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Deterministic dynamic causal modeling (DCM) for fMRI data is a sophisticated approach
to analyse effective connectivity in terms of directed interactions between brain regions
of interest. To date it is difficult to know if acquired fMRI data will yield precise estimation
of DCM parameters. Focusing on parameter identifiability, an important prerequisite
for research questions on directed connectivity, we present an approach inferring if
parameters of an envisaged DCM are identifiable based on information from fMRI data.
With the freely available “attention to motion” dataset, we investigate identifiability of
two DCMs and show how different imaging specifications impact on identifiability. We
used the profile likelihood, which has successfully been applied in systems biology, to
assess the identifiability of parameters in a DCM with specified scanning parameters.
Parameters are identifiable when minima of the profile likelihood as well as finite
confidence intervals for the parameters exist. Intermediate epoch duration, shorter TR
and longer session duration generally increased the information content in the data and
thus improved identifiability. Irrespective of biological factors such as size and location of
a region, attention should be paid to densely interconnected regions in a DCM, as those
seem to be prone to non-identifiability. Our approach, available in the DCMident toolbox,
enables to judge if the parameters of an envisaged DCM are sufficiently determined by
underlying data without priors as opposed to primarily reflecting the Bayesian priors in a
SPM–DCM. Assessments with the DCMident toolbox prior to a study will lead to improved
identifiability of the parameters and thus might prevent suboptimal data acquisition. Thus,
the toolbox can be used as a preprocessing step to provide immediate statements on
parameter identifiability.

Keywords: functional magnetic resonance imaging, model parameters, dynamic causal modeling, parameter

identifiability, profile likelihood

INTRODUCTION
Connectivity analyses of fMRI data are noninvasive tools to inves-
tigate interactions within a network of brain regions (Smith,
2012). Application of connectivity analysis methods has become
more prevalent in a clinical context as diseases are being concep-
tualized as network disorders (Rowe, 2010; Seghier et al., 2010;
Grefkes and Fink, 2014) and it has also become more feasible,
as a wide variety of connectivity techniques along with their
implementation in toolboxes is available. On the one hand, func-
tional connectivity in task or resting state fMRI data (Biswal
et al., 1995, 2010; Lowe et al., 1998; Van de Ven et al., 2004;
Calhoun and Adali, 2012) can be investigated e.g., by corre-
lating the time series of activated regions, though interpreta-
tion toward causality is limited here (Stephan, 2004). On the

other hand, the application of effective connectivity methods
such as Dynamic Causal Modeling (DCM; Friston et al., 2003)
provides insights into the causality of interactions between
certain brain areas (Friston, 2011; Stephan and Roebroeck,
2012).

As the assessment of effective connectivity using DCM
becomes more and more widespread (Friston, 2011), the pub-
lication of guidelines for DCM (Stephan et al., 2010; Kahan
and Foltynie, 2013) has greatly facilitated its employment—for
application-oriented studies, see e.g., (Rowe et al., 2010; Deserno
et al., 2012; Scheller et al., 2013 and Seghier et al., 2010), for a
review of patient studies. Nevertheless, it is difficult to determine
if a given research question can at least in principal be answered
using DCM prior to actual data acquisition.
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DCM-related research questions either encompass inference
on model structure or inference on model parameters (Stephan
et al., 2010). The former is implemented by the comparison of two
or more models involving the same brain regions but different
input or connection parameters using Bayesian model selection
(Penny et al., 2004; Stephan et al., 2009; Rigoux et al., 2014).
Inference on model structure, i.e., discrimination between mod-
els, can be optimized by manipulating e.g., epoch durations in an
fMRI paradigm (Daunizeau et al., 2011b). To this end, Daunizeau
and colleagues employed the Laplace-Chernoff risk to evaluate
the lower and upper bound on the model selection error with
the aim to minimize this error by choosing an optimal experi-
mental design. They found the optimal experimental design to
depend on a given research question with optimal epoch dura-
tions being shorter to quantify a feedback connection compared
to the optimal durations for a modulatory input.

Apart from model structure, research questions on effective
connectivity often concern model parameters per se, e.g., the
directed connection strength between two regions of interest in
the DCM framework. Such questions are frequently of inter-
est if one seeks to determine specific differences in connectivity
between a diseased and a control group (Seghier et al., 2010). To
reliably answer such questions, it is important to ensure that all
model parameters are identifiable, i.e., that the parameters can be
estimated unambiguously based on the data (Raue et al., 2009).
Thus far, parameter identifiability of DCMs for fMRI data has
not been investigated. Therefore, we will introduce identifiability
as a benchmark by translating an assessment of identifiability
from systems biology to MRI modeling. This specific approach
exploits the so-called profile likelihood (Raue et al., 2009; Kreutz
et al., 2013) that detects identifiable and non-identifiable param-
eters and provides confidence intervals on the parameter value.
Thus, identifiability investigated with the profile likelihood expli-
cates how exact DCM parameters are determined by the amount
and quality of fMRI data. We introduce the DCMident toolbox
that operates on the profile likelihood and provides such state-
ments on identifiability. The toolbox verifies that parameters are
uniquely defined and can be estimated with high accuracy.

In the remaining sections of this report, we will introduce
the concept of parameter identifiability together with its impor-
tance for DCM. In addition, we will show the functionality of
the DCMident toolbox that provides easy-to-use visual output on
parameter identifiability using the profile likelihood. Moreover,
we will examine non-identifiability with its impact on research
questions and provide suggestions to resolve non-identifiability
issues. For demonstration purposes, we will use the freely avail-
able “attention to visual motion” dataset, which has been studied
several times within the DCM for fMRI framework.

