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We propose a hierarchical pipeline for skull-stripping and segmentation of anatomical
structures of interest from T1-weighted images of the human brain. The pipeline
is constructed based on a two-level Bayesian parameter estimation algorithm called
multi-atlas likelihood fusion (MALF). In MALF, estimation of the parameter of interest
is performed via maximum a posteriori estimation using the expectation-maximization
(EM) algorithm. The likelihoods of multiple atlases are fused in the E-step while the
optimal estimator, a single maximizer of the fused likelihoods, is then obtained in the
M-step. There are two stages in the proposed pipeline; first the input T1-weighted
image is automatically skull-stripped via a fast MALF, then internal brain structures of
interest are automatically extracted using a regular MALF. We assess the performance
of each of the two modules in the pipeline based on two sets of images with markedly
different anatomical and photometric contrasts; 3T MPRAGE scans of pediatric subjects
with developmental disorders vs. 1.5T SPGR scans of elderly subjects with dementia.
Evaluation is performed quantitatively using the Dice overlap as well as qualitatively
via visual inspections. As a result, we demonstrate subject-level differences in the
performance of the proposed pipeline, which may be accounted for by age, diagnosis, or
the imaging parameters (particularly the field strength). For the subcortical and ventricular
structures of the two datasets, the hierarchical pipeline is capable of producing automated
segmentations with Dice overlaps ranging from 0.8 to 0.964 when compared with the gold
standard. Comparisons with other representative segmentation algorithms are presented,
relative to which the proposed hierarchical pipeline demonstrates comparative or superior
accuracy.
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INTRODUCTION
To analyze how the pathology of a brain disorder affects spe-
cific anatomical structures and to understand the association
between various cognitive functions and the anatomical phe-
notypes of specific brain structures, it is a necessity to first
segment those brain structures of interest. To be feasible for large-
scale neuroimaging studies, fully automated and highly accurate
segmentation algorithms are in great demand. To this end, atlas-
based segmentation algorithms have been widely explored (Miller
et al., 1993; Collins and Evans, 1997; Haller et al., 1997; Hogan
et al., 2000; Baillard et al., 2001; Crum et al., 2001; Carmichael
et al., 2005; Heckemann et al., 2006; Haegelen et al., 2013). A

brain atlas incorporates the information of numerous brain struc-
tures so as to guide the delineation of those structures in other
to-be-segmented brain images. The simplest format is a picto-
rial representation of certain brain structures, guiding anatomists
in defining the boundaries between neighboring structures. In
computational algorithms, a brain atlas usually refers to a pair of
images—the magnetic resonance (MR) image (e.g., T1-weighted
image) and the corresponding anatomical structure definitions
that are usually pre-defined via manual delineations by neu-
roanatomists. To better account for anatomical variability, it
is natural to utilize the information of multiple atlases, which
leads to a variety of multi-atlas based segmentation methods
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(Warfield et al., 2004; Aljabar et al., 2009; Langerak et al., 2010;
Lotjonen et al., 2010; Asman and Landman, 2012; Tang et al.,
2013; Wang and Yushkevich, 2013).

A crucial step in multi-atlas based segmentation is to regis-
ter the MR image of each atlas to that of the to-be-segmented
subject. To ensure accurate registration between two MR brain
images, it usually requires a preliminary step to isolate the brain
from other “non-brain” regions, a process which is referred to as
“skull-stripping.” This is largely justified by the reliance of most
registration algorithms upon the intensity information, as well as
the geometric features, of the atlas and the subject MR images.
The large variability of the “non-brain” regions, in terms of both
intensity and geometry, often causes noise and makes the reg-
istration challenging. In addition to improving the registration
accuracy between MR images, skull-stripping is also an important
preliminary step in many other MR image processing procedures
such as surface rendering and cortical flattening. A number of
automated approaches to skull-stripping have been proposed and
are widely used (Shattuck et al., 2001; Suri, 2001; Ségonne et al.,
2004; Zhuang et al., 2006; Park and Lee, 2009). The accuracy
and reliability of most automated skull-stripping approaches are
affected by a range of factors, including the subject’s age, diag-
nosis, resolution of the MR image, as well as the intensity bias
presented in the MR image.

Skull-stripping and atlas-based segmentation are usually
treated as two separate processes, given that they rely on differ-
ent types of image processing techniques. Skull-stripping is pri-
marily based on intensity thresholding, morphology, watershed
transform, and hybrid methods while atlas-based segmentation
focuses specifically on image registration.

We herein propose a hierarchical segmentation pipeline
for unifying skull-stripping and structure extraction from T1-
weighted images of the human brain in a Bayesian parameter
estimation setting. This fully automated hierarchical pipeline is
implemented in the MriCloud platform (www.mricloud.org).
The pipeline is built on a segmentation label estimation algo-
rithm called multi-atlas likelihood fusion (MALF) (Tang et al.,
2013). MALF relies on the information of multiple atlases, each of
which consists of an MR brain image and a pre-defined segmenta-
tion map. For any to-be-segmented subject image, we assume that
every atlas image is a possible generator of it. Thus, in the estima-
tion of the segmentation label, the choice of the deformable atlas
has become a random variable. Integral to this estimation is iden-
tification of the optimal hidden diffeomorphism, acting on the
background space of coordinates that effects the evolution with
least energy from the randomly selected atlas image to the subject
image. Maximum a posteriori estimation is employed in MALF,
which is solved by iterating between fixing the locally optimized
diffeomorphisms and obtaining the maximizing segmentation
labels, then optimizing the local diffeomorphisms for the fixed
segmentation in an expectation-maximization (EM) (Dempster
et al., 1977) fashion.

