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Restorative brain-computer interfaces (BCI) are increasingly used to provide feedback of
neuronal states in a bid to normalize pathological brain activity and achieve behavioral
gains. However, patients and healthy subjects alike often show a large variability, or even
inability, of brain self-regulation for BCI control, known as BCI illiteracy. Although current
co-adaptive algorithms are powerful for assistive BCIs, their inherent class switching
clashes with the operant conditioning goal of restorative BCIs. Moreover, due to the
treatment rationale, the classifier of restorative BCIs usually has a constrained feature
space, thus limiting the possibility of classifier adaptation. In this context, we applied
a Bayesian model of neurofeedback and reinforcement learning for different threshold
selection strategies to study the impact of threshold adaptation of a linear classifier
on optimizing restorative BCIs. For each feedback iteration, we first determined the
thresholds that result in minimal action entropy and maximal instructional efficiency. We
then used the resulting vector for the simulation of continuous threshold adaptation. We
could thus show that threshold adaptation can improve reinforcement learning, particularly
in cases of BCI illiteracy. Finally, on the basis of information-theory, we provided an
explanation for the achieved benefits of adaptive threshold setting.

Keywords: reinforcement learning, classification accuracy, neurofeedback, functional restoration,
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INTRODUCTION
Restorative brain-computer and brain-machine interfaces
(BCI/BMI)—emerging rehabilitation technologies for neuro-
feedback training—seek to reduce disease-specific symptoms in a
variety of brain disorders (Wyckoff and Birbaumer, 2014). Unlike
classical assistive BCIs, whose goal is to replace lost functions by
controlling external devices, the main focus of these restorative
approaches is to provide contingent feedback of specific neuronal
states, thereby selectively inducing use-dependent neuroplasticity
to normalize pathological brain activity and achieve behavioral
gains (Daly and Wolpaw, 2008; Birbaumer et al., 2009). However,
affected patients—and even healthy subjects—often show a large
variability, or even inability of brain self-regulation, referred to
as BCI illiteracy (Vidaurre and Blankertz, 2010). This condition
is often related to a low signal-to-noise ratio of the targeted brain
activity caused by either physiological (e.g., the depth of the
signal source in EEG-based approaches) or pathological (e.g.,
loss of neural tissue after stroke) mechanisms, or is a result of a
misalignment of the mental strategy used by the subject and the
brain states targeted by the classifier.

This misalignment may occur when the subject explores differ-
ent strategies in the course of BCI training, whereas the classifier
is usually trained on the first strategy only. Alternative strategies
applied by the subject therefore become insufficient. To address

these shortcomings, various machine learning techniques and co-
adaptive algorithms have been proposed. These adjust the brain
state targeted by the classifier to the strategy switching of the
subject so as to maximize the classification accuracy (Vidaurre
et al., 2011; Bryan et al., 2013). Such approaches are powerful for
assistive BCIs which can, for example, detect the subject’s inten-
tion to move and to operate external devices. However, in these
approaches, the classifier adapts (Vidaurre et al., 2011; Bryan
et al., 2013), and so the subject has no incentive to achieve specific
brain states. These adaptation approaches therefore clash with
the goal of restorative BCIs to modify neuronal activity via oper-
ant conditioning, i.e., to achieve specific brain states regarded as
beneficial for motor recovery.

Due to the treatment rationale of modulating specific brain
features, the classifier of restorative BCIs is usually constrained.
In the case of motor rehabilitation, for example, the feature
space might be restricted to event-related spectral perturbation
in the β-range (Gharabaghi et al., 2014). Moreover, event-related
desynchronization has been shown to reflect the excitability of
the corticospinal system (Takemi et al., 2013). This interaction
between a constrained classifier and the subject, who should
be rewarded for achieving specific brain states, poses a special
challenge for the optimization of neurofeedback in restorative
BCI approaches. Thus, classifier adaptation might affect the

www.frontiersin.org February 2015 | Volume 9 | Article 36 | 1

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2015.00036/abstract
http://community.frontiersin.org/people/u/166925
http://community.frontiersin.org/people/u/116738
maiilto:robert.bauer@cin.uni-tuebingen.de
maiilto:robert.bauer@cin.uni-tuebingen.de
mailto:alireza.gharabaghi@uni-tuebingen.de
http://www.frontiersin.org
http://www.frontiersin.org/Neuroprosthetics/archive


Bauer and Gharabaghi Reinforcement learning and restorative brain-computer interfaces

treatment rationale of the intervention. In this context, thresh-
old adaptation might be an alternative approach for restorative
interventions.