METHODS
DCM FOR fMRI
Studying effective connectivity in a network of brain areas across
different experimental conditions is methodologically challeng-
ing. DCM for fMRI describes the biophysical nature of directed
interactions between brain areas (Friston et al., 2003) by incor-
porating two forward models, one at the neuronal and one at
the hemodynamic level. A number of introductory articles are

available (Friston, 2009; Seghier et al., 2010; Stephan et al., 2010)
and the physiological basis of the approach is constantly being
evaluated (David et al., 2008; Daunizeau et al., 2011a).

In DCM for fMRI the neuronal states are modeled by a non-
linear ordinary differential equation (ODE) (Stephan et al., 2008)

Ż(t) = f (Z(t), u,θ) =
⎛
⎝A +

m∑
i = 1

B(i)ui +
n∑

j = 1

ZjD
(j)

⎞
⎠ Z + Cu,

where Z = [Z1, . . . , Zm]T is a vector composed of the m neu-
ronal activities Zi in the different brain regions, u are the stimuli
and θ = [θ1, . . . , θn]T the parameters. This nonlinear state equa-
tion describes the change of activity in the brain due to exogenous
inputs and modulations. For most applications the bilinear state
equation without the nonlinear term, i.e., D = 0, is used (Friston
et al., 2003; Stephan et al., 2008).

This bilinear equation contains three sets of model parameters
predefined by the user: First, input parameters, specified in the C-
Matrix of the state equation, determine how experimental stimuli
enter the model. Second, assumptions about the fixed connec-
tions (A-Matrix), which represent average connection strengths
over task conditions, are specified. A third set of modulatory
parameters (B-Matrix) expresses expected changes in connec-
tion strengths caused by the applied experimental conditions. The
connection strength between regions is reported as rates of change
in Hz, while a negative value is interpreted as decreased and a
positive value as increased coupling from one region to another.
With our approach, we will be able to judge whether all these
parameters can be correctly estimated.

The neuronal states specified in the equation cannot be
observed directly, only the induced BOLD response is measur-
able. The BOLD response is a convolution of the neuronal states
with the hemodynamic response function. This is modeled by the
balloon-windkessel model (Friston et al., 2000) which describes
the change of vasodilatory signal in brain region i due to neu-
ronal activity Zi. The increased activity leads to a local increase
in oxyhemoglobin content qi. The change of vasodilatory sig-
nal itself changes the inflow fi which leads to changes of blood
volume νi. The BOLD-signal is finally given by a nonlinear func-
tion Y = λ(q, ν), which depends on the oxyhemoglobin content
q and the blood volume ν (Friston et al., 2003; Obata et al., 2004;
Stephan et al., 2007b). The convolution of the neuronal states with
the hemodynamic model can be simplified by using an approx-
imation to the hemodynamic response. This approximation is
gained by using two Gamma probability density functions:

�pdf (h, l, t) = lht(h − l)exp( − lt)

�(h)
,

where �(h) is the Gamma function. Here, h, the shape parameter,
with h > 0, determines the maximum of the distribution and l as
the scale parameter with l > 0 the elongation of the distribution.
The canonical hemodynamic response function (HRF) is a typical
BOLD impulse response. It is parameterized by a peak delay of 6 s
and an undershoot delay of 16 s. The peak-undershoot ratio is one
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to six (Friston et al., 2007). Thus, the canonical HRF is given by:

HRF(t) = �pdf (6, 1, t) − 1

6
�pdf (16, 1, t).

The observations are given by the convolution of the neuronal
activity with the hemodynamic response function:

Y(t) =
∫ τ ′

0
Z(t − τ )HRF(t)dτ.

We employed the canonical HRF rather than the full balloon
model (Obata et al., 2004; Stephan et al., 2007b) in our profile
likelihood based approach to allow for increased computation
speed. If needed, the toolbox is open to modifications by users,
e.g., to include more complex representations of hemodynamics.

PARAMETER ESTIMATION
In studies on fMRI effective connectivity, it is of interest to get
a quantitative measure of coupling strengths between regions
of interest and how much experimental stimuli influence this
connectivity. To accomplish this, DCM requires a plausible
hypothesis-driven model for the neuronal states. Based on this
model, the aim is to estimate the parameters of the neuronal state
model Z(t) from the measured observations Y(t).

SPM–DCM uses a Bayesian approach for parameter estima-
tion (Friston et al., 2003). For our method we chose to use a
likelihood-based approach, which is numerically more efficient.
The main difference between those two methods is that Bayesian
parameter estimation requires priors, which can carry valuable
information of certain parameters. Using the profile likelihood
approach constitutes the “worst case scenario” addressing the
question if the data alone contain enough information to reliably
estimate a parameter (Raue et al., 2012). This presents valuable
information as the users of DCMident would readily know which
of the parameters in the final DCM model need to follow the
priors. This enables a much more sensible application of the
Bayesian DCM after assessing identifiability. Given the close rela-
tion between the profile likelihood and the Bayesian DCM, the
concept of profile likelihoods can be transferred to the Bayesian
DCM. As this would add considerable numerical complexity, we
refrained from the implementation.