In this paper, we first briefly describe the key idea of the MALF
algorithm and then present our two-level hierarchical pipeline for
skull-stripping and segmenting T1-weighted images that consists
of two stages; skull-stripping of the input T1-weighted image fol-
lowed by segmentation of the internal brain structures of interest.

The performance of the proposed pipeline is evaluated based on
two datasets that differ remarkably in their anatomical pheno-
types and the photometric features of their input T1-weighted
images. The first dataset comes from 30 pediatric subjects [a
mixture of typically developing (TD) children, children with
attention deficit hyperactivity disorder (ADHD) and autism spec-
trum disorder (ASD)], the T1-weighted images of which were
obtained from a 3.0 Tesla (3.0T) Magnetization Prepared Rapid
Gradient Recalled Echo (MPRAGE) imaging system. The second
dataset is composed of 16 elderly subjects (a mixture of nor-
mal aging subjects, subjects with Alzheimer’s disease (AD), mild
cognitive impairment (MCI), and impairment but not MCI, the
scans of which were obtained from 1.5 T coronal Spoiled Gradient
Echo (SPGR) imaging systems.

One of the primary goals of this paper is to validate the broad
range of applicability of the proposed pipeline, in terms of both
skull-stripping and segmentation of subcortical and ventricu-
lar structures. We do this using two datasets with very different
profiles in terms of age (pediatric vs. elderly), diagnosis (develop-
mental disorders vs. dementia), and the imaging parameters (3.0T
MPRAGE vs. 1.5T SPGR). The skull-stripping performance of the
proposed pipeline is evaluated by comparing with two state-of-
the-art skull-stripping methods for T1-weighted images [Hybrid
Watershed Algorithm (HWA) (Ségonne et al., 2004) and Brain
Extraction Tool (BET) (Smith, 2002)]. In evaluating the segmen-
tation accuracy for subcortical and ventricular structures, we first
compare the automated segmentation results obtained from the
proposed pipeline with those from two widely used segmenta-
tion software packages [Freesurfer (Fischl et al., 2002) and FSL
(Patenaude et al., 2011)] that are publicly available. In addition, to
compare our pipeline with other multi-atlas based segmentation
approaches, we assess the segmentation performance of the pro-
posed pipeline relative to that of three representative label-fusion
based segmentation algorithms [STAPLE (Warfield et al., 2004),
Spatial STAPLE (Asman and Landman, 2012)] and a joint label-
fusion approach (Wang et al., 2013) for which we use the term
“ANTS+PICSL.” All methodology comparisons are performed
based on the two aforementioned datasets.

MATERIALS AND METHODS
MALF
Assume that there exist N atlases, pairs of images {(Ia, Wa)},
where Ia denotes the T1-weighted image of atlas a and Wa

denotes the paired segmentation label image. The Wa is a map
from the image domain � to a subset of the non-negative
integers; Wa(x) = 0 for voxel x ∈ � belonging to the unla-
beled background, and Wa(x) = k, k ∈ {1, 2, 3, ...} for voxel x
labeled as the k-th structure (such as the left caudate, the right
putamen and so on). The segmentation label images of the
atlases are usually pre-defined by neuroanatomists via manual
delineations.

In MALF, the goal is to obtain the optimal estimator of the
segmentation label W based on the observable image ID with
optimality quantified by the segmentation accuracy when com-
pared with the gold standard, the manual segmentations. We
approach this problem via Bayesian estimation, which ensures
a straightforward incorporation of information from multiple

Frontiers in Neuroscience | Brain Imaging Methods March 2015 | Volume 9 | Article 61 | 2

www.mricloud.org
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Tang et al. Hierarchical segmentation via MALF

deformable atlases (Ia, Wa) , a = a1, a2, .... We maximize the
conditional probability of the parameter W , conditioned on the
observed image ID, given by

Ŵ = arg max
W

p(W |ID). (1)

The MAP estimator, defined in Equation (1), is equivalently
obtained via

Ŵ = arg max
W

p(ID, W), (2)

where p(ID, W) is computed via a fusion of likelihoods from
multiple deformable atlases, as

p(ID, W) =
∑

a

p(ID, W |A = a)πA(a), (3)

with πA(a) the prior probability that the observed image evolves
from the specific atlas image Ia, which is usually taken as the uni-
form distribution. Given a set of deformable atlas images {Ia}, the
possible starting points of the evolution process, the acquisition
of the observable image ID can be mathematically formulated
as ID = IA ◦ ϕ−1 + ε, where IA ∈ {Ia}, ϕ ∈ G with G denoting
the group of diffeomorphisms (bijective and smooth changes of
coordinates on the background space with smooth inverses), and
ε ∼ Gaussian.

Equation (2) follows from the fact that p(ID, W) =
p(W |ID)p(ID) and that p(ID) is constant with respect to
the parameter W . Given a single atlas a, the likelihood model
for inference is p(ID, W |A = a). With multiple atlases generating
the observed image, the fusion of the likelihood functions yields
the multi-modal mixture model with the prior averaging over
models. This is the generative model with which we score each
atlas and the essence of the MALF algorithm.