However, we have no theoretical or empirical knowledge
as to how threshold adaptation during an intervention might
affect reinforcement learning. In restorative BCIs, classifiers are
often based on linear discriminant analysis (Theodoridis and
Koutroumbas, 2009), e.g., automatic feature weighting based
on common spatial patterns (Ang et al., 2014) or the visual
inspection and selection of spatially weighted frequency bands
(Ramos-Murguialday et al., 2013). These linear methods are char-
acterized by threshold selection, i.e., the definition of a specific
value on a one-dimensional continuum spanned between the two
states that are to be differentiated. Changing this threshold will
modify the sensitivity and the specificity of the classifier regard-
less of the feature weights (Thompson et al., 2013). The selection
of this threshold is currently determined by the intent to maxi-
mize the classification accuracy (Thomas et al., 2013; Thompson
et al., 2013). Furthermore, the magnitude of classification accu-
racy is usually perceived as the measure to determine the subject’s
ability to perform the neurofeedback task (Blankertz et al., 2010;
Hammer et al., 2012).

Within the framework of communication theory, a high clas-
sification accuracy pertains to a good signal-to-noise ratio of the
feedback, i.e., it represents sufficient specificity and sensitivity of
the feedback (Thompson et al., 2013). Since there is evidence
that erroneous feedback affects the reward system (Balconi and
Crivelli, 2010), training at the threshold which results in maxi-
mum classification accuracy might be considered as the optimal
instructional efficacy.

However, to date, no theoretical or empirical work is avail-
able on the relationship between instructional efficacy, thresh-
old adaptation and classification accuracy. We therefore present
a theoretical framework for adaptive approaches in restorative
BCIs. More specifically, we analyzed how classification accuracy
is related to instructional efficacy and whether this instructional
efficacy can be improved by threshold adaptation. This research
question is related to three components: (1) The theoretical
framework to model a neurofeedback environment. (2) The sim-
ulation of neurofeedback learning. (3) Adequate measures for
instructional efficacy.

On the psychological level, neurofeedback training is aptly
described as reinforcement learning (Sherlin et al., 2011).
Several mathematical algorithms, most of which were devel-
oped as machine learning algorithms (Sutton, 1998; Strens, 2000;
Szepesvári, 2010) are now available for reinforcement learning.
For various reasons, the simulation of reinforcement learning
in the present study is based on a Bayesian algorithm (Strens,
2000). There is ample evidence that sensorimotor integration and
learning can be appropriately simulated with a Bayesian model
(Körding and Wolpert, 2004; Tin and Poon, 2005; Genewein
and Braun, 2012). Bayesian reinforcement learning includes
an implicit balancing of exploitation and exploration without
the need for additional parameters (Strens, 2000). It has also
been proposed as an optimal calculus for defining the ratio-
nal action selection of human agents (Jacobs and Kruschke,
2011). We therefore developed a Bayesian reinforcement learning

model for restorative brain-computer interfaces, and explored
the predictions of this model for different threshold adaptation
strategies and classification accuracies.

MATHEMATICAL MODEL OF THE NEUROFEEDBACK
ENVIRONMENT
The basic element of any neurofeedback learning environment is
that the subject is in a specific state (s), selects one of two possible
actions (a), and is rewarded on the basis of the state (s′) result-
ing from this action selection. The training action (aT) places
the subjects into the training state (sT), which is supposed to be
rewarded, and (aF) places the subjects into the false state (sF),
which is not supposed to be rewarded.

In any neurofeedback task, the subject can select either the false
action (aF) (e.g., rest or insufficient neuromodulation), or the
trained action (aT) (i.e., sufficient neuromodulation). In an ideal
neurofeedback intervention, the therapist has perfect knowledge
about the current state of the subject and can reward accordingly.
In a practical neurofeedback intervention, the subject’s current
state is determined with only limited specificity and sensitivity,
resulting in the possibility of reward for both the trained action
P(r|aT) and the false action P(r|aF).

In addition, the state space is usually not discrete, but con-
tinuous. By including a parameter (δ) for the step size of one
action, a continuous state space can be modeled. Assuming that
the step size for both actions is equal but that it is taken in dif-
ferent directions, the current state position (σ) in this continuum
can be calculated as the number of times the trained action is cho-
sen instead of the false action, i.e., σ = nδ-mδ. The trained action
moves the subject one step toward the trained state, whereas the
false action moves the subject one step toward the false state (see
Figure 1A). This enables us to set a threshold (θ) in the state con-
tinuum to determine the probability of reward for the trained
action P(r|aT) and for the false action P(r|aF).

In any neurofeedback environment, the classification at each
threshold will therefore result in particular probabilities for
reward, thus leading to the characteristic curve shape (see
Figure 1B). At each point defined by state (σ) and threshold (θ),
the reward rate will adhere to a binomial distribution. The shape
across the threshold/state dimension can be adequately modeled
by a logistic function (see Figure 1B), which is defined by the
discriminatory steepness (D) and the relative position, i.e. the
distance (�) between the two functions.