To assess the agreement of the model with the data, an objec-
tive function is applied. For a least-squares optimization this is
usually the weighted sum of squared residuals:

χ2(θ) =
m∑

i = 1

dk∑
k = 1

(
Yi(tk) − Ŷi(tk, θ)

)2

σi

Where dk denotes the number of data-points, i = 1 . . . m the
number of observables and Yi and Ŷi the i-th observable and its
estimate based on the chosen model, respectively. The σi are the
corresponding measurement errors, i.e., the standard deviation.

The parameters are then estimated by minimizing the
weighted sum of squared residuals with respect to the parameter
vector θ :

θ̂ = min
θ

[
χ2(θ)

]
.

This is consistent with the maximum likelihood estimation
(MLE) of the parameter vector θ for normally distributed mea-
surement noise as:

χ2(θ) = const − 2 log (L(θ))

where

L(θ) =
m∏

i = 1

dk∏
k = 1

exp

(
− 1

2

(
Yi(tk)−Ŷi(tk)

σik

)2
)

√
2πσ 2

ik

is the likelihood function of the parameter vector θ . This is pos-
sible because the logarithm is a monotone function. So taking
the logarithm does not change the position of the extrema and
minimizing χ2(θ) corresponds to maximizing the log-likelihood
function.

PARAMETER IDENTIFIABILITY
Confidence intervals
By analysing the shape of the likelihood function, it is possible to
obtain confidence intervals (CIs) for a confidence level α for the
estimated parameters. These CIs depict that the true parameters
lie within the intervals

[
σ+, σ−]

j with probability α, where j =
1, . . . , n and n the length of the parameter vector. Here σ+ is the
upper bound and σ− the lower bound. The likelihood-based CI
can be defined by a threshold �α in the likelihood (Meeker and
Escobar, 1995):

{
θ |χ2(θ) − χ2(θ̂) < �α

}
with �α = Q(χ2

df , α),

where χ2(θ) is the χ2-value of the true parameter vector, i.e., the
presumed minimum of the likelihood function, and χ2(θ̂) is the
χ2-value of the estimated parameter vector. The threshold �α is
given by an α-quantile Q of the χ2-distribution. It represents the
point-wise CIs with df = 1 (df = degrees of freedom).

A widespread method is to use asymptotic CIs based on the
covariance matrix (Meeker and Escobar, 1995). These can be
derived from the curvature of the likelihood function using a
quadratic approximation of χ2 at the estimated optimum θ̂ given
by the Hessian matrix. Asymptotic CIs are a good approxima-
tion of the actual uncertainty of θ̂i if the amount of data is
large compared to the number of parameters and it is exact if
the observables depend linearly on the parameters θ . However,
these two prerequisites are often not fulfilled (Joshi et al., 2006).
In these cases the quadratic approximation is not fulfilled either
and higher order terms cannot be neglected. Asymptotic CIs can
always be transformed into symmetric parabolas by reparametri-
sation. However, when higher order terms cannot be neglected,
the actual CIs might not be symmetric (for a comparison between
standard CIs and likelihood-based CIs see Cook and Weisberg,
1990). For DCMs the observables depend non-linearly on the
parameters due to the convolution with the HRF. Therefore,
the assumption that the quadratic approximation is valid is
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questionable and it cannot be decided a priori if the assump-
tion is right. Hence, asymptotic intervals are not appropriate
for the application to DCMs and likelihood-based confidence
intervals are used in our approach. Likelihood-based confidence
intervals do not assume a quadratic approximation. Therefore,
they are superior to asymptotic confidence intervals based on
the quadratic approximation of the Fisher information matrix
(Meeker and Escobar, 1995). Furthermore, likelihood based CIs
are reparametrisation-invariant and thus do not depend on the
chosen parametrisation.

Identifiability and non-identifiability
Based on the CIs, practical identifiability can be defined (Raue
et al., 2009, 2010, 2011): A parameter is practically identifiable if it
has finite CIs σ+ < ∞ and σ− > −∞. Hence, the parameter can
be estimated unambiguously from the data. Practical identifiabil-
ity depends on overall amount and quality of data, such as suitable
signal to noise ratio (SNR) and sufficient data points. Practical
non-identifiabilities can be resolved by changing experimental
design or imaging specifications, e.g., by acquiring more volumes
during the fMRI session, by increasing the frequency of a stim-
ulus of interest or by modifying acquisition parameters such as
TR. It may occur that a given parameter is practically identifiable,
while its CI includes zero. As a consequence, the connection rep-
resented by this parameter is compatible with zero and might not
exist. Thus, a different model without the respective parameter
or a different experiment might have to be chosen to make a
clear statement on the respective connectivity (Raue et al., 2010,
2011).

Identifiability of all parameters is a necessary prerequisite
for reliably answering research questions pertaining to the
respective parameters (Raue et al., 2009, 2010). Practical non-
identifiabilities can be discovered by analysing the likelihood
function. They can be resolved by adjusting above-mentioned
cornerstones of data acquisition. In total, by analysing the
parameter identifiability, the reliability of model predictions can
be improved (Raue et al., 2009).

THE DCMident TOOLBOX
Derivation of the profile likelihood
To analyse the identifiability of the model parameters, we use the
profile likelihood

χ2
PL(θi) = min θj �= i

[
χ2(θ)

]
.