Given the explicit mathematical relationship ID = IA ◦ ϕ−1 +
ε, IA ∈ {Ia}, ϕ ∈ G, statistical estimation of the segmentation
label W in the observed image ID can be made via a learning of

the {(Ia, Wa)} and their mathematical connections to ID. Under
this assumption that the observable data comes from a random
deformation (randomness of the diffeomorphism ϕ) of a random
atlas (randomness of the selected atlas A) with random noise, our
probability model can be described as

p(W, ID, A = a, ϕ) = p(ID|W, A = a, ϕ)p(W |ϕ, A = a)

π(ϕ, A = a), (4)

which comes from the conditional probability formula. The
quantity p(ID|W, A = a, ϕ) is modeled as a pre-selected proba-
bility density function. In our case, we use a mixture of Gaussians,
the parameters of which are estimated from the selected atlas a.
The term p(W |ϕ, A = a) describes the prior information on the
segmentation label W . More details about the theoretical founda-
tions and algorithmic implementations of MALF can be found in
Tang et al. (2013).

TWO-LEVEL HIERARCHICAL BRAIN SEGMENTATION
The pipeline of the proposed two-level hierarchical brain segmen-
tation is illustrated in Figure 1. After obtaining the T1-weighted
image of the test subject from the scanner, we first re-orient the
image and correct the inhomogeneity of the image intensity. We
then perform the first-level segmentation to obtain the skull-
stripped T1-weighted image of the subject. Following that, the
second-level segmentation is performed to obtain the structures
of interest for the input subject. Each step is detailed as follows:

1. Preprocessing: After the T1-weighted image of the subject is
acquired from the scanner, its orientation is adjusted so that
it matches the orientation of the atlas images. In our case, we
use axial view as our standard orientation. We then correct for
intensity-based inhomogeneities of the T1-weighted image for
that subject using N3 (Sled et al., 1998). This inhomogene-
ity correction method is selected because of its applicability to
T1-weighted images of the brain with skull and its superior
performance (Arnold et al., 2001).

FIGURE 1 | Schematic of the proposed two-level hierarchical segmentation pipeline, consisting of three steps—preprocessing, first-level segmentation

for skull-stripping, and second-level segmentation of subcortical and ventricular structures of interest. Abbreviation: MALF, multi-atlas likelihood fusion.
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2. Skull-stripping segmentation: To obtain the skull-stripped T1-
weighted image of the input subject, we estimate six global
labels of the subject; the lateral ventricles (LV), the gray mat-
ter (GM) of the whole brain, the white matter (WM) of the
whole brain, the cerebrospinal fluid (CSF) of the whole brain,
the skull, and the background of the image. This is accom-
plished using T1-weighted images (for both the subject and
the atlases) that have been down-sampled by a factor of two
(e.g., from the original resolution of 1 × 1 × 1 mm to 2 × 2 ×
2 mm). The timestep parameter is selected to be T = 2 for the
discretization in LDDMM image mapping (Beg et al., 2005)
to approximate small deformations (Ceritoglu et al., 2013).
The down-sampling of the images and the initial small defor-
mations make the entire MALF procedure significantly faster.
The four global labels, LV, GM, WM, and CSF, are grouped
to create an initial brain mask, which is then morphologically
post-processed to fill holes in the brain mask, remove grains,
and smooth the rough boundary.

3. Subcortical and ventricular segmentation: After skull-stripping
the T1-weighted image of the input subject, the structures of
interest are obtained from a second iteration of the MALF
algorithm. Here the stripped subject and atlas images are of the
original image resolution (e.g., 1 × 1 × 1 mm). In this second
iteration of MALF, to obtain the initial global optimal diffeo-
morphisms from LDDMM image mapping, we use the default
timestep parameter T = 10. At the cost of being computa-
tionally intense, we are capable of achieving a more accurate
segmentation for each internal brain structure of interest.

The aforementioned two-level hierarchical segmentation pipeline
has been implemented in the MriCloud platform (www.

mricloud.org). The computations were processed on the Gordon
cluster of XSEDE (Towns et al., 2014). Each node on Gordon con-
tains two 8-core 2.6 GHz Intel EM64T Xeon E5 (Sandy Bridge)
processors and 64 GB of DDR3-1333 memory. The total segmen-
tation time of one subject is around 70 min for an atlas set with
30 atlases using 4 nodes/64 cores.

MRI DATASET
Two datasets were used to evaluate the performance of the pro-
posed pipeline in its two modules, skull-stripping and segmenta-
tion of subcortical and ventricular structures.

For the first dataset, high resolution T1-weighted 3D-volume
MPRAGE coronal images covering the whole brain of 30 pedi-
atric subjects were acquired from a Philips 3T “Achieva” MRI
scanner (Best, the Netherlands) using an 8-channel head coil
(TR = 7.99 ms, TE = 3.76 ms, Flip angle = 8◦, voxel size = 1 mm
isotropic). This dataset included 13 TD subjects (mean age: 10.42
years old; 5 males and 8 females), 6 male subjects with ASD
(mean age: 9.74 years old) and 11 subjects diagnosed with ADHD
(mean age: 10.2 years old; 4 males and 7 females). This study
was approved by the Johns Hopkins Medical Institutional Review
Board. Written consent was obtained from a parent/guardian and
assent was obtained from the participating child.