P̂ (r | aT; θ, �, σ) = 1

1 + eD(θ − � + σ )

P̂ (r | aF; θ, �, σ) = 1

1 + eD(θ + � + σ )

σ = (n − m) δ

We therefore postulate that any neurofeedback task based on lin-
ear discrimination is fully described by the subject’s position in a
continuous state space σ, i.e., the history of selected actions n and
m, the subject’s step size δ, the threshold θ set by the instructor,
the classifier steepness D and the distance � between the reward
probabilities with D, � ∈ R

≥0 and θ, σ ∈ R and n, m ∈ N0. This
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FIGURE 1 | (A) is a depiction of the state-action-element fundamental to
any neurofeedback environment on the basis of linear discrimination. At any
states, the subject selects one of two actions (aF, aT), resulting in a
subsequent state step in the opposite direction (aF:false action; aT:trained
action). (B) Shows the probability of reward for a given action (blue aT and
red aF) as a function of the threshold θ. The dot markers indicate the reward
probabilities at different thresholds acquired from a real dataset (a
right-handed female subject performing a neurofeedback task based on
motor imagery-related β-modulation over sensorimotor regions with
contingent haptic feedback, identical to the task described elsewhere,
Vukelić et al., 2014). The red and blue traces are logistic functions fitted to
the raw data.

function returns symmetric curves, with the shape depending
on D only, and the location of each curve depending on
� and δ.

The parameters σ, θ, and �, δ are in arbitrary units and point
in the same dimension. We propose that D and � are determined
by the features selected for the classifier, in particular their signal-
to-noise rate and their relative weight. Regardless of these two
parameters, the probability of reward for each action is a result
of the threshold θ, which is set by the instructor, and the state
position σ, which is the result of the subject’s history of selected
actions and the ability to switch between states, i.e., the step size δ.
In this respect, δ and � define the shape of classification accuracy
across the θ/σ dimension. On account of this common influence,
the classification accuracy has ambiguously been interpreted as
indicating not only the classifier performance (Thompson et al.,
2013) but also the subject’s ability (Blankertz et al., 2010; Vidaurre
and Blankertz, 2010). However, � is determined by the classifier
and δ is determined by the subject. By altering the environmen-
tal parameter’s discrimination D, step size δ and distance �, this
parametric model enables us to model specific neurofeedback
environments. The hatted P̂ indicates that the shape of the reward
probability function remains fixed by retaining the discrimina-
tion D, the step size δ and the distance � constant within the
model. It should be noted that, for a fixed environment P̂, the

distribution of reward for any of the two actions is fully defined
by the threshold θ and the state σ.

MATHEMATICAL MODEL OF NEUROFEEDBACK LEARNING
By setting the threshold θ, the instructor may therefore influ-
ence the probability distribution of reward for both the trained
action P(r|aT) and the false action P(r|aT), even without direct
knowledge about P(aT) and P(aF). The subject controls P(aT) and
P(aF), although he/she has no direct knowledge about P(r|aT) and
P(r|aF). As a rational agent, the subject will attempt to increase
P(r), i.e., exploring and exploiting the most rewarding action, on
the basis of the knowledge about the reward probability distri-
bution gained from earlier attempts (Ortega and Braun, 2010a).
This can be simulated with a Bayesian reinforcement learning
model (Strens, 2000). Within this framework, the probability of
reward for each action is a binomial distribution that is perceived
by the subject as a beta distribution. The beta distribution is a
conjugate prior for the binomial distribution. Like the binomial
distribution, the beta distribution describes a continuous proba-
bility distribution in the interval [0,1]. In addition, it is controlled
by the parameters α and β, which allow modeling of the subject’s
belief P′ about the true reward probabilities P.

P′ (r | aT) ∼ Beta(αT, βT)

P′ (r | aF) ∼ Beta(αF, βF)

In practical terms, the anticipated reward rT and rF for each action
is determined by relative values of α and β, while the confidence of
the subject that the anticipated value is true will be determined by
the magnitude of α and β. For the novice subject, the beta distri-
butions parameters about the false and true reward (αF,αT,βF,βT)
are set to 1, and the belief is therefore a uniform distribution.

rT = αT

αT + βT

rF = αF

αF + βF

Since the instructor has only limited knowledge about the action
performed by the subject, i.e., the specificity and the sensitivity
of the classifier are not perfect, the magnitude of reward has to
be identical for aT and aF, and only their probabilities differ. By
way of a practical example: a robotic orthosis extending the hand
of a stroke patient contingent with specific brain states would
provide the same haptic/proprioceptive feedback regardless of
whether the control signal is achieved by motor imagery-related
brain modulation (the intended neurofeedback training) or by
neck muscle artifacts projecting to the scalp (Gharabaghi et al.,
2014). The false and the trained action will thus result in rewards
of identical quality, but with different probability. This is impor-
tant because it allows us to run the simulation without any scaling
factor for reward (Ortega and Braun, 2010b). The subject’s reward
belief is therefore sufficiently represented by the belief about the
reward probabilities.