With this approach, a section along the minimum of the objective
function with respect to all other parameters θj �= i is computed
for each parameter θi individually. So the n-dimensional param-
eter space, with n the number of parameters, is explored for
each parameter along the direction of least increase of the χ2(θ)-
value in the χ2(θ)-landscape. This is accomplished by varying
the considered parameter θi around the minimum of the neg-
ative log likelihood χ2(θ) and optimizing the other parameters
θj �= i in order to minimize the objective function. As the pro-
file likelihoods are not mere approximations of the log-likelihood
as a quadratic 1-dimensional function but optimizations of all
parameters but the fixed one taking into account the whole model

structure, the suggested approach based on the profile likelihoods
enables a sensible derivation of confidence intervals even in the
presence of nonlinear models and correlated parameters. We
emphasize that the profile likelihood-based approach leads to
the same results as asymptotic CIs if the approximation of the
log-likelihood function as a quadratic function is valid.

Based on the profile likelihood practical non-identifiability
can be defined anew: The profile likelihood of a practically non-
identifiable parameter has a minimum but it never crosses the
threshold �α for a desired α confidence level in one or both direc-
tions and the CI is infinite. So there can be an upper or lower
bound on the CI. If for example an upper bound but no lower
bound exists, a higher parameter value than this upper bound
is not compatible with the data. However, it cannot be decided
which parameter value below the upper bound is the best to fit
the data (Raue et al., 2009).

Components of the DCMident toolbox
To calculate the profile likelihood, both simulated and real
fMRI data can be used. Simulations of models are based on
the DCM.mat-file obtained from the DCM extension of the
SPM software after DCM specification and estimation (see
Chapter 32 in the SPM manual, http://www.fil.ion.ucl.ac.uk/
spm/doc/manual.pdf). The required design information, e.g.,
stimulus characteristics and imaging specifications, is obtained
from the DCM.mat file and written into two new files
using customized MATLAB-functions (http://www.mathworks.
de/products/matlab/). Based upon these files the assessment of
the respective DCM is started. It is equally possible to use “cus-
tomized” models, i.e., models, which are not based on a DCM-
estimate: By removing regions or connections from the actually
estimated model, it can be determined if a less complex “reduced
model” becomes identifiable under current experimental design
specifications.

Both for the simulation of the data sets and the derivation
of the profile likelihoods, the differential equations which rep-
resent the neuronal model under investigation are integrated
with time steps of ts = TR/#slices. For the exogenous stimuli
and modulations, boxcar or stick functions depending on the
respective experimental design, are used. Thus, the time series
is split into short time bins whenever the input changes, such
that the ODE can be solved piecewise. The obtained time series
Z(t) is then convolved with the HRF composed of the two �-pdf-
distributions. For data acquisition, Gaussian noise N(0, σy) with
the variance of Y(t) with respect to the SNR is added to these
deterministic “BOLD”-signals.

To calculate the profile likelihoods of the parameters, all model
parameters are estimated first. Starting from these parameter
estimates θ̂ , which also constitute the minima of the respective
profile likelihoods, the profile likelihoods are calculated. This is
achieved by systematically changing the respective parameter and
reoptimizing all other parameters to gain the least χ2(θ)-value,
meaning that for calculation of the profile likelihood of param-
eter θi, the parameter θi is varied around the first estimate θ̂i,
θi,new = θ̂i ± dθi.

To optimize parameters, start values are needed. For our
analysis we used a slightly changed posterior parameter estimate
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θ ± 0.1 from model inversion as initial guesses. With real data, the
easiest way to define start values is to use the connectivity priors
as defined in SPM (http://www.fil.ion.ucl.ac.uk/spm/). DCMs
depend sensitively on their parameter values as models with
circular connections start oscillating for certain parameter sets.
Additionally, DCMs can diverge if the inhibitory self-connections
are not strong enough to prevent run-away excitation (Friston
et al., 2003). If this happens, the start values must be readjusted by
e.g., changing the sign of a few parameters. For the optimization,
a Levenberg–Marquardt algorithm is used.

For a proper comparison of different identifiability scenar-
ios of an entire parameter set, a single criterion being straight
forward to interpret is needed. As confidence intervals and thus
the variance of the parameters are of interest, the mean confi-
dence interval (mCI) of the parameter set can be examined; this is
referred to as A-optimality in the respective literature (Chernoff,
1953). As non-identifiable parameters have infinite CIs, the CI
is set to infinity; for those parameters that have only a lower or
upper bound it is infinity as well.

Description of test data
To investigate the performance of our approach, we chose to
assess parameter identifiability and the influence of data acqui-
sition adjustments thereon with a three region model specified
for the “attention to visual motion” dataset first examined by
Büchel and Friston (1997) and Büchel et al. (1998). Please see
Büchel and Friston (1997) for a detailed description of task design
and experimental manipulations. This dataset is described in sev-
eral publications and different DCMs to explain the data have
been suggested (Penny et al., 2004; Stephan et al., 2004, 2007a;
Marreiros et al., 2008; Friston et al., 2011). To analyse the influ-
ence of different design parameters, we chose to investigate the
“forward model” proposed for this dataset in the SPM man-
ual (see http://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf) with
SPM8 (release 4667) and DCM10. In this three-region model,
visual area 1 (V1) and visual area 5 (V5) are bidirectionally con-
nected as are V5 and the superior parietal cortex (SPC). There is
one exogenous input (“Photic”) onto region V1 and two mod-
ulations (“Attention” and “Motion”), both onto the connection
between V1 and V5 (Figure 1A). Additionally, an alternative
“backward model” with the same A- and C matrices, but with
one modulation onto the connection V1 to V5 and one modula-
tion onto the connection SPC to V5 (Figure 1B), is analyzed for
its parameter identifiability.