The second dataset is a subset of scans collected in a longitu-
dinal study focusing on dementia of the Alzheimer type [known
as the BIOCARD study (Miller et al., 2013)]. T1-weighted images

of 16 scans were obtained using a standard multi-modal proto-
col from a GE 1.5T scanner, with the scanning protocol being
a coronal SPGR sequence (TR = 24, TE = 2, FOV = 256 × 256,
thickness/gap = 2.0/0.0 mm, flip angle = 20, 124 slices). This
dataset included 7 normal aging subjects (mean age: 60.09 years
old; 4 males and 3 females), 2 subjects with MCI (mean age: 63.6
years old; 1 male and 1 female), 5 subjects with AD (mean age:
68.64 years old; 3 males and 2 females), and 2 subjects who are
impaired but not MCI (mean age: 58.65 years old; 1 male and 1
female). This study was approved the Internal Review Board of
the Johns Hopkins University School of Medicine.

CREATION OF THE ATLAS SETS
The aforementioned two datasets served as two individual atlas
sets. Leave-one-out (LOO) analysis was performed separately for
each dataset; one subject was treated as the to-be-segmented sub-
ject and the remaining subjects of the same dataset served as the
atlas set to segment the excluded subject. For each set, the ori-
entation of each atlas image was adjusted to be axially oriented.
All atlas images underwent inhomogeneity correction using the
nonparametric non-uniform intensity normalization method N3
(Sled et al., 1998).

Since there are two levels of segmentation, there are corre-
spondingly two sets of pre-defined segmentation labels for each
atlas. The first set is used for the first-level segmentation (skull-
stripping), consisting of the six global labels—the whole-brain
GM, the whole-brain WM, the whole-brain CSF, the LV, the skull,
and the background of the entire image. To create these labels
for each atlas, its T1-weighted image was first manually skull-
stripped by two raters (H.C. and X.T.) to separate the brain tissue
from the non-brain regions. This manual skull-stripping proce-
dure was performed using the software RoiEditor (http://www.

MriStudio.org). Two labels, the skull and the background of the
image, were then created by thresholding the intensity of vox-
els belonging to the non-brain regions in the T1-weighted image
with the threshold value empirically selected. The lateral ven-
tricles were manually traced by the same two raters (H.C. and
X.T.). The other three labels, whole-brain GM/WM/CSF, were
created by performing unified segmentation with respect to the
manually skull-stripped T1-weighted image using a robust tissue
segmentation algorithm (Ashburner and Friston, 2005) incor-
porated in the Statistical Parametric Mapping (SPM8) software.
Given that the whole-brain GM/WM/CSF labels were obtained
from an automated algorithm, we would expect some inaccuracy
of these three labels. However, our priority is the final skull-
stripping result, and we expect that extraction of the brain mask
would not be significantly affected by an inaccuracy in obtaining
the three GM/WM/CSF labels as long as the boundary separating
the brain from the non-brain region is sufficiently accurate.

Regarding the second set of labels used for the purpose of
the second-level segmentation, we treat the two datasets sepa-
rately. For the first dataset, the label image of each atlas consists
of 15 internal brain structures—left and right caudate, putamen,
globus pallidus, thalamus, hippocampus, amygdala, local GM,
local WM, and local CSF. The 6 basal ganglia structures (the
bilateral caudate, putamen, and globus pallidus) were manually
delineated by two anatomists (DC and KA) using the software
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MIPAV (Medical Image Processing, Analysis, and Visualization)
(McAuliffe et al., 2001). The thalamus was manually delineated
by two raters (XT and DC) using RoiEditor. The hippocam-
pus and the amygdala were manually defined by two anatomists
(EP and TB) using the software Seg3D (http://www.sci.utah.

edu/cibc-software/seg3d.html). The other three labels—local
GM/WM/CSF were obtained based on the approach described in
(Tang et al., 2013). Briefly, we defined a cuboid region of interest
(ROI) encompassing all 12 subcortical structures simultaneously
in all atlases. Voxels inside this ROI but not belonging to any of
the 12 manually delineated structures were automatically labeled
as local GM/WM/CSF based on a local brain tissue segmentation
algorithm (Priebe et al., 2006). The remaining voxels in the image
domain but outside these 15 ROIs are unlabeled. The advantage
of adding local surrounding tissue segmentation labels for the
segmentation of subcortical structures has been demonstrated in
Tang et al. (2013).

For the second dataset, each label image consists of a total of
13 internal brain structures, left and right putamen, globus pal-
lidus, hippocampus, amygdala, lateral ventricle, local GM, local
WM, and local CSF. The putamen and the globus pallidus in
this dataset were manually delineated by two raters (NK and XT)
using MIPAV. The amygdala and the hippocampus were manually
traced by two anatomists (HT and TB) using Seg3D. The lateral
ventricles were defined manually by two raters (HC and XT) using
RoiEditor. The three local tissue labels were created in the same
fashion as employed for the first dataset.