In each learning iteration, the subject selects an action on
the basis of a higher probability of reward than the alternative
action. This can be calculated since the subject’s confidence that
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the reward for an action is higher than a certain value x is given
by the cumulative Beta distribution function defined by the action
parameters α and β.

F (x; α, β) = Beta(x; α, β)

Beta(α, β)

By comparing the relative confidence of both actions, the proba-
bility for each action to be selected can be calculated as follows:

P (aT) = F (rF; αT, βT)

F (rT; αF, βF) + F (rF; αT, βT)

P (aF) = F (rT;αF, βF)

F (rT; αF, βF) + F (rF; αT, βT)

In practical terms, if the subject has little confidence that one
action is more likely to return a reward than the other action, both
actions will be performed with the same probability, i.e., P(aT)
equals P(aF). If the subject is very confident that aT is more likely
to return a reward than aF, aT will be more probable, whereas,
in the limiting case, P(aT) and P(aF) would equal one and zero,
respectively. Learning in a neurofeedback environment is there-
fore modulated by the subject’s beliefs and confidence about the
probability for reward by each action.

In each learning iteration, the action is selected at random on
the basis of the subjects belief and confidence in the reward prob-
ability (Thompson, 1933; Ortega and Braun, 2010a). The state
position σ is subsequently updated by taking a step of the size δ

in the chosen direction (false action n + 1, trained action m +
1). Depending on the threshold θ set by the instructor within the
otherwise fixed environment P̂, a binomial distribution defines
the probability for reward. Sampling from this distribution deter-
mines whether the action is rewarded (α + 1) or not (β + 1), and
the subject will subsequently adjust his/her belief. Afterwards, the
next learning iteration begins. Please note that, in this framework,
every iteration has an undefined duration. Later in the discussion
section, we will reveal how a learning iteration can be understood
in a practical application.

COMPUTATIONAL APPROACH
The mathematical model presented here would enable us to esti-
mate the anticipated course of learning for different environments
and thresholds by a Monte-Carlo simulation. In this study, we
were particularly interested in the anticipated course of learn-
ing. Directly increasing the parameters of the Beta distribution by
the expectation values for the updates is computationally more
efficient than a full computational simulation followed by an
averaging across simulations. During each learning iteration, the
parameters determining the subject’s belief and the state position
were therefore updated according to the following formulae:

σi + 1 = (ni − mi) δ = σi + E [P (aTi) − P (aFi)] δ

αi + 1 = αi + E
[

P (ai) P̂ (r | a, θ, �, σi)
]

βi + 1 = βi +
(

1 − E
[

P (ai) P̂ (r | a, θ, �, σi)
])

Between subsequent learning iterations, the probabilities for
reward were updated according to the following formulae:

P̂ (r | aT; θ, �, σ) = 1

1 + eD(θ − � + σ )

P̂ (r | aF; θ, �, σ) = 1

1 + eD(θ + � + σ )

The subject’s probability for action selection is of a dynamical
nature, as can be readily recognized from these iteratively updated
functions.

MEASURES OF INSTRUCTIONAL EFFICIENCY
The goal of a neurofeedback intervention is to increase the prob-
ability of the trained action. As mentioned earlier, this can be
affected only by modulating the belief and confidence of the sub-
ject about the reward rates for the trained and the false actions,
respectively. If the features and thresholds were not adapted,
learning would depend on parameters inherent to the subject
only, i.e., step size δ. However, the instructor has the option of
either adapting the feature weights (affecting D and � directly,
and σ indirectly) or changing the threshold θ between itera-
tions whenever the environment is fixed (constant D and �) due
to a certain treatment rationale. In a restorative BCI environ-
ment, threshold adaptation will therefore be used to influence the
instructional efficiency of the neurofeedback intervention.

