understanding
learning algorithms of rats. Values were derived from the learning
interference model which achieved the highest normalized like-
lihood among the models (Figure 6B). Free parameters of the
model were set to achieve the maximum likelihood in each ses-
sion. Figures 10A,B show a representative value-coding neuron
in the prelimbic cortex and dorsomedial striatum, respectively.
Prelimbic neuron encoded state values of the variable-reward
condition after the center-hole poking; value coding was observed
even during the fixed-reward-condition trials (Figure 10Aii).
Values of the variable-reward condition were updated both with
events in variable- and fixed-reward conditions with a forgetting
effect, such that the state value was high when the reward prob-
ability of variable- and fixed-reward conditions were identical
(Figure 10A). Striatal neuron in Figure 10B also represented state

values and action values of the variable-reward condition in fixed-
reward-condition trials during and after the center-hole poking,
respectively. These results show that neurons in the prelimbic cor-
tex and dorsomedial striatum represent and store values of the
variable-reward condition.

Figure 11A summarizes the proportion of neurons encoding
values of the presented-trial condition (i) and of the variable-
reward condition (ii). Striatal neurons significantly encoded pri-
marily values of the variable-reward condition (z-test, p < 0.05).
Especially after a reward or no-reward cue, a larger proportion of
neurons in the striatum encoded the values than in the prelimbic
cortex (χ2-test, p = 9.70E-4) (Figure 11Aii at the right column).
Moreover, even during fixed-reward-condition trials, striatal neu-
rons encoded values of the variable-reward condition after the
center-hole poking (34.6%; z-test, p = 0.0388) (Figure 11B at the
middle column). These results suggest that dorsomedial striatal
neurons track values for flexible behaviors.

DISCUSSION
In this study, we used rats to conduct a free choice task with a
random trial sequence of variable- and fixed-reward conditions,
and recorded neuronal activity in the prelimbic cortex and dor-
somedial striatum. In variable- and fixed-reward conditions, rats
displayed flexible and inflexible choice behaviors, respectively,
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FIGURE 9 | Coding of stimulus-outcome (S-O) association. (A)

Proportions of neurons coding rewards (outcomes: O) (i), conditions (stimuli:
S) (ii) and S-O associations (iii). Regression analysis was performed on data
from trials in which rats made a choice to the optimal side of fixed-reward
condition. The proportion of neurons that had significant regression
coefficients is shown: p < 0.01 in a two-sided Student’s t-test. Lines and
symbols as in Figure 8A. (B) Representative dorsomedial striatal neuron
encoding the S-O association. Neural activities at the onset of reward or
no-reward cues are shown, as in the right column of (A). Green and orange

colors show activities in rewarded trials in the variable- and fixed-reward
conditions, respectively. Light blue and red colors show non-rewarded trials.
Lines and symbols as in Figure 8B. (C) Detailed neural coding of S-O
associations in the dorsomedial striatum. The proportion of neurons encoding
one of the four associations is shown before and after the onset of reward or
no-reward cues, as in (B). Colors correspond to (B). Many striatal neurons
encoded the no-reward cue in the variable-reward condition, indicating that
they did not differentiate reward and no-reward cues in the fixed-reward
condition.

which were tested with an extinction phase (Figure 4A). We then
observed some interference between the behaviors. When holes
with a higher reward probability in variable-reward-condition
and fixed-reward-condition trials were different, rats took more
trials to find the better hole in the variable-reward condition,
compared to when the holes were identical. In addition, choices
in the variable-reward condition were affected by previous fixed-
reward-condition trials, while choices in the fixed-reward condi-
tion were relatively stable (Figure 4B). Thus, flexible behaviors
are more likely to be affected by events in another condition than
are inflexible behaviors. Our reinforcement learning models sug-
gest that condition interference happens in the value-updating
phase (Figure 6B). Based on the following observations, condi-
tion interference is likely distinct from ignoring the trial con-
dition. First, rats successfully selected the more-rewarding holes
in the variable-reward condition in all reward-probability set-
tings, while they could keep selecting the optimal choice for the
fixed-reward condition (Figure 3). Second, action-outcome expe-
riences in variable- and fixed-reward conditions had different
effects on subsequent choices in the variable-reward condition
(Supplementary Figure 1). Third, reinforcement learning mod-
els showed that, in the variable-reward condition, learning from
the fixed-reward condition was weaker than that from the same
condition.