RESULTS
EVALUATION OF THE SKULL-STRIPPING PERFORMANCE
Dataset 1
In order to quantitatively assess the performance of the
skull-stripping module in the proposed hierarchical pipeline, we
compare the automated skull-stripping results with the manual
delineations on six pre-selected sagittal slices (Figure 2) from the
T1-weighted images of the 30 pediatric subjects. This compari-
son is quantified by the value of the Dice similarity coefficient
(DSC) (Dice, 1945). Selection of the six sagittal slices follows the
procedure described in (Fennema-Notestine et al., 2006).

We compare the skull-stripping results with those obtained
from two of the most widely used skull-stripping methods—
HWA (Ségonne et al., 2004) incorporated in the software
Freesurfer (version 5.2.0) and BET (Smith, 2002) incorporated
in the software FSL (version 5.0). Figure 3 shows the mean and
the standard deviations of the DSC values for the three auto-
mated approaches, computed across all 30 subjects, for each of
the six slices. According to paired Student’s t-tests, the DSC values
between the skull-stripping results from the proposed pipeline
and those from manual delineations are, for all slices, statistically
equivalent to the DSC values of the corresponding comparisons
between HWA and manual delineations (p > 0.06). For each
slice, the skull-stripping results from both the proposed pipeline
and HWA are statistically superior to those from BET in terms of
DSC (p < 1e−5).

Upon visual inspection of the skull-stripping results on all
slices for each image in this dataset, we observe that HWA
sometimes misses cortical and cerebellar tissue. In two cases, it

FIGURE 2 | Standard location of the six pre-selected sagittal slices

(demonstrated on a coronal image) that have been manually skull

stripped in the 30 pediatric images for validation analysis. From left to
right: slice1, slice2, slice3, slice4, slice5, and slice6.

FIGURE 3 | Mean (std. error bar) Dice overlap values on the

pre-selected slices of the skull-stripping results for the 30 pediatric

subjects obtained from the three automated approaches—MALF

(blue), HWA (red), and BET (yellow) compared with the corresponding

manually stripped slices.

completely excludes the entire cerebellum region. HWA has also
been found to act aggressively in regions close to the external
dura, tending to include the entire external dura. The brain con-
tour of the skull-stripped images from HWA is not smooth in
a number of cases. Visual examination also suggests that BET
consistently underestimates relevant brain tissue. In Figure 4, we
demonstrate the skull-stripping results obtained from the three
methods for two representative subjects. It is clear that for the
subject displayed on the top panel of that figure, both HWA and
BET miss some cortical brain tissue. For the subject on the bottom
panel, HWA is inclined to include more non-brain tissue while
BET misses some brain tissue. As illustrated by the yellow con-
tour lines shown in Figure 4, the boundaries of the skull-stripped
brain images from both HWA and BET are not as smooth as those
from our hierarchical pipeline based on MALF.
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FIGURE 4 | The top and bottom panels show automated skull-stripping

results of individual subjects of the pediatric dataset, different for each

panel, superimposed on their corresponding T1-weighted image. From

left to right: results obtained from MALF, HWA, and BET. Regions pointed to
with a red arrow indicate regions where inaccurate skull-stripping has
occurred.

Dataset 2
For the second dataset, the skull-stripping performance of the
three automated methods (MALF, HWA, and BET) is compared
qualitatively via a visual examination of the results for all 16
scans. Qualitative review of all of the individual results reveals that
MALF is superior to both HWA and BET in at least two respects:
Firstly, MALF performs an accurate separation between the brain
tissue and the external CSF whereas HWA consistently includes
the external CSF (the space between the brain tissue and the exter-
nal dura) and sometimes bone marrow (the third example of
HWA in Figure 5). Meanwhile, BET is typically over conservative,
missing some portion of the cortical regions. Secondly, MALF
does not mistakenly include non-brain regions such as the eye,
the mouth, and the skull while HWA and BET both have vari-
ous non-brain regions included in the “stripped” volumes. For
HWA, regions adjacent to the eyes are often included (the first
example of HWA in Figure 5) and sometimes parts of the skull
are included (the second example of HWA in Figure 5). As for
BET, large amounts of regions close to the mouth are included
(all 3 examples of BET in Figure 5).

EVALUATION OF THE SUBCORTICAL AND VENTRICULAR
SEGMENTATION ACCURACY
To evaluate the accuracy of the second module in our pipeline,
segmenting subcortical and ventricular structures of interest, we
compare the automated segmentations with the corresponding

manual ones using the DSC value. For each dataset, segmenta-
tion accuracy of the proposed pipeline is first compared with
that of Freesurfer (Fischl et al., 2002) and FSL (Patenaude
et al., 2011), and then compared with three multi-atlas label-
fusion based segmentation techniques—STAPLE (Warfield et al.,
2004), Spatial STAPLE (Asman and Landman, 2012), and
ANTS+PICSL (Wang et al., 2013). For both STAPLE and
Spatial STAPLE, LDDMM was employed as the pairwise reg-
istration technique. For ANTS+PICSL, we followed the seg-
mentation routine as suggested in Wang and Yushkevich
(2013); the diffeomorphic registration module in ANTs, SyN
(Avants et al., 2008), was used for the pairwise diffeomor-
phic registration followed by joint label fusion and corrective
learning.