However, to explore the predictions of the simulation, objec-
tive measures for the instructional efficiency (IE) of the neu-
rofeedback have to be defined. Since the subject’s belief and
confidence are dynamical, the most straightforward measure
would be to take the probability of the trained action for a given
threshold θ at each learning iteration i. This would have the
advantage of being directly comparable to the optimal learn-
ing outcome, which is P (at) = 1. A further advantage of this
approach is that the measure can be translated into entropy with
regard to the action selection. This, in turn, can be psychologi-
cally interpreted as the subject’s uncertainty as to which action
is more rewarding. During the course of the training, the sub-
ject’s uncertainty H should be reduced to zero, and, accordingly,
the instructor’s goal would also be to reduce the action-entropy
to zero. The uncertainty or action entropy H can be calculated as
follows:

Hi,θ = P
(
aT,i, θ

)
log2P

(
aT,i, θ

) + P
(
aF,i, θ

)
log2P

(
aF,i, θ

)

However, this measure does not divulge whether the subject actu-
ally learned in the course of the training, since he/she could have
started already with a high probability for the trained action,
e.g., if he/she were familiar with the task. This means that the
degree to which a subject’s uncertainty is reduced might serve as
an alternative dynamical measure. Such a measure should con-
sider that a subject’s maximum reduction of uncertainty is the
difference between the current level of uncertainty and the max-
imum level of certainty. In accordance with this logic, Georges
(1931) defined instructional efficiency as the ratio of the actual
gain to the maximum possible gain which can be formulated as
follows:
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IEi,θ = P
(
aT,i + 1, θ

) − P
(
aT,i, θ

)
1 − P

(
aT,i, θ

) = P
(
aT,i, θ

)
di

P
(
aF,i, θ

)

Due to the fact that the formula of instructional efficiency IE
includes a divisor converging to zero, a singularity will, at some
point, occur as limP(aF,i,θ)→0 IEi,θ. This singularity indicates the
transition to zero action entropy, and thus the achievement of the
training goal.

RESEARCH QUESTIONS
With these methodical discussions in mind, we now can explore
the instructional efficiency of different threshold setting proce-
dures.

FIRST STUDY
The most frequently used threshold in BCI applications is the one
resulting in maximum classification accuracy (Theodoridis and
Koutroumbas, 2009).

1. θ́1 = arg max θ (P (r | aT, θ) + P (¬r | aF, θ))

The first research goal was to clarify whether instructional effi-
ciency is optimal at this threshold, or whether alternative thresh-
olds might result in a lower action entropy H or in a better
instructional efficiency IE. Furthermore, even if the classifica-
tion accuracy were maximal for a certain threshold, its magnitude
could still vary. A classification accuracy of below 70%, for exam-
ple, has been proposed as an indicator of BCI-illiteracy (Vidaurre
and Blankertz, 2010). Furthermore, accuracies close to chance
level and close to perfect classification are of particular interest
when seeking to improve restorative BCIs. We therefore simu-
lated different classification accuracies, i.e., 55, 70, and 95%, by
using a fixed distance � of 1 and setting the discriminatory steep-
ness value D to 0.4, 1.7, or 5.9, respectively. We termed these
the illiterate, moderate and expert environments accordingly (see
Figure 2).

SECOND STUDY
We went on to hypothesize that threshold adaptation, i.e., pur-
posefully changing the threshold between iterations, improves the
instructional efficiency (IE) and results in lower action entropy
(H). To explore the effect of adaptive threshold-setting, we first
determined which thresholds resulted in minimal action entropy
and maximal instructional efficiency at each iteration across a
range of thresholds. Then, instead of using fixed thresholds, we
applied the resulting vector as a reference table for the simulation.

1.
−→
θ i,1 = arg min θ

(−→
H i,θ

)
2.

−→
θ i,2 = arg max θ

(−→
IE i,θ

)

In practice this meant that, for every iteration, we measured the
threshold with the best instructional efficiency respectively low-
est action entropy, resulting in two vectors of thresholds. We
then repeated the simulation. In these adaptive runs, we used the
respective threshold vector instead of the fixed threshold.

REALIZATION
All simulations were performed for each research question and
environment using 10,000 iterations (i), for thresholds (θ) rang-
ing from −10 to 10 and a step size (δ) of 0.1. The prior belief
of the subject was initialized by setting αF, αT, βF, and βT to
1. The computations were realized with a custom written code
in Matlab R 2014A on a Windows 7 machine. The pseudo-
code example (Figure 3) provides a clearer description of this
algorithm.

RESULTS
EXPLORATION OF THRESHOLD SELECTION
We observed a characteristic beam-like shape of progression
toward minimal entropy originating from the threshold of max-
imum classification accuracy (see black trace in Figure 4). In
all environments, reduction of entropy first commenced at the
threshold of maximum classification accuracy, particularly in
environments with higher classification accuracy. Interestingly

FIGURE 2 | Shows the three learning environments with different

maximum classification accuracies, achieved by selecting an

appropriate discriminatory steepness of the model. (A) shows the

illiterate environment with low classification accuracy, (B) shows the
moderate environment with middle classification accuracy, and (C) shows the
expert environment with high classification accuracy.
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enough, the range of thresholds that resulted in a reduction of
action entropy was narrower for the expert than for the illiterate
environment (see Figures 4A–C). Later, the transition between
high and low entropy was at higher thresholds than at maximum
classification accuracy (CA) thresholds. However, once learning
commenced, transition to low entropy was more rapid. This was
expressed by a highly asymmetric pattern of entropy reduction
(see Figure 4).