Some prelimbic cortical and dorsomedial striatal neurons
associated actions with rewards irrespective of trial conditions
(Figures 8A, 9A). Prelimbic and striatal neurons were likely to
track values of the variable-reward condition, but not values
of the on-going fixed-reward condition (Figures 10, 11A). We
then verified that some striatal neurons tracked values of the
variable-reward condition even during fixed-reward-condition
trials (Figure 11B), such that values were updated irrespective
of trial conditions. This was possibly utilized in the learning-
interference reinforcement-learning model and caused an inter-
fering value-updating in variable-reward condition.

INTERFERENCE REINFORCEMENT LEARNING MODELS
Variable- and fixed-reward conditions are considered indepen-
dent states in reinforcement learning theory (Sutton and Barto,
1998; Dayan and Niv, 2008), so the optimal action in each condi-
tion was independently determined. Conventional reinforcement
learning algorithms usually aim to find an optimal action in
each condition and do not consider conditional relationships.
However, humans and animals have dependencies among con-
ditions. For example, monkeys and rats decide actions based on
reward experiences in other conditions (Balleine and Dickinson,
1998; Gallagher et al., 1999; Balleine, 2005; West et al., 2011;
Jones et al., 2012). With such knowledge transfers, a condition
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FIGURE 10 | Representative value-coding neuron. Representative
neurons coding values of the variable-reward condition are shown from
the prelimbic cortex (A) and dorsomedial striatum (B). Average spike
density functions during both the variable-reward-condition and
fixed-reward-condition trials (i) and during the fixed-reward-condition trials
(ii) are shown, smoothed with a Gaussian kernel with a standard deviation
of 50 ms. Each colored line shows the activity during a reward-probability

block in the variable-reward condition; reward probabilities for left-right
choices are shown in the inset. Activities are aligned with different
timings as in Figure 8A. Prelimbic cortical neuron represented state
values after the center-hole poking (A), while dorsomedial striatal neuron
represented state and action values during and after the center-hole
poking, respectively (B). Both neurons represented values of the
variable-reward condition even during fixed-reward-condition trials (ii).

interference is also reported; humans cannot perform two tasks at
once without a delay in reaction time (Monsell, 2003). Our results
also clearly showed interference in the variable-reward condition
(Figure 4B).

Condition interference was considered in our proposed rein-
forcement learning models. The learning interference model
assumed that interference occurred in the value updating phase,
and that learning efficacy should be different between learning
from its own condition and from other conditions (Suzuki et al.,
2012). In contrast, the action interference model assumed that
there was interference in the action selection phase instead. In
the action selection phase, the model utilized the action values
of other conditions as accelerators or inhibitors of action.

To purely test condition interference, the learning rule in
each condition should be properly selected. In addition to the
three varieties of reinforcement learning models in Ito and Doya
(2009), we employed a fixed-choice model. The model had a

constant choice probability, assuming the zero learning rate or the
completion of learning.

LEARNING ALGORITHMS OF FLEXIBLE AND INFLEXIBLE BEHAVIORS
Consistent with previous findings with rats (Ito and Doya, 2009;
Funamizu et al., 2012), FQ- or DFQ-learning fit the flexible choice
behaviors of rats in the variable-reward condition (Figure 6A).
On the other hand, in the fixed-reward condition, standard Q-
learning or the fixed-choice model fit the inflexible behaviors,
suggesting that flexible and inflexible behaviors have different
learning algorithms. No forgetting of action values or no learn-
ing in Q-learning or the fixed-choice model left the choice
prediction constant, compared to FQ- or DFQ-learning, and
such no learning was observed in the extinction phase in the
fixed-reward condition (Figure 4A). One possible reason for the
strategy difference is that rats reduced the costs and times of
inflexible behaviors, since Q-learning and fixed-choice models
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FIGURE 11 | Coding of values in variable-reward condition. (A) The
proportion of neurons coding the values of the presented-trial condition (i)

and of the variable-reward condition (ii). In regression analysis with all trials,
the proportion of neurons which had significant regression coefficients was
shown: p < 0.01 in a two-sided Student’s t-test. Values consisted of five
variables (i.e., action values for left and right choices, state value, chosen
value, and policy) in the learning interference model. Lines and symbols as
in Figure 8A. Dorsomedial striatal neurons mainly encoded values of the
variable-reward condition. (B) The proportion of neurons encoding values of
the variable-reward condition in fixed-reward-condition trials. Neurons
representing values of the variable-reward condition were investigated with
regression analysis using fixed-reward-condition trials. Lines and symbols
as in (A).

had simpler value-updating rules than FQ- and DFQ-learning
(Equation 3).