The testing of identifiability was based on the original imaging
specifications: repetition time (TR) of 3.22 s, acquisition of 32
slices per volume and acquisition of 360 volumes in total as
well as an epoch duration of 32.2 s. For the SNR, a rather high
value of

√
10 ≈ 3, 2 was chosen to make changes of identifi-

ability due to design or imaging specifications unambiguously
apparent. The posterior parameter estimates from the origi-
nal single-subject dataset after model inversion with DCM 10
in SPM8 (r4667) were used as parameter values for the sim-
ulation of the synthetic fMRI data used for the analysis. For
the data generation the deterministic model was integrated
and afterwards convolved with the canonical HRF to gain the
deterministic BOLD-response. Subsequently, random Gaussian

FIGURE 1 | Three-region models specified for the attention to visual

motion dataset. Driving and modulatory inputs are denoted by Photic and
Motion and Attention, respectively. V1, primary visual cortex; V5,
extrastriate visual area V5; SPC, superior parietal cortex. (A) Attention to
motion DCM with experimental modulations on one forward connection
(“forward model”) from V1 to V5. (B) Attention to motion DCM with
experimental modulations on one forward and one backward connection
(“backward model”), V1 to V5 and SPC to V5, respectively. For subsequent
parameter assessments, the DCM-estimates from the original
single-subject dataset were used.

noise corresponding to the SNR was added to this deterministic
BOLD-response.

To demonstrate the influence of certain imaging specifications
on parameter identifiability, we varied TR, number of acquired
volumes, i.e., session duration, and epoch duration within certain
boundaries typically found in fMRI experiments. Furthermore,
an assessment was done with a much lower but more realistic
SNR of 1 (Krüger and Glover, 2001). TR was varied between 1
and 3 s in steps of 0.5 s. To additionally demonstrate identifiability
changes with long TR values common in older fMRI studies, we
also tested a TR of 6.44 s, twice the original TR of 3.22 s. Session
duration ranged from 180 to 720 times the TR, i.e., half and
twice the duration compared to the original setting, with incre-
ments of 90. Epoch duration spanned between 10 and 35 s, with
5 s steps and an original length of 32.2 s. To capture event related
design scenarios as well, additional scenarios with shorter epochs
were introduced with epoch durations of 1, 3, and 5 s, respec-
tively. In order to gain experimental designs with short epoch
durations but the same amount of stimuli, the distance between
the stimulus onsets were kept constant, while the length of the
stimuli themselves were varied. For each variation of imaging or
design specifications we simulated one data set, whereas always
a different noise realization was used. Hence, we can demon-
strate how parameter identifiability is altered depending on the
the sampling rate, the amount of data measured, frequency of
stimuli as well as noise. This parallels former work from systems
biology manipulating the amount and quality of measured data
to gain finite confidence intervals of the profile likelihood and
therewith improved parameter identifiability (Raue et al., 2009,
2010).

We expected to find variations in parameter identifiability
along these manipulations of imaging specifications. First, we
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hypothesized that a shorter TR would enhance parameter iden-
tifiability because of overall increase in measurement precision
(Feinberg and Yacoub, 2012). Second, the acquisition of addi-
tional volumes was thought to improve identifiability as well,
while a shorter imaging session would lead to a decrease in iden-
tifiability, as less data to fit the model would then be available.
Third, we hypothesized to find certain epoch durations in block as
well as event related design scenarios specific for optimal identifi-
ability. Finally, decreased SNR was considered to diminish overall
identifiability.

RESULTS
RESULTS OF ATTENTION TO MOTION “FORWARD” MODEL
After testing the original imaging specifications of the forward
model, all parameters proved identifiable, i.e., showed CI bound-
aries as depicted by the blue line which crosses the red line
twice (Figure 2). Nevertheless, several of these parameter CIs
were relatively broad (see e.g., original settings in TR = 3.22 s
subplot of Figure 2), implying that the true parameter value
cannot be determined with high precision. By shortening TR,
testing different epoch durations as well as by increasing session
duration, we sought to shrink these CIs to enable more reli-
able statements about the respective parameters. Effects of such
variations are described in the following paragraphs. The whole
identifiability assessment could be achieved within reasonable

computing times. For the models chosen in this report, we
needed 5 h on average for all parameters in a cluster computer
environment.

Variation of TR
We were able to obtain identifiable parameters across most
simulated TR values. Though TR was simulated in 0.5 s incre-
ments between 1 and 3.5 s, we chose to depict a subset of changes
in parameter identifiability only (Figure 2). Plots of remaining TR
values are displayed in Supplementary Material (Supplement 1).
As expected, a short TR of e.g., 1 s leads to an overall shrinkage
of CIs. Most prominent changes in parameters’ CIs could be
observed in connections concerning the A-matrix of the DCM
state equation. Modulatory as well as exogenous inputs (B- and
C-matrices) already had relatively narrow CIs in the original
setting—see subplots for “Photic,” “Attention,” and “Motion” in
Figure 2. When testing TR = 6.44 s, i.e., twice the original TR,
we observed non-identifiabilities for the parameters of the con-
nections leading to V5 and also for the modulating exogenous
inputs of the B-matrix. Interestingly, the self-connection of V5
is consistent with zero as the profile likelihood approaches the
threshold in the negative range on the one side and crosses in
the positive range on the other side. Therefore, this connec-
tion might not exist. From the point of systems theory, this
connection should exist as an inhibitory mechanism to prevent