It is also worth mentioning that the thresholds which resulted
in minimum action entropy and maximum instructional effi-
ciency were not identical to those for maximum classification
accuracy and that they varied during the iterations (see Figure 4).
The pattern was similar across environments, and was charac-
terized by an early negative and late positive deflection of the

FIGURE 3 | Shows in pseudo code the computations performed for the

reinforcement learning simulation, with the first study exploring the

effect of different fixed thresholds, and the second the effect of

threshold adaption on the basis of the findings from the first study.

action entropy minima (blue trace in Figure 4), which occurred
earlier and more steeply for the instructional efficiency maxima
(red trace in Figure 4). The negative deflection peaked between
iterations 9 and 10 at a threshold of −1.3 for the illiterate envi-
ronment, between iterations 5 and 8 at a threshold of −0.3 for
the moderate environment, and between iterations 3 and 4 at a
threshold of −0.1 for the expert environment. The positive deflec-
tion peaked between iterations 319 and 322 at a threshold of 9.1
for the illiterate environment, between iterations 198 and 202 at
a threshold of 3.7 for the moderate environment, and between
iterations 141 and 155 at a threshold of 1.6 for the expert envi-
ronment. The magnitude of the deflections was therefore higher
for low classification accuracy, whereas transitions were faster for
higher classification accuracy.

EXPLORATION OF THRESHOLD ADAPTATION
Threshold adaptation was performed either following the vector
of thresholds that resulted in maximum instructional efficiency
(see red trace in Figure 4) or minimum action entropy (see
blue trace in Figure 4), and compared to a threshold fixed at
maximum classification accuracy. The comparison showed that
adaptation based on the instructional efficiency resulted in a
phase of comparatively higher action entropy during the training.
Subsequently, however, the entropy decreased more rapidly and
more steeply, as indicated by a crossing of the trace for adaptation
(instructional efficiency) with the trace for fixed threshold (see
Figure 5). This pattern was most pronounced for the illiterate
environment (see Figure 5A), and similar in shape, but with
lower magnitude for the other environments (see Figures 5B,C).
Interestingly enough, the final relative entropy was also smaller
for the illiterate environment (see Figure 5A).

In the illiterate environment, adaptation on the basis of effi-
ciency resulted in higher action entropy, i.e., a less successful
performance, between iterations 24 and 931 and in lower action
entropy, i.e., a better performance, thereafter. Adaptation based
on entropy was less successful than training with a fixed threshold
between iterations 3 and 4 and from 48 onwards (see Figure 5A).

FIGURE 4 | Shows the time course of action entropy as black

contour lines (from 0.95 to 0.05 in steps of 0.05). The figures
also show the threshold resulting in minimum entropy (blue trace)
and maximum instructional efficiency (red trace) for each specific

iteration. Training was performed with a fixed threshold (y-axis) and
results are shown over iterations (x-axis in logarithmic scale).
Subplots depict the illiterate (A), moderate (B) and expert (C)

environment.

Frontiers in Neuroscience | Neuroprosthetics February 2015 | Volume 9 | Article 36 | 6

http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


Bauer and Gharabaghi Reinforcement learning and restorative brain-computer interfaces

FIGURE 5 | Shows the time course of action entropy (y-axis in

decibel) over iterations (x-axis in logarithmic scale) expressed as

action entropy during threshold adaptation on the basis of

minimum action entropy (blue trace), and maximum instructional

efficiency (red trace) divided by action entropy during training

with a fixed threshold at maximum classification accuracy (black

trace). Subplots show the illiterate (A), moderate (B), and expert (C)

environment.

In the same vein, adaptation based on entropy was not as good
in the moderate environment as training with a fixed thresh-
old between iterations 3 and 6 and from 37 onwards, whereas
adaptation based on efficiency resulted in a poorer performance
at iteration 3 and between 12 and 959 and in a better perfor-
mance thereafter (see Figure 5B). In the expert environment,
adaptation based on efficiency result in a poorer performance
between iterations 3 and 74 and a better performance there-
after, and adaptation on entropy resulted in a poorer perfor-
mance between iterations 3 and 15, but in a better performance
thereafter (see Figure 5C). In summary, efficiency based adap-
tation was superior to entropy based adaptation in all con-
ditions, with an initial decrease and a subsequent increase of
performance. The magnitude of improvement increased from
the expert to the moderate environment and peaked in the
illiterate environment. In the moderate and in the illiterate con-
dition, these improvements commenced later, i.e., at ∼1000
iterations.