The condition interference in flexible and inflexible behav-
iors was quantitatively tested with the learning interference model
(Figure 6B). In this model, the fixed-choice model in the fixed-
reward condition provided the constant choice probability, and
thus predicted no interference. On the other hand, FQ-learning in
the variable-reward condition updated action values with events
in both variable- and fixed-reward conditions, suggesting the
existence of interference.

NEURAL CODING IN THE PRELIMBIC CORTEX AND DORSOMEDIAL
STRIATUM
The prelimbic cortex and the dorsomedial striatum represented
the response-outcome (R-O) association (Figure 8Aiii). The R-O
association is essential for a goal-directed system, which is known
to be driven by the aforementioned brain regions (Corbit and
Balleine, 2003; Yin et al., 2005b; Balleine et al., 2007). Flexible
behaviors in the variable-reward condition also required R-O
associations for action learning: flexible behaviors and the goal-
directed system may be related. Action or reward coding was
also observed both in the prelimbic cortex and the dorsomedial

striatum (Figures 8Ai,ii), consistent with recent studies (Kim
et al., 2009; Sul et al., 2010).

In addition, a stimulus-outcome (S-O) association was
observed in the dorsomedial striatum (Figure 9Aiii). This associ-
ation is important to evaluate and differentiate between values of
each condition and is essential for reward-based adaptive behav-
iors under multiple conditions. Especially in this study, striatal
neurons evaluated and ignored outcomes of variable- and fixed-
reward conditions, respectively (Figures 9B,C), supporting the
formation of flexible and inflexible behaviors.

Such associative representations were mainly found after
choices and reward cues in our study; at this time, value updating
is required for deciding future actions. Value updating requires
calculating a temporal difference error, which is known to be
represented in midbrain dopaminergic neurons (Schultz et al.,
1997; Schultz, 1998). Dopaminergic neurons mainly project to the
striatum (Schultz, 1998) which represented S-O and R-O associ-
ations in the value-updating phase of our study (Figures 8, 9).
Thus, the dorsomedial striatum is likely to play a role in associat-
ing the variable-reward condition with rewards, and actions with
rewards, via dopamine-induced potentiation (Reynolds et al.,
2001; Kim et al., 2009). In contrast, reward and no-reward events
in the fixed-reward condition were ignored in some striatal neu-
rons (Figures 9B,C), suggesting no value updating. The prelimbic
cortex encoded R-O associations in the value-updating phase
(Figure 8Aiii). Dopaminergic neurons also project to the frontal
cortex (Schultz, 1998), implying that the prelimbic cortex con-
tributes to memorization of rewarded actions (Euston et al.,
2012).

Neural potentiation in R-O associations (Figure 8Aiii) or
rewards (Figure 9Ai), irrespective of the trial condition, some-
times might facilitate suboptimal action, especially when more
rewarding choices of variable- and fixed-reward conditions are
different. This effect was actually seen in the choice behaviors of
rats: the number of trials required to select the better-rewarding
option in the variable-reward condition was significantly larger
when optimal choices of both conditions were different than
when the choices were identical. Thus, neural coding in the
prelimbic cortex and dorsomedial striatum predicted condition
interference.

CODING OF VALUES IN VARIABLE-REWARD CONDITION
The prelimbic cortex and dorsomedial striatum mainly encoded
values of the variable-reward condition, and not of the condition
in the on-going trial (Figures 10, 11). In our task, rats needed
to keep tracking values of the variable-reward condition to make
the optimal choice, even in fixed-reward-condition trials, and
the value tracking might be observed as the activities. The pre-
frontal cortex has the ability to track a value of an unchosen
option (Boorman et al., 2009). The dorsomedial striatum is also
known to be involved in long-term retention (El Massioui et al.,
2007), supporting a hypothesis that the prelimbic cortex and dor-
somedial striatum can represent the values of un-experiencing
actions or conditions. Such value representations possibly gen-
erated the interfering behaviors of rats (Figure 6B). Values in
the variable-reward condition were encoded before rats knew
the trial condition, i.e., before center-hole poking (Figure 11, left
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column), suggesting that rats mainly prepared for the variable-
reward condition, which was assigned in 70% of all trials.

CONCLUSION
Our behavioral analyses with reinforcement learning models indi-
cate that rats had an interfering value-updating in the variable-
reward condition. Our electrophysiological study suggests that
this interfering value-updating is mediated by the prelimbic cor-
tex and dorsomedial striatum. First, although some dorsomedial
striatal neurons represented condition-reward associations, the
prelimbic cortex and striatum associated actions with rewards
irrespective of trial conditions. Second, striatal neurons kept
tracking values of the variable-reward condition even during the
fixed-reward condition, such that values were possibly interfer-
ingly updated even in the fixed-reward condition.
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