FIGURE 2 | Assessment of different TRs (1, 2, the original 3.22 and

6.44 s) for the “forward model.” The parameter value used for the
simulation is shown as a green vertical line. The blue line corresponds
to the profile likelihood. The red horizontal line illustrates the
χ2-quantile to a significance level of 1 − α with α = 5%. The parameter
is identifiable if the blue line crosses the red line twice, i.e., if
boundaries on confidence intervals exist. The respective connection is
described below the individual profile likelihood plot with the respective

parameter value range. The y-axis depicts the χ2-value of the model fit
(see definition of χ2 in Section “Parameter Estimation”). This value
describes the residual information of the data which cannot be
explained by the model alone e.g., noise or residual information due to
an improper model. Note that x-axis range can change across subplots
to enable full depiction of confidence intervals, while the scaling does
not change. For the mean confidence interval mCI we gained values
0.22, 0.29, 0.61, ∞ for a TR of 1 to 6.44 s, respectively.
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run-away excitability and to model the decay of activity (Friston
et al., 2003; Stephan, 2004). Based on this data, the existence
and strength of this connection could not be decided when a
TR of 6.44 s is chosen. For all other practically non-identifiable
parameters, an upper or lower bound excluding zero is apparent.
These connections do exist in this scenario, but the parameter val-
ues have huge error bars in one direction. For TR = 6.44 s there
are parameter regions apparent where the profile likelihood sud-
denly jumps to very high χ2(θ)-values. In these cases a parameter
regime is reached where the time series diverges and optimizing
the other parameters cannot counterbalance the fixed parameter
value.

Variation of session duration
Based on the original experimental run of 19.32 min (i.e., 360
acquired volumes), we changed session duration to determine
the number of volumes necessary for overall parameter iden-
tifiability, while TR and epoch duration kept the values of the
original study. As already stated above, all parameters were identi-
fiable in the original setting with 360 acquired volumes, therefore
this scenario is not depicted anew (see Figure 2). It is evident
from Figure 3 that halving the session duration (i.e., 180 acquired
volumes) does not suffice to obtain identifiable DCM parameters.
Several CIs either lack an upper or lower bound, i.e., the pro-
file likelihood does not cross the threshold twice (Figure 3). In
terms of the above-introduced non-identifiability terms, these are
practical non-identifiabilities, which can be resolved by acquir-
ing a sufficient number of volumes, while the envisaged DCM
itself does not need to be modified. A change toward identifia-
bility of all parameters can already be observed with 270 volumes.

When increasing the number of volumes beyond 360, a further
narrowing of CIs on parameter estimates could be observed but
not perceivably beyond 540 acquired volumes (please refer to
Supplementary Material (Supplement 1) for plots of 630 and
720 acquired volumes). For a session duration of 540 times
TR the mean CI even increases slightly, though not consider-
ably.

Variation of epoch duration
Different epoch durations referring to either event-related or
block design scenarios were tested for parameter identifiability
characteristics. Potential event-related designs with epoch dura-
tions of 1, 3, and 5 s were assessed (see subplot for 1 and 3 s in
Figure 4). As the original experiment was a blocked design, the
remainder of Figure 4 shows such a scenario with epoch dura-
tions of 15, 20, and 30 s, the latter being marginally shorter than
the original setting of 32.2 s. As can be concluded from compar-
ing the original setting in the rightmost subplot of Figure 2 to the
30 s subplot of Figure 4, even a small decrease of epoch duration
improves parameter identifiability. The results show that for this
model and these design parameters, a decrease in epoch duration
improves identifiability. Furthermore, the event-related scenarios
with 1, 3, or 5 s yield the best results with regards to identifia-
bility, though identifiability decreases for the modulatory inputs
“Attention” and “Motion” in the 1 s scenario (mCI = 0.32 for
an epoch duration of 1 s and mCI = 0.22 for 3 s). Thus, short
to intermediate epoch durations rather than tenfold the TR of
the original study, seem to yield full identifiability. Nevertheless,
all parameters were equally identifiable in the original settings
(Figure 2), though with rather large CIs.

FIGURE 3 | Assessment of different session durations ranging from 180 to 540 times the original TR for the “forward model.” For explanation of the
graphs see Figure 2. The mCI were from left to right ∞, 0.58, 0.38, 0.40.
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FIGURE 4 | Assessment of different epoch durations ranging from 1 s, which is equivalent to stimulus durations of rapid event-related designs, up to

a blocked design equivalent of 30 s. The mCI were from left to right 0.32, 0.22, 0.36, 0.46, and 0.72. For explanation of the graphs see Figure 2.

Variation of SNR
To investigate the influence of different SNR on identifiability, we
also assessed an SNR of 1 within the original imaging specifica-
tions. From Figure 5 it is apparent that with a high noise level
many parameters become practically non-identifiable and hence
the mean CI is mCI = ∞. Thus, for more realistic SNR, reaching
overall identifiability seems to be more difficult. Interestingly,
again the connections leading to V5 and the modulatory inputs
“motion” and “attention” are not identifiable. Whereas most of
these parameters are still practically non-identifiable and only
have a lower or upper bound, the connection from SPC to V5
exhibits a flat profile likelihood, which comprises zero. Therefore,
no information is gained about this parameter. The connection
from V5 to V1 is consistent with zero, even though it should be
different from zero based on its real value (green line in Figure 5).
Additionally, the CI does not include the real parameter value.
Thus, even with a finite CI, no proper conclusion on the exis-
tence of this connection can be drawn. Hence, with a SNR of 1,
many parameter values cannot be identified unambiguously as
many parameters are non-identifiable or their CIs exclude the real
parameter value. However, for parameters which possess a lower
or upper CI bound, the parameters exist and the sign of their
connection strength can unambiguously be determined.