DISCUSSION
In this study, we developed a model of neurofeedback and
reinforcement learning that allows—on a theoretical level—an
evaluation of different threshold selection approaches and their
potential to optimize neurofeedback in restorative BCIs. We pur-
sued two research questions:

DYNAMIC vs. FIXED THRESHOLD
The first goal was to investigate whether thresholds other than the
threshold resulting in maximum classification accuracy would be
reasonable within the context of neurofeedback. We observed that
learning occurred earliest at the threshold of maximum classifi-
cation accuracy. However, the pattern of entropy reduction was
asymmetric, and we detected a dynamic pattern of early nega-
tive and late positive deflection for the thresholds, resulting in
maximum instructional efficiency or minimum action entropy
(see Figure 4). Our theory is that these two findings (dynamics,
asymmetry) indicate that threshold adaptation can be superior

to training with any fixed threshold. Furthermore, we ascertained
that the magnitude of the deflection is greater for environments
with lower classification accuracy. This indicates that the effect of
adaptation might be even more pronounced for illiterate than for
expert subjects.

ADAPTATION MIGHT IMPROVE REINFORCEMENT LEARNING
Our second research goal addressed the question as to whether
adaptation can theoretically improve the efficiency of the inter-
vention. To answer this question, we used the threshold vectors
resulting in maximum instructional efficiency and minimum
action entropy derived from the first study, and applied them
dynamically during a second training. For this analysis, we used
the time course of action entropy as an outcome measure (see
Figure 5). We ascertained that threshold adaptation based on
action entropy was worse than training with a fixed thresh-
old. By contrast, adaptation for instructional efficiency caused
a delayed onset of action entropy reduction, but with a sub-
sequently steeper slope, thus resulting in a stronger and faster
overall decrease.

Due to this finding, we consider threshold adaptation as
potentially superior to training with a fixed threshold. This effect
was especially pronounced for the BCI illiterate condition. We
also discovered that the late deflection was strongest in this condi-
tion. Since a strong deflection leads to a reduced reward rate, this
result indicates that subjects can maintain a low action entropy,
even under conditions of reduced reward. This is indicative of
successful operant conditioning which is resistant to extinction
when reinforcement is lacking. This might be an important asset
with regard to the long-term clinical efficacy of restorative BCIs.

ASYMMETRIC DIVERGENCE OF REWARD PROBABILITY
Furthermore, our first study suggests that the effect of adapta-
tion is linked to the transition from negative to positive deflection
and to the asymmetry of learning across different thresholds (see
Figure 4). Such asymmetry might be relevant for a number of rea-
sons. The probability of reward is the information that is essential
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to the subject if he/she is to learn which action is more rewarding
(Ortega and Braun, 2010b). The distance between the reward
probability distribution for the trained and the false action there-
fore constitutes the most important piece of information for the
subject with regard to the question as to which action is bet-
ter. While classification accuracy is symmetric, measures for the
distance of two distributions usually are not, as indicated by the
Kullback-Leibler divergence that can be calculated as follows:

1. KL (P (r | aT , θ) , P (r | aF, θ))= P (r | aT , θ) log2
P (r | aT , θ)

P (r | aF, θ)

2. KL (P (r | aF, θ) , P (r | aT , θ))= P (r | aF, θ) log2
P (r | aF, θ)

P (r | aT , θ)

This point-wise Kullback-Leibler divergence for each threshold
measures the relative informational content of the reward gained
by preferring the trained action (see Figure 6A) or the reward lost
by preferring the false action (see Figure 6B). The visualization
for different classification accuracies shows that the gain infor-
mation peaks at positive thresholds (see Figure 6A), while the
loss information peaks at negative thresholds (see Figure 6B). As
classification accuracy increases, the divergence becomes stronger
and narrower without affecting the peak location. We postulate
that these two stable peaks explain not only the asymmetry and
the decreased magnitude of deflection but also the narrow learn-
ing space for the expert environment (see Figure 4). In the same
vein, classification accuracy narrows down and assumes a more
peaked shape in the expert environment (see Figure 2). This indi-
cates that the classification accuracy encompasses a zone in which
learning may occur, while the ideal threshold within this zone
would have to be selected dynamically in accordance with the sub-
ject’s current bias. This perspective would tally with the theory
that the classification accuracy is the zone of proximal devel-
opment (Schnotz and Kürschner, 2007; Bauer and Gharabaghi,
2015).