Comparison with freesurfer and FSL
Dataset 1. For the first dataset, the mean and the standard
deviations of the DSC values, for all 12 subcortical structures
produced by MALF, FreeSurfer, and FSL, are shown in Figure 6.
Two-sampled Student’s t-tests reveal that MALF is statistically
significantly better than both Freesurfer and FSL in segmenting
each of those 12 structures (p < 1e−5). Comparing Freesurfer
and FSL, FSL performs better than Freesurfer in segmenting
the right caudate, the bilateral putamen, the bilateral globus
pallidus, the right thalamus, the left amygdala, and the right
hippocampus (p < 5e−3), as evaluated by the DSC value. In
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FIGURE 5 | A comparison of the three automated skull-stripping

approaches (from left to right: results from MALF, HWA, and

BET) based on three representative cases from the 16 elderly

scans of the second dataset. Red lines indicate the boundaries
that separate the brain tissue defined by each method and the
“non-brain” regions.

Figure 7, we illustrate two examples of the basal ganglia and
the thalamus segmentations, while Figure 8 gives examples for
the amygdala and the hippocampus, from manual delineations
as well as from the three automated approaches. The structure
definitions are superimposed on the corresponding T1-weighted
images.

Dataset 2. For the 16 elderly scans from the second dataset,
quantitative comparisons of MALF, Freesurfer, and FSL, in terms
of the mean DSC values for each of the 10 structures of inter-
est, are demonstrated in Figure 9, with the standard devia-
tions plotted as the error bars. Paired Student’s t-tests reveal
that MALF is statistically significantly better than Freesurfer in
segmenting the bilateral ventricles (left: p = 0.036, right: p =
0.042). Furthermore, MALF is statistically significantly supe-
rior to both Freesurfer and FSL in segmenting the other 8
structures with the exception of the right globus pallidus (left
amygdala: p < 0.005, right amygdala: p < 0.002, left hippocam-
pus: p < 2.3e−6, right hippocampus: p < 6.8e−8, left putamen:
p < 1.5e−8, right putamen: p < 3e−8, left globus pallidus: p <

0.05, right globus pallidus: p > 0.05). Qualitative comparisons
of the three methods in segmenting the putamen and the globus

pallidus from images in this dataset are illustrated in Figure 10
while Figure 11 gives comparisons of the amygdala and the
hippocampus.

Comparison with multi-atlas label-fusion based segmentation
algorithms
Dataset 1. Table 1 tabulates the mean and the standard deviations
of the DSC values, computed across the 30 pediatric subjects in
the first dataset, from MALF and the three selected multi-atlas
label-fusion based segmentation algorithms—STAPLE, Spatial
STAPLE, and ANTS+PICSL. Paired Student’s t-tests reveal
that MALF provides superior segmentation performance rel-
ative to STAPLE for each of the 12 subcortical structures.
Comparing MALF and Spatial STAPLE, MALF is statistically
significantly better than Spatial STAPLE in segmenting the cau-
date, the putamen, the globus pallidus, and the hippocam-
pus, all in both hemispheres. MALF and ANTS+PICSL are
statistically equivalent in segmenting a majority of the 12
subcortical structures with the exceptions that MALF outper-
forms ANTS+PICSL in segmenting the bilateral amygdala while
ANTS+PICSL is superior to MALF in segmenting the left globus
pallidus.
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FIGURE 6 | The mean and standard deviations of the Dice overlap values

for the 12 subcortical structures (left and right caudate, putamen,

globus pallidus, thalamus, amygdala, and hippocampus) obtained from

MALF (blue), Freesurfer (red), and FSL (yellow) relative to the manual

delineations. The mean values are computed across all of the 30 pediatric
subjects.

FIGURE 7 | The top and bottom panels show segmentation results of

the six basal ganglia structures (left and right caudate, putamen, and

globus pallidus) and the bilateral thalamus in an individual subject of

the first dataset (30 pediatric subjects), different for each panel. From left
to right, segmentations are obtained from manual delineation, MALF,
Freesurfer, and FSL.

Dataset 2. For the 16 elderly scans in the second dataset, we list
the DSC values’ mean and standard deviations, calculated from
the four automated approaches (MALF, Spatial STAPLE, STAPLE,
and ANTS+PICSL), in Table 2. According to the results from
paired Student’s t-tests, MALF is statistically significantly supe-
rior to STAPLE in segmenting all of the 10 structures of interest
from this dataset. Compared with Spatial STAPLE, MALF pro-
duces significantly more accurate automated segmentations for
the bilateral putamen, globus pallidus, amygdala, hippocampus,
and the right lateral ventricle, while being statistically compara-
ble in segmenting the left lateral ventricle. Comparing MALF and

ANTS+PICSL, they are statistically equivalent in segmenting the
bilateral globus pallidus, the bilateral hippocampus, and the left
lateral ventricle. MALF is statistically superior to ANTS+PICSL
in segmenting the right lateral ventricle whereas, for this dataset,
ANTS+PICSL performs a better segmentation of the putamen
and the amygdala in both hemispheres.

DISCUSSION
In this paper, we have proposed a fully automated skull-stripping
and segmentation pipeline for T1-weighted images based on two
levels of MALF (Tang et al., 2013); the first level is a fast version of
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FIGURE 8 | The top and bottom panels show the segmentation results

of the left amygdala (yellow), the right amygdala (red), the left

hippocampus (blue), and the right hippocampus (green) in individual

subjects from the pediatric dataset, different for each panel. From left to
right, segmentations are obtained from manual delineation, MALF, Freesurfer,
and FSL.