RESULTS FROM ATTENTION TO MOTION “BACKWARD” MODEL
Similar to the “forward” model, all parameters of the back-
ward model in its original specification proved identifiable,
though with rather large CIs on several parameter values as well
(mCI = 0.65 for the backward model and mCI = 0.61 for the for-
ward model). As the effect of manipulating TR, session and epoch
duration were comparable to those on the forward model, we
will only present the result of the backward model with original
imaging settings (Figure 6) and provide all other profile likeli-
hood plots of the backward model in Supplementary Material
(Supplement 2).

Importantly, one might want to manipulate more than one
acquisition parameter at the same time when adjusting data
acquisition toward full identifiability. A decrease in TR combined
with a moderate increase in session duration, i.e., the acquisi-
tion of additional 90 volumes, systematically improved parameter
identifiability of the forward as well as the backward model (result
for the backward model shown in Figure 7), such that a precise
parameter estimation should be warranted when acquiring real
fMRI data with these settings.

DISCUSSION
Taking the freely available “attention to motion” dataset as an
example, we demonstrated an approach that permits improve-
ments in fMRI data acquisition to ensure identifiability of all
DCM parameters based on the data, and a simplified DCM
model without priors. The presented DCMident toolbox oper-
ates on the profile likelihood to provide at a glance state-
ments about parameter identifiability. Hence, we addressed the
question if the data contains enough information to reliably
estimate parameters that might be of interest for a specific
research question or relies on Bayesian priors to restrict parameter
estimates.

MODEL IDENTIFIABILITY
In two three region DCMs applied to the “attention to
motion” dataset with its original MR sequence specifications, all
parameters were identifiable for a high SNR of

√
10 but often

with broad CIs. The parameters of the B-Matrix had much nar-
rower CIs than those of the A-Matrix. This is due to the additional
information provided by the exogenous modulations “Motion”
and “Attention,” specifying when experimental modulations are
present or absent.

Regarding the A-Matrix, CIs were widest for the connection
strength between V1 and V5, V5 and V5, and SPC and V5, such
that all connections leading to V5 were estimated least precisely
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FIGURE 5 | Assessment of data with an SNR=1, where mCI = ∞. For
explanation of the graphs see Figure 2.

(see original experimental specifications in TR = 3.22 s sub-
plot in Figure 2). This can be further elucidated by assessing
the number of connections or parameters (Figure 1), which have
to be estimated from the time series of each node. Following
this reasoning, parameter estimations from the time series of

FIGURE 6 | Assessment of the data for the backward model with

original settings for TR, epoch duration and session duration with

mCI = 0.65. For further explanation of the graphs see Figure 2.

V1 are worse than the estimates from the time series of SPC,
as there are three parameters to be estimated compared to two.
The same rule applies to the “backward” model where only the
input to region 2 (V5) changes but five parameters still have
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FIGURE 7 | Optimizing experimental design by manipulating two

imaging specifications (here TR and session duration) at the same

time, where mCI = 0.32. For further explanation of the graphs see
Figure 2.

to be estimated from the respective time series. Therefore, if
there are one or more densely interconnected regions in a DCM,
e.g., a “central node” such as V5 in the current example, which
is connected to most of the other regions, we recommend to
carefully pay attention to its identifiability. When encountering
practical non-identifiabilities, TR, session or epoch durations
can be altered to obtain finite confidence intervals (see below).

This recommendation is independent from further biological fac-
tors relating e.g., to the size and anatomical location of a node,
which can additionally complicate parameter identifiability but
are beyond the scope of this study. Recent methodological devel-
opments allow the inversion of DCMs with a high number of
nodes (Seghier and Friston, 2013). Our framework might be
an ideal preprocessing step to such endeavors by providing a
heuristic as to whether densely connected nodes might follow
the priors in the SPM–DCM framework when they are practi-
cally non-identifiable solely based on information in the data.
Taken together, our approach can be seen as a beneficial addi-
tion to the existing SPM–DCM framework. It can variably be
applied as a preprocessing step to check identifiability before
conducting DCM analyses in SPM and can also be connected to
recent additions to DCM.

Besides the practical non-identifiability mentioned in Section
Identifiability and Non-Identifiability, additional structural non-
identifiability can occur (Raue et al., 2009, 2010). For structural
non-identifiable parameters, relations to other parameters can
be found such that these related parameters could compensate
completely for the influence of the non-identifiable parameter.
Thus, structural non-identifiabilities would display themselves as
flat lines without a minimum in the profile likelihood. They can
occur when not all state variables are observed. In this case, not
enough information exists to uniquely determine the parameter
from the data. In our work, structural non-identifiabilities did
not occur as we used a completely determined canonical hemo-
dynamic response function for the sake of computation speed.
Nevertheless, the presented toolbox could be modified by includ-
ing the more complex balloon model (Obata et al., 2004; Stephan
et al., 2007b) to fully reflect the DCM framework. However, using
the more complex balloon model might potentially lead to struc-
tural non-identifiabilities, as the hemodynamic state variables
and the exact onset of the hemodynamic response are not mea-
sured. This should be considered when modifying the presented
framework toward an implementation of a more complex region
specific balloon model.

In summary, variations of all investigated experimental design
and imaging specifications had an effect on parameter identifia-
bility (Figures 2–4). First, increasing session duration improved
identifiability but not considerably beyond 540 times the TR and
for this noise realization it even got slightly worse for 540 times
the TR compared to 450. Hence, to ensure study participants’
well-being and prevent motion artifacts, an extension of session
duration to increase parameter identifiability should be carefully
balanced.