LIMITATION TO SIMULATION AND LINEAR CLASSIFICATION
It should be noted that our study is based on simulated—and not
on empirical—data. However, our findings suggest that threshold
adaptation is capable of increasing the instructional efficacy of a
restorative BCI. Furthermore, we show that threshold adaptation
might improve learning, particularly for conditions with low clas-
sification accuracy. However, this threshold adaptation is specif-
ically applicable in linear classification approaches. Classification
algorithms which are non-linear or which classify in multiple
dimensions (Theodoridis and Koutroumbas, 2009) might well
show different behavior. Additionally, reinforcement learning
might be of less importance for assistive or communication BCIs.
In these approaches, the performance of the classifier will prob-
ably remain the most important design factor (Thompson et al.,
2013). We therefore propose the hypothesis that threshold adap-
tation is particularly suitable for approaches dealing with linear
classification in the constrained feature space of neurofeedback
training and restorative BCIs (Vidaurre et al., 2011; Bryan et al.,
2013).

FUTURE APPLICATIONS AND VALIDATION
The simulation applied in this study is based on the theory of rein-
forcement learning, meaning that the subject continually updates
his/her beliefs about the most rewarding action. Learning itera-
tions are an essential aspect of this conceptual framework. But
how do these learning iterations translate into the practical world
of neurofeedback training and restorative BCI?

We argue that the duration of a single iteration is not an
absolute measure such as, for example, one feedback trial or 1
iteration/min of training. Instead, we suggest that it be con-
sidered as a relative measure of information processing that is
performed by the subject in a given training environment. This
being the case, every iteration is based on the processing of one
unit of reward, while the instructional efficiency of one itera-
tion serves as a measure for the efficiency of one bit of reward
to reduce entropy, i.e., to change the belief of the subject toward

FIGURE 6 | Shows the visualization of the point-wise Kullback-Leibler

divergence between the probability of reward for the trained/false

actions, with threshold θ on the y-axis and classification accuracy on the

x-axis. Red contour lines indicate negative values and blue lines positive

values (lines have a distance of 0.05). The black line depicts the threshold
resulting in maximum classification accuracy. (A) Shows the reward caused
by preference of the trained action. (B) Shows the loss caused by preference
of the false action.
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the training goal (Ortega and Braun, 2010b). Accordingly, the
duration of a single iteration may be considered as the time
required to communicate one bit of information to the subject
and for the information to be processed by the subject. It there-
fore stands to reason that the bit-rate of restorative BCIs may
differ in the same way as the one of assistive/communication BCIs
(Thompson et al., 2013). In this context, both quantitative and
qualitative influences might affect the bit-rate. Longer interven-
tions might be more effective as they transfer a larger amount
of information, resulting in a dosage effect. Moreover, some
feedback modalities, such as visual or haptic/proprioceptive feed-
back, might be more informative than others (Gomez-Rodriguez
et al., 2011; Parker et al., 2011). Furthermore, the rate at which
information could be processed might be determined by specific
traits of the subject, e.g., psychological traits such as cognitive
resources (Schnotz and Kürschner, 2007) or physiological and
anatomical traits such as the parietofrontal network (Buch et al.,
2012; Vukelić et al., 2014). In this respect, both physiological and
pathological aspects might limit the capacity of a communica-
tion channel. In healthy subjects, for example, the extraneous
load caused by distractions or feedback overload from multi-
ple senses might impair information processing (Clark, 2006).
In pathological conditions, e.g., following a stroke, patients with
impaired afferent pathways (Szameitat et al., 2012) might benefit
less from proprioceptive feedback than stroke survivors with-
out this impairment. Furthermore, technological limits, such as
the time-resolution of the classifier or the inherent signal-to-
noise ratio, may also limit the maximum attainable rate (Sanei,
2007).

On a more positive note, according to our theory, limita-
tions in one domain might be compensated by achievements in
another. Such additional measures to increase the learning rate
might include the coupling of the neurofeedback training with
brain stimulation (Lefebvre et al., 2012; Gharabaghi et al., 2014),
the monitoring of cognitive resources and engagement based on
physiological measures (Smith et al., 2001; Novak et al., 2010;
Koenig et al., 2011; Grosse-Wentrup and Schölkopf, 2012), and/or
patient screening for treatment eligibility (Stinear et al., 2012;
Bauer et al., 2014).

The model presented here might serve as a theoretical
basis to integrate this abundance of research into the frame-
work of Bayesian reinforcement learning. Further research will
be required to confirm our predictions. Most importantly,
however, these findings serve to stimulate empirical stud-
ies to seek alternatives to the “maximum classification accu-
racy” paradigm and to explore threshold adaptation as a
tool for increasing the instructional efficiency of restorative
BCIs.
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