FIGURE 9 | The mean DSC values and the standard deviations of the

10 structures of interest (left and right putamen, globus pallidus,

amygdala, hippocampus, and lateral ventricle) in the second dataset.

The values are computed from the automated segmentations of MALF
(blue), Freesurfer (red), and FSL (yellow) relative to the corresponding
manual ones.

MALF used for skull-stripping with low computational cost and
the second level is a regular version of MALF employed in pursuit
of high segmentation accuracy. There are three steps in the whole
pipeline: (1) pre-processing, (2) isolating the brain tissue from
extracranial regions (skull-stripping), and (3) extracting the brain
structures of interest from the “stripped” T1-weighted images.

The performance of the proposed hierarchical pipeline was
evaluated based on two sets of brain images with very differ-
ent profiles in terms of both anatomical phenotype (due to age
and differences in diagnosis) and photometric profile (due to

differences in the imaging parameters). The first dataset con-
sisted of 30 pediatric subjects, a mixture of TD children, children
with ADHD and ASD. T1-weighted images of this dataset were
obtained from a 3T MPRAGE imaging system. The second dataset
consisted of 16 elderly subjects, a mixture of normal aging, MCI,
AD, as well as impaired but not MCI subjects. Images of the sec-
ond dataset were obtained from a 1.5T SPGR imaging system.
To evaluate the skull-stripping and segmentation accuracy of the
proposed pipeline, we performed leave-one-out experiments on
each dataset; one subject was treated as the to-be-processed target
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FIGURE 10 | Demonstration of the bilateral putamen and globus pallidus definition in two representative subjects from the second dataset (16

elderly scans). From left to right: results obtained from manual, MALF, Freesurfer, and FSL.

FIGURE 11 | Visual comparisons of the segmentations of the hippocampus and the amygdala in two representative subjects from the second dataset

(16 elderly scans). The segmentations are obtained from manual delineation, MALF, Freesurfer, and FSL.

while the remaining subjects of the same dataset served as the
multiple deformable atlases.

The skull-stripping performance of the hierarchical pipeline
was shown to be comparable with that of the manual approach
(Figure 3). Relative to two of the most popular skull-stripping
algorithms (HWA and BET) for T1-weighted images, our
approach provides superior performance for both datasets. As
shown in Figures 4, 5, the proposed pipeline automatically pro-
duced highly precise skull-stripped brain images with noticeably
smooth boundaries. A primary limitation that we have noticed
of BET is that it is particularly inclined to underestimate rel-
evant brain tissue around cortical regions (Figures 4, 5) while
including a large amount of non-brain regions around the mouth

(Figure 5) when using its default parameter setting. An investi-
gation of the parameter settings may relieve this issue, an aspect
that we did not pursue. The primary advantage of BET is that
it also works for the skull-stripping of T2- and proton-density-
weighted images whereas HWA and the proposed method only
apply to T1-weighted images. As for HWA, it sometimes includes
non-brain matter around the eyes or, conversely, excludes rele-
vant brain tissue altogether (such as the superior frontal gyrus).
In some extreme cases, HWA excludes the cerebellum completely.
The superiority of the proposed pipeline in skull-stripping is
more obviously established when applied to more difficult cases
such as images in the second dataset. As shown in Figure 5, both
HWA and BET are likely to commit more skull-stripping mistakes
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Table 1 | The DSC values between the manual and automated segmentations, averaged across the 30 pediatric subjects, from MALF,

ANTS+PICSL, Spatial STAPLE, and STAPLE.

MALF ANTS+PICSL Spatial STAPLE STAPLE

Left caudate 0.944 ± 0.012 0.944 ± 0.014 0.915 ± 0.019 0.871 ± 0.033

Right caudate 0.946 ± 0.009 0.946 ± 0.009 0.914 ± 0.018 0.869 ± 0.035

Left putamen 0.946 ± 0.023 0.949 ± 0.010 0.931 ± 0.024 0.908 ± 0.026

Right putamen 0.948 ± 0.022 0.949 ± 0.010 0.933 ± 0.021 0.912 ± 0.024

Left globus pallidus 0.906 ± 0.036 0.920 ± 0.016 0.891 ± 0.032 0.864 ± 0.035

Right globus pallidus 0.908 ± 0.031 0.917 ± 0.014 0.886 ± 0.029 0.861 ± 0.034

Left thalamus 0.963 ± 0.007 0.958 ± 0.015 0.967 ± 0.007 0.949 ± 0.014

Right thalamus 0.964 ± 0.006 0.958 ± 0.016 0.966 ± 0.006 0.947 ± 0.011

Left amygdala 0.861 ± 0.029 0.829 ± 0.039 0.861 ± 0.026 0.772 ± 0.053

Right amygdala 0.821 ± 0.083 0.793 ± 0.079 0.815 ± 0.078 0.745 ± 0.105

Left hippocampus 0.901 ± 0.041 0.895 ± 0.052 0.878 ± 0.054 0.833 ± 0.059

Right hippocampus 0.905 ± 0.023 0.905 ± 0.018 0.888 ± 0.032 0.847 ± 0.041

Bold typesetting indicates that the Dice overlap obtained from the corresponding method is statistically significant in being greater than that of other methods

(p < 0.05).