Second, it is evident that decreasing TR and thereby increas-
ing the sampling rate improves parameter identifiability, as the
information for the parameter estimation is mainly gathered from
the slope and height of the rise of activity due to exogenous
inputs, and by increasing the sampling rate, more information
on the shape of this slope is gathered. It has been a trend to
shorten TR in fMRI research for several years and various reasons,
see e.g., (Feinberg and Yacoub, 2012; Feinberg and Setsompop,
2013; Jacobs et al., 2014). Along this line of thought, we would
recommend to reduce the number of slices and thereby TR when-
ever adequate for the research question at hand. This agrees
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with the findings from Witt and Meyerand (2009) who ana-
lyzed the influence of TR on parameter estimation. According
to their analysis, decreasing TR improved parameter estimation.
Hence, combining ours and their results shows that a decreased
TR improves both the accuracy with which the parameter is iden-
tified and at the same time decreases confidence intervals. Of note,
a decrease in TR to gain increased identifiability should lie within
certain bounds, as a very short TR can substantially decrease
SNR and thereby reduce identifiability (Feinberg and Setsompop,
2013). In such scenarios, manipulation of echo time (TE) might
be beneficial (Krüger and Glover, 2001). As shown in the results
section, TR within a range as commonly used in fMRI studies
with EPI sequences, yielded sufficient identifiability.

Third, for the high SNR of
√

10 that was chosen here, the short
epoch durations analogous to event-related designs led to nar-
rower CIs for the parameters. As the absolute number of stimuli
was kept constant by keeping the distance between the stimuli
constant and solely changing the length of the stimuli, this is
a pure effect of epoch duration. In case of short epoch dura-
tions, the peak of the BOLD response is clearly defined and leads
to well-determined parameters. However, if the epoch duration
is too short (∼1 s), the modulatory strengths bij are estimated
worse, as the switching-on and -off of a stimulus cannot be
recognized (Heckman et al., 2007; De Zwart et al., 2009). This
becomes apparent in the “Attention” and “Motion” results for
the forward model and 1 s epoch duration (Figure 4) and is
even more extreme for the “Attention” modulation on the feed-
back connection in the backward model Supplementary Material
(Supplement 2). For long stimuli, the peak rests on a high level
of activation. Therefore, parameter sets which would lead to a
slightly decayed arrival at the peak would be accepted as a rea-
sonable fit, too. Therefore, the CIs are broader for longer epoch
durations.

This mechanism changes with decreasing SNR as the
increasing noise impairs the detection of BOLD responses to short
stimuli (Friston et al., 1999; Henson, 2007).

Correspondingly, a low SNR of 1 and epoch durations of
32.2 s together with the long original TR lead to a considerable
fraction of practically non-identifiable parameters (Figure 5).
As most parameters had a lower or upper bound, it is still
possible to state if the respective parameter is positive or neg-
ative, which might suffice to answer certain parameter-specific
research questions, e.g., relating to the question of increases or
decreases in connectivity between two nodes. Limitedly, the exact
amount, i.e., parameter value, of increase or decrease in connec-
tivity cannot reliably be assessed when a parameter is practically
non-identifiable. Consequently, in the case of lower SNR, the
desired information can best be gained with intermediate epoch
durations, which corresponds to the results by Daunizeau and
colleagues from the SPM–DCM framework (Daunizeau et al.,
2011b). When examining the influence of epoch duration on
the model discriminability, Daunizeau et al. (2011b) found that
depending on the discrimination feature between the models,
an epoch duration between 8 and 16 s is optimal. In our results
obtained with DCMident, an epoch duration of 8–10 s still was
sufficient for parameter identifiability as well. Importantly, as
there is a tight link of SNR and session duration (Murphy et al.,

2007), our findings on the influence of the latter on identifiability
can as well be interpreted with regards to SNR. Another scan-
ning parameter directly influencing SNR is spatial resolution, as
larger voxel size, i.e., lower resolution, enhances SNR. Although
not comprised in our simulation, a trade-off on spatial resolu-
tion could lead to improved identifiability as well. Finally, the
strong improvements when simultaneously decreasing TR while
slightly increasing session duration (Figure 7) are of great rele-
vance to clinical studies (Seghier et al., 2010), in which strain on
participants and data acquisition duration have to be balanced.

CONCLUSION ON THE DCMident TOOLBOX
The DCMident toolbox presented in the current report provides
solutions to ensure DCM parameter identifiability based on fMRI
acquisition specifications. Identifiability is tested using the pro-
file likelihood computed for each parameter based on a DCM
with a canonical HRF and no Bayesian priors. This allows the
user to judge the extent to which specific model parameters are
more likely to reflect the priors than the underlying input data.
Analogous to the successful application of the profile likelihood
in systems biology modeling, our approach provides profile like-
lihood plots that are easy to interpret. At a glance, identifiability or
non-identifiability as well as confidence intervals of the parameter
value are depicted in the plots. When non-identifiabilities are
detected, modifications of sampling rate, duration of data acqui-
sition, stimulus frequency and noise reduction can restore iden-
tifiability. This is especially important if inference on specific
model parameters is of interest. To encourage the use of sophis-
ticated network analysis methods such as DCM for fMRI data,
the DCMident toolbox will be available to interested researchers
upon request from the authors as a Python-based (http://www.

python.org/) toolbox package with a graphical user interface.
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