Table 2 | The DSC values between the manual and the automated segmentation volumes, averaged across the 16 elderly scans from the

second dataset, the automated segmentations of which are obtained from MALF, ANTS+PICSL, Spatial STAPLE, and STAPLE.

MALF ANTS+PICSL Spatial STAPLE STAPLE

Left putamen 0.878 ± 0.026 0.898 ± 0.029 0.861 ± 0.036 0.817 ± 0.047

Right putamen 0.875 ± 0.032 0.896 ± 0.031 0.851 ± 0.027 0.801 ± 0.042

Left globus pallidus 0.796 ± 0.073 0.803 ± 0.056 0.751 ± 0.085 0.701 ± 0.086

Right globus pallidus 0.784 ± 0.063 0.789 ± 0.046 0.743 ± 0.062 0.687 ± 0.072

Left amygdala 0.838 ± 0.038 0.861 ± 0.033 0.822 ± 0.043 0.827 ± 0.041

Right amygdala 0.843 ± 0.049 0.862 ± 0.033 0.829 ± 0.041 0.835 ± 0.031

Left hippocampus 0.859 ± 0.031 0.849 ± 0.056 0.823 ± 0.051 0.782 ± 0.074

Right hippocampus 0.856 ± 0.021 0.848 ± 0.048 0.831 ± 0.033 0.789 ± 0.056

Left ventricle 0.912 ± 0.024 0.896 ± 0.076 0.891 ± 0.023 0.867 ± 0.052

Right ventricle 0.924 ± 0.018 0.885 ± 0.073 0.874 ± 0.029 0.856 ± 0.049

Bold typesetting indicates that the Dice overlap obtained from the corresponding method is statistically significant in being greater than that of other methods

(p < 0.05).

when applied to the elderly scans from the second dataset, while
our pipeline excels. This observation agrees with the compre-
hensive analysis results in Fennema-Notestine et al. (2006), in
which the T1-weighted images of subjects with AD especially
those obtained from 1.5T scanners (possibly because of relatively
poor image contrasts) were found to be the most difficult cases
for typical skull-stripping algorithms. The success of the pro-
posed pipeline in skull-stripping 1.5T scans diagnosed with AD
and MCI is indicative of a wider applicability.

For the second module of our pipeline, i.e., segmentation of
subcortical and ventricular structures, the proposed hierarchical
pipeline was shown to be capable of creating precise automated
segmentations for both datasets, demonstrating statistically sig-
nificantly higher segmentation accuracy than both FreeSurfer and
FSL (Figures 6–11). With that being said, the gap in performance
may have been associated with a difference in terms of the man-
ual delineation protocols for the training datasets; FreeSurfer
and FSL both have their own training datasets, for which the

definitions of subcortical and ventricular structures may vary
between them, and may be different from the ones delineated
in our atlases. Compared with three label-fusion based segmen-
tation techniques—STAPLE, Spatial STAPLE, and ANTS+PICSL
(Tables 1, 2)—our pipeline is superior (compared to STAPLE and
Spatial STAPLE) or comparable (with respect to ANTS+PICSL)
in terms of segmentation accuracy. Comparing the segmenta-
tion results across the two contrasting datasets, we find that
the proposed pipeline achieves higher accuracy in segmenting
the pediatric data, which came from a scanner with higher-field
strength magnets (3T vs. 1.5T), than the elderly data that are nor-
mal aging or of a diagnostic variety ranging toward dementia of
the Alzheimer type. This clearly suggests that the segmentation
performance of the proposed pipeline is affected by the underly-
ing dataset. These influential effects may be related with the test
subjects’ age, cognitive status, diagnosis, or the imaging param-
eters (particularly the field strength) that determine the contrast
profile of the T1-weighted images. Additional data from a range

www.frontiersin.org March 2015 | Volume 9 | Article 61 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Tang et al. Hierarchical segmentation via MALF

of subjects of different ages and diagnostic categories, scanned at
different field strengths would be required to determine which
of these factors is contributing to the observed differences in the
performance of this segmentation pipeline.

One aspect that is worthy of note is the fixing of certain param-
eters, independently of the target dataset. Usually, for a specific
pipeline, parameters are tuned to best suit the current study. In
the proposed pipeline, most parameters are estimated automati-
cally using maximum-likelihood estimation, examples being the
means and variances of the Gaussian mixture models (Tang et al.,
2014). For parameters that need to be pre-assigned such as the
LDDMM algorithm’s timestep parameter or its ratio between the
two terms of the energy function (Beg et al., 2005), they are
selected based on prior testing on a large sample of datasets (much
larger, in total, than the dataset used in the evaluation of this
study). Instead of only pursuing the best performance in terms
of accuracy, those fixed parameters in our pipeline were chosen to
ensure pipeline stability as well as good performance.

To summarize, we proposed and validated a fully automated
segmentation pipeline, built on a two-level multi-atlas likelihood
fusion, for pediatric as well as elderly T1-weighted images. We
illustrate the capability of our skull-stripping and segmentation
pipeline in creating highly reliable and accurate skull-stripped
images as well as segmentations of subcortical and ventricular
structures from subjects with varying anatomical and photo-
metric phenotype, demonstrating a wide applicability of the
proposed pipeline. Each of the two modules, skull-stripping and
brain structure segmentation, in the proposed pipeline is of great
importance to a variety of medical image processing and clinical
applications